

Towards Extreme(ly) Usable Software:
Exploring Tensions Between Usability and Agile Software Development

Jason Chong Lee and D. Scott McCrickard
Center for Human-Computer Interaction, Department of Computer Science

Virginia Tech, Blacksburg, VA 24061-0106
{chonglee, mccricks}@cs.vt.edu

Abstract

Design is an inherently multidisciplinary
endeavor. This raises the question of how to develop
systems in ways that can best leverage the
perspectives, practices, and knowledge bases of these
different areas. Agile software development and
usability engineering both address important aspects
of system design, but there are tensions between the
methods that make them difficult to integrate. This
work presents a development approach that draws
from extreme programming (XP), a widely practiced
agile software development process, and scenario-
based design (SBD), an established usability
engineering process. It describes three key questions
that need to be addressed for agile software
development methods and usability engineering
practices to work together effectively, and it introduces
interface architectures and design representations that
can address these questions.

1. Introduction

The growing importance of computing systems in

everyone’s daily lives has made software development
an inherently multidisciplinary endeavor [17][18].
This raises the question of how to develop systems in
ways that can best leverage the perspectives, practices
and knowledge bases of these different areas. Software
engineers, who focus more on the design and
implementation of software systems, and usability
engineers who focus more on the interface design for
end-users, are two areas of design that have not
traditionally worked well together. The broad goal of
this research is to address the problems associated with
multidisciplinary system design—focusing specifically
on agile software development and usability--—by
developing a design process that supports the effective
creation of usable software-based systems through

common practices and toolsets derived from both
areas. Initially, agile methods such as extreme
programming provided little guidance on how to
incorporate best practices from usability engineering
[2]. The underlying assumption appeared to be that
having an active, on-site customer would result in a
usable end product. However, this turned out not to be
the case. Systems could be developed that were
functionally correct but still hard to use [19]. Usability
can help by giving developers a more in-depth
understanding of users, their work and how their goals
can be realized most efficiently. This realization has
led to a surge of interest in usability within the agile
community [2][5][14][19][24].

The differing goals and motivations of
practitioners in software and usability engineering
combined with the myriad techniques and
methodologies in each leads to tensions that need to be
addressed in any development process that draws on
both. In this work, we probe these tensions by looking
at prominent development practices in agile software
development and usability engineering, namely
extreme programming (XP) and scenario-based design
(SBD) respectively, and explore how they can work
together in developing usable software systems
efficiently.

This paper will first present background
information on usability and current work on
integrating usability with agile methods. It will then
summarize some of key questions that need to be
addressed to mitigate the tensions between the two
areas and present an overview of the combined
XP+SBD process. The results of two design case
studies and the following discussion will reflect on our
approach and its benefits and limitations. Finally, we
will discuss further improvements and implications for
tool support.

2. Background and related work

This section provides some background on
usability engineering practices and other work that is
being done on integrating usability and agile software
development. This background information will
highlight some of the conflicting methodologies and
practices of the two areas which serve as motivation
for this work.

2.1 The need for usability

Usability engineering is concerned with
developing interfaces that people can use efficiently
and effectively. It deals with issues such as system
learnability, efficiency, memorability, errors and user
satisfaction [7][9][22]. Usability engineering
processes are important in that they focus on
developing systems that are tailored for end users. Its
underlying practices and theories can give insights into
user motivations, characteristics and work
environments and draw on many different areas
including psychology, sociology, physiology and
human factors. Agile methods and usability practices
have much in common. They both follow cyclical
development cycles, are human-centered and both
emphasize team coordination and communication.
However, differences in the philosophies of the two
areas may cause conflicts that can hinder the
development process.

One established usability engineering approach is
scenario-based design, a design-representation based
process that uses scenarios—narratives describing
users engaging in some task, in conjunction with
design knowledge components called claims, which
encapsulate the positive and negative effects of specific
design features as a basis for creating interactive
systems [4][22]. Claims provide compact, designer-
digestible packets of knowledge ideal for use in time-
critical design activities [25]. Like many usability
engineering approaches, SBD begins with an in-depth
requirements analysis process followed by an iterative
development/evaluation cycle. These development
cycles are typically longer than XP iterations, and
focus more on requirements gathering and low-fidelity
prototyping early in the development process. These
design practices, though important in usability, are not
a good fit in many agile practices which focus on
continuous of working software and minimal up-front
design work.

SBD design practices allow usability engineers to
design an interaction architecture that supports the
users’ tasks in an efficient and organized manner.
Usability evaluations are typically conducted with

actual end-users and can involve walkthroughs,
longitudinal studies of use or controlled lab-based
studies. Conducting usability evaluations and doing
the subsequent analysis of the data can be time-
consuming—especially with respect to development
cycles as short as those in XP. This raises the question
of how these types of design practices can be
streamlined to fit in an agile framework.

2.2 Agile software and usability

Agile practitioners have begun to explore ways of

incorporating usability into agile methods [24].
Development processes from both areas such as XP
and SBD share many of the same foundational
concepts including iterative development and a focus
on users and communication. However, a joint
approach is difficult because agile methods, which are
incremental and iterative in nature, do not support any
kind of comprehensive overview of the entire interface
architecture which is an important part of making
consistent and usable interfaces. Constantine
advocates a combined usability and agile software
development process that begins with interface design
and then continues with existing agile software
development processes [6]. One potential problem
with this approach is that the interface usability design
process becomes a bottleneck in the overall
development process and violates many of the accepted
tenets of the agile development philosophy [15]. Other
approaches suggest a methodology where software
development and usability engineering proceed in
parallel [2][5][14][19][21]. This appears to be the
preferred approach although communication and
careful coordination are vital as agile developers and
usability specialists can have differing motivations,
thought processes and goals.

2.3 Tensions between agility and usability

This work will contribute to these continuing
efforts by exploring some of the tensions between agile
software development and usability from the
perspective of SBD and XP. By looking at how well
different usability methods and techniques can be
incorporated into agile methods we hope to gain
additional insights into opportunities for mutual benefit
and support. These tensions lead to three key
questions that need to be addressed for agile software
development methods and usability engineering
practices to work together effectively.

1. How can developers design consistent and
coherent interface architectures within an
incremental agile development framework?

2. How can usability evaluations be streamlined so
they better fit in accelerated development cycles
while still providing useful results?

3. How can project members support communication
and cooperation between designers, customers,
users and other stakeholders who have different
backgrounds and expertise?

The remainder of this work explores the questions

above by exploring the practices in each approach that
contribute to the tensions and by presenting a way that
they can be mitigated.

3. XP+SBD process defined

Scenario-based design and extreme programming
are built on similar foundations. Both support iterative
development, are human-centered and emphasize team
coordination and communication. However tensions
between the two approaches need to be addressed for
them to work together effectively. The XP+SBD
process supports the best practices of both processes
while mitigating the tensions between them. The key
features of the process are defined below. Many XP
practices which are similar to SBD are preserved
including iterative development and release and
iteration planning games. Others such as pair
programming, unit testing, code refactoring and
continuous integration are also unchanged.

3.1 Scenario-based design

Scenario-based design uses scenarios and claims
to describe usage situations and highlight the tradeoffs
of specific interface features. The scenario in Figure 1,
based on the Notification Collage [8], describes the use
of a virtual notice board to allow users to maintain
awareness of people they work with.

Unlike the stories of XP, scenarios may involve
many features of the system and will describe how one
or more people engage in some activity [1][22]. They
provide a realistic context of use from which to derive
insights about the interface design. The claim in
Figure 2 describes a specific design feature of the
Notification Collage. Claims such as this can help
designers and other stakeholders consider different
design tradeoffs throughout the development process:

Pascal, a graduate student, is working on a paper
related to his research. While working on the
paper, he also wishes to be informed of research-
related information that is being shared within his
lab. He uses the Notification Collage (NC), which
runs on his second monitor, in order to be
constantly aware of such information. Pascal can
now casually glance at the NC every once in a
while in order to see the posted items. When
looking at the NC, he visually scans the randomly
placed most recent items that are on top. As he
looks at the various types of information posted, he
gains an understanding of the information
contained in the items that are completely visible,
but does not know if the information is recent.
Knowing that he must find out at a later time when
the information items were posted, he returns to his
research paper.

Figure 1. Example scenario for the notification
collage.

Information artifacts haphazardly posted in an
unorganized fashion onto a public display for
relevant information delivery, similar to how fliers
are posted on a bulletin board.

+ allows users to gain an understanding of an
item's age/applicability with respect to the
number of items that may be covering it
+ the lack of information categorization
accommodates a wide range of different types
of information to be conveyed through the
display
- BUT overlapping items due to the lack of
organization can hinder efforts to read/see a
particular information item
- BUT although the relative age of an item that
appears on top is newer, the actual age of an
item is not apparent

Figure 2. Example claim describing tradeoffs of the
bulletin board metaphor.

Scenario-based design specifies four design
phases: requirements analysis, activity design,
information design, and interaction design.
Requirements analysis is where designers first collect
information on current practices through interviews,
ethnographic studies and other data gathering
techniques. This information is used to construct a
root concept document, which describes the overall
vision for the system and stakeholder descriptions.
The designers then craft problem scenarios and claims
to describe how tasks are currently done and what key
problems and issues exist. In activity design, designers

develop scenarios and claims to describe activities and
tasks the new system will support based on the
previously developed problem scenarios and claims.
In information and interaction design, designers
determine how the activities will be supported through
the information the interface provides and the
interactions it supports. These phases, though defined
serially, often intermingle in practice as design
proceeds iteratively. For example, information and
interaction design may occur in a single iteration,
followed by a usability evaluation that prompts the
designers to reconsider the overall activity design.

3.2 Interface architecture design

In the XP+SBD process, this same basic process is
followed to develop the interface but it proceeds in
concert with software development (Figure 3). Instead
of an extended up-front requirements analysis phase,
abbreviated requirements gathering activities such as
stakeholder identification and task analysis will be
conducted at the beginning of the project after client
meetings. The root concept document is developed
after an initial client meeting.

Figure 3. Key steps in XP+SBD process. Design
artifacts are shown in white.

The interface design representation is called the
central design record (CDR), and is part of our
continuing research efforts [10][11]. It consists of the
set of scenarios describing different usage situations,
interrelated claims describing to specific features in the
interfaces, and design goals. Design goals are stated in
terms of critical parameters which are measures of
performance used to determine how well a design
serves its purpose [16]. For example, critical
parameters used during car design might be mileage or
top speed. It is used to guide all stages of interface

design in the XP+SBD process. Task analysis and
story elicitation typical occurs first and leads to
scenario development but the reverse can also happen.
The CDR allows developers to systematically improve
the interface during the development process because it
stores the rationale for the design decisions within an
organized set of claims called the claims map [27]
(Figure 9). This makes design decisions explicit and
highlights important relationships between different
parts of the interface.

The challenge is to develop, maintain and make
use of the CDR within the tight time constraints of the
XP development cycle. In the XP+SBD process, the
CDR will be expanded as development proceeds
incrementally. Developers will maintain a consistent
overall view of the interaction architecture and the
activities it supports by continuously reviewing and
updating it during each iteration.

3.3 Collaboration through the CDR

As a record of design decisions made to the
interface, the CDR also acts as a communication point
between and among developers, evaluators and clients.
Previous studies have shown that the CDR helps
developers communicate design decisions to other
stakeholders and facilitates the resolution of design
issues uncovered in usability evaluations [10][11].
Scenarios provide easy-to-understand narrative
descriptions of how users will interact with the system.
Critical design decisions and tradeoffs are encapsulated
in the claims, and allow developers to quickly compare
different design options. It also allows them to justify
design decisions to other stakeholders and to better
plan for and direct meetings with clients or users.

3.4 Usability evaluations through the CDR

The other addition we make to the existing XP
framework are usability evaluations. XP includes unit
testing which verifies the functional accuracy of the
code, and acceptance testing which proves to
customers that the system works as agreed upon.
Usability testing will verify that the system is easy and
intuitive for end users. Although there may be some
overlap between acceptance and usability testing, the
focus of each is distinct and equally important.
Scenario-based design, the CDR, and related
techniques from usability engineering provide the
framework and guidance necessary to support usability
evaluations.

Claims in the CDR are used to analyze and reason
about specific interface features. Claim downsides or
upsides can be validated through usability evaluations

and help developers to identify usability problems. By
tracking which claims correspond to the stories
currently being developed and looking at their
interrelationships in the claims maps, developers can
plan targeted evaluations at the end of each iteration.
They also leverage light-weight usability evaluation
methods such as expert walkthroughs and heuristic
evaluations to quickly evaluate the interface. This
process complements the XP practice of test-driven
development to maintain functional correctness of the
code. In this case, the usability of the design can be
validated at regular intervals to prevent entropy in the
overall interaction design as the system is
incrementally developed.

4. Design case studies

Two design case studies are detailed below that
demonstrate how the XP+SBD process addresses the
key questions detailed in section 2.3. The developers
were four undergraduate students receiving research or
independent study credit. Three people, including the
authors of this paper, acted as managers and oversaw
each development project. The students were
introduced to the XP+SBD process over the course of
several weeks at the beginning of the semester. The
remaining 10 weeks were devoted to development.

Each group used the XP+SBD process outlined in
Section 3 to develop their respective systems.
Development proceeded over the course of five two
week iterations, representing a single release cycle.
Project information and CDR documentation was
stored on a wiki that the developers and clients could
access at all points in the project [12]. All projects
were developed using C# to run on PocketPCs. The
NUnit1 framework was used for unit testing in each
project.

The development environment was made as
realistic as possible but there were several limitations.
First, the developers and clients were all located at the
Blacksburg Campus at Virginia Tech but developers
and clients were not collocated in a single office
environment due to work and academic obligations.
However, developers at least held weekly meetings
with their clients and remained in constant email
contact. In addition, pair programming was not used
consistently throughout the semester due to conflicting
schedules. They were advised to conduct code reviews
together when they had to work separately. Project
managers did a code walkthrough with one or the other
member of a team (including unit tests) at the end of

1 http://www.nunit.org/

each iteration to verify that both developers in each
team understood the code.

4.1 Project descriptions

Each of the two project groups developed
location-based notification systems for different clients
at Virginia Tech. Notification systems are systems
used in dual task situations where a user mainly
focuses on a primary task while explicitly or implicitly
monitoring information through a secondary system.
Location-based notification systems can calculate their
own location and use that information to deliver
targeted information to users. Location tracking was
based on the SeeVT system, which uses WiFi access
point signals to determine the location of any device
that has wireless access [23].

Figure 4. Screen shot of SeeVT Art showing a
nearby art piece along with identifying information.

The SeeVT Art project was a new development
effort whose goal was to implement a location-aware
tour-guide system that would notify users of nearby art
pieces and provide detailed information on request
(Figure 4). The system was intended to support
opportunistic navigation of the many art pieces
displayed at the newly constructed hotel and
conference center at Virginia Tech. The client was an
employee at the Office of the University Architect.

The VTAssist project was a continuing
development effort from the previous semester [3].
One of the student developers had started developing
the system in the previous semester while the other was
just joining the project. VTAssist is intended to help
mobility impaired users locate and maintain awareness
of accessible areas such as restrooms, water fountains

and entryways (Figure 5). The system is intended to
alert users of inaccessible resources, such as when an
automatic doorway stops functioning, so they can then
work around those problems. Accessibility information
is maintained through a collaborative feedback system.
The primary client contacts were two members of the
Assistive Technologies Lab at Virginia Tech.

Figure 5. Screenshot of VTAssist. A top-down
map view of the user's location is shown along with
details about the accessibility of several locations.

4.2 Evolution of the CDR

The CDR was used to maintain a coherent,
consistent and understandable interaction architecture
within the incremental agile development process. It
provided a broad overview of the design and specific
details when needed to guide usability evaluations.
The relationship between the CDR and the stories
being developed allowed the developers to make key
decisions in the development process.

Each project began with a release planning
meeting involving the developers and their respective
clients. For SeeVT Art, this included getting a better
understanding of the client, learning what was to be
developed and coming up with an initial story list
(Figure 6). In the previous semester, the VTAssist
developers developed a handheld application that
would be used by wheelchair users to become aware of
and navigate around accessibility problems. For this
semester, they focused on developing a way to record
and keep track of the accessibility problems around
campus through a collaborative feedback system.

The start of each project was also where the
developers set high level design goals in terms of
critical parameters. These design goals for notification
systems are defined by how much interruption the

system causes, how readily it supports efficient
reaction to the notification, and how much long-term
comprehension the user has of information from the
system [13]. These values, hereby referred to as IRC
values, are typically expressed as a value between 0-1.
The SeeVT Art developers determined that the IRC
value for their system should be I:.5, R:.5, C: .7. This
corresponds to a system with a moderate level of
interruption, supports a moderate level of reaction from
the user and supports a moderate to high level of
comprehension. The high level of comprehension is a
result of the client’s desire to provide detailed
information about the art pieces to foster a deeper
appreciation of the art at the conference center—much
of which is created by alumni. The VTAssist
developers estimated the IRC of their system to be I:
.35, R: .25, C: .9. The low level for interruption and
reaction indicates that they and their client did not want
the system to be too disruptive or intrusive to use.

1. Map Display and Location Awareness
-Develop a system to display an area map
-Display a user’s location on the map

2. Opportunistic Information System
-Recognize when a user is near a POI
-Display relevant information

3. Basic Administrative Features
-Implement a mechanism through which the system
may be updated

Figure 6. Excerpt from initial list of prioritized
stories for SeeVT Art project.

After story development, the developers wrote out
scenarios representing the key task flows identified by
the clients. These scenarios were especially important
for the VTAssist developers because it helped them to
demonstrate to their clients how the system could rely
on other Virginia Tech students and faculty to find
accessibility problems which could later help mobility-
impaired people. Figure 7 shows two early scenarios
that demonstrate how the feedback system works.

From these scenarios, specific claims are developed
that correspond to the tasks that each system needs to
support and how they are supported through the
interface. The claims are arranged into a claims map,
which shows how the different tasks and interface
features are related to one another. The claims map
starts with a root concept claim, which describes the
system being developed in addition to important
tradeoffs that need to be considered. These tradeoffs

can relate to a mix of technological, contextual and
usability issues (Figure 8).

John is a responsible person who liked helping
other people. He is about to use the TORG elevator
and observes that it has gone out of service. While
deciding to use the stairs he uses VTAssist –
Tablet Edition ‘feedback’ to be able to notify
other users of this and save them time. After doing
this he feels happy of his good deed for the day.

Tom uses a wheelchair to get around campus, he
enters into TORG and uses VTAssist – Tablet
Edition ‘map’ to find the closest elevator. He
views the information on the elevator and discovers
that he cannot use it because of the information
John had left. Tom finds another elevator and is
able to view directions to it through the map.

Figure 7. Two activity scenarios that describe how
the system can be used to record accessibility
problems and help the mobility-impaired.

Using a handheld device to navigate the art
collection
+ Increases user appreciation through improved
access to information
+ Users can more fully experience the art collection
+ Small form factor fits easily into user’s hands
+ Intuitive touch screen interface
+ Low cost (compared to laptops)
- May interfere with user’s other tasks at the center
- Small devices are easy to lose or steal
- Unfamiliar technology to average users
- handhelds have limited computing power and
memory

Figure 8. Root concept claim for the SeeVT Assist
project.

Activity claims radiate out from the root concept
claim and correspond to the specific tasks the system
should enable. More specific claims are then linked to
the activity claims which describe exactly how those
tasks are supported. These specific claims can describe
how information is displayed to the user and what
interactions are supported. They generally correspond
directly to one of the stories. In the first iteration, the
claims map primarily consists of the root concept claim
and the activity claims. At each iteration, developers
will implement a small subset of the total functionality
of the system. Similarly, the CDR grows
incrementally as this functionality is developed (Figure

9). The developers used IHMC CMapTools2, a
concept mapping tool, to construct the claims maps.
The claim tradeoffs were not included in the diagrams
in the interest of space. Observe how the CDR grows
in a tree-like fashion as development proceeds.

Iteration 1

Iteration 2

Iteration 5

Figure 9. Claims map for the SeeVT System. The
root concept claim (green) is at the top is linked to
activity claims (blue) which are linked to
implementation claims (yellow). Note the
progressive growth through the iterations.

The organization of the CDR shows the design of
the system at multiple specificities—from the
conceptual level to the task level to the interface level.
Maintaining this organization gives developers a
constant overview of the most important features of the
interface, the tasks they support, and how they are
interrelated. This claims map allows developers to
refactor the interface to reflect new usage scenarios
and changes in response to client feedback and

2 http://cmap.ihmc.us/

evaluations. A detailed discussion of the relationships
used in the claims maps is available here [26]. The
claims map becomes increasingly complex as design
proceeds, but the root concept claim and activity
claims are relatively stable throughout the development
process. although they can change from iteration to
iteration. For example, in the second iteration the
clients and developers of the VTAssist system added
the additional system task of notifying users when a
previously inaccessible location becomes accessible.

4.3 Connecting SBD and XP

In the XP+SBD process, usability engineering and
system development occurs in a single unified
development process. In larger teams, different
developers may focus more on usability or
development depending on their expertise, similar to
the development process followed by Lynn Miller and
the team at Alias [14]. The important point is that both
software development and usability issues are
considered concurrently throughout the development
process. This ensures that the entire team understands
both aspects of development and how they interact.

The parallelizing of software development and
usability engineering also allowed the developers to
perform some processes in parallel with development.
For example, the SeeVT Art project conducted a
walkthrough of the conference center to gather
requirements after doing a preliminary task analysis of
their system and doing some initial development work.
Since there were only two people in the group, these
tasks were not actually conducted in parallel, but this
shows how pairs could work separately and
simultaneously on usability and development related
tasks.

SeeVT Technology used to locate users
+ Discerns user location via WiFi signals
+ Easily used as a web service
+ Works indoors
- Does not work everywhere
- Requires wireless connection
- Not very accurate. Can only specify user’s region

Figure 10. Claim describing tradeoffs of using
SeeVT location tracking system

There is generally a direct mapping between a
claim in the CDR claims map and any story that relates
to some interface feature. There was no specific tool
support that allowed the developers to manage this
relationship but they were able to keep track of how
they relate to each other, especially when one affected

the other. Both projects used the SeeVT system to
estimate locations using WiFi signals [23]. In the
second iteration , the SeeVT Art project found that the
SeeVT system was not accurate enough to identify
individual art pieces as some were often placed very
near to each other in the conference center. This
required them to work with their client to develop an
alternative interaction strategy to mitigate this issue.
They did this by converting one of their stories into a
claim that they then added to the claims map (Figure
10).

They then designed the system interaction to work
around this limitation by designing the system to
display a list of artwork near the user along with
pictures (Figure 11). This mitigated the problem of
accuracy in the SeeVT system and is visible in their
claims map.

Figure 11. Portion of the SeeVT Art claims map
showing how the problem of location accuracy was
mitigated. (Note: only claim titles are shown above)

As shown above, technological issues can affect
the way the interface is designed. The reverse also
occurred in the projects. For example, during the
second iteration in the VTAssist project, the clients
requested that the developers implement a version of
VTAssist to run on a tabletPC. This decision was
largely driven by usage issues related to the handheld.
The tabletPC had a larger easier to read display, would
be easier to operate, and could be mounted on
wheelchairs thereby freeing the users hand. This
required the VTAssist developers to adjust and
reorganize their ranked list of stories and refocus their
development efforts.

4.4 Evaluating the interface

Evaluating the usability of the interface, unlike
unit testing, is difficult to completely automate.
Evaluations can collect any amount of quantitative and
qualitative data that touch on many different aspects of
usability including ease of use, learnability and overall

satisfaction. They also require an actual person or
persons to conduct the testing. As a result, the
XP+SBD process advocates the use of light-weight
analytic evaluations, which occur at the end of each
iteration, followed by more in-depth usability
evaluations at the end of each release cycle.

The CDR is used to guide these evaluations by
helping developers determine what areas of the
interface to evaluate at the end of each iteration and
what effect redesigning some part of the interface will
have on other parts of the system. For example, at the
end of the third iteration, the VTAssist developers
conducted a walkthrough of their system with their
clients acting as proxy users. The different tasks they
ran through were based on the scenarios related to the
parts of the system they had focused on, while the
questions and feedback they gathered were derived
from the claims they wrote. The developers used
colored dots (green, yellow, red), to indicate whether a
location was accessible, under repair or inaccessible.
During the walkthrough, the users noted that this type
of indicator would be impossible for people with red-
green color blindness to use. This was an unforeseen
downside that they addressed in the next iteration by
using indicators that relied on different shapes in
addition to colors. The claim related to location status
was updated and otherwise verified so subsequent
evaluations did not have to focus on this area of the
interface again. Lightweight usability evaluations at
the end of each iteration were essentially combined
with the acceptance testing process. Clients verified
the functionality of the system in addition to providing
feedback on its usability.

Usability evaluations can have broad impacts on
the system. For example, at the end of the third
iteration, the SeeVT Art developers and clients revised
their overall IRC value to have very low interruption
and reaction values. They determined that they wanted
the system to be minimally distracting and should rely
more on direct user engagement so they can focus
more on the artwork itself. This led them to explore
other interaction techniques such as delivering
information through audio clips and providing pictures
of the environment instead of an overhead map view.
These quick, lightweight evaluations provided useful
usability feedback without excessively limiting system
development. The only time where a large amount of
time was spent running an evaluation was at the end of
the semester when a comprehensive usability
evaluation of the entire system was conducted. This is
needed at the end of release cycles to validate overall
usability and uncover additional usability problems.
The developers were encouraged to recruit actual
representative end-users to evaluate their designs—
although only the SeeVT Art group was able to do this.

4.5 Communicating design rationale

The different parts of the CDR facilitated
communication of design rationale among project
stakeholders. The student developers were not
explicitly told what parts of the CDR to share with
their clients but they were encouraged to share
materials they thought could facilitate communication.

The VTAssist team shared scenarios with their
clients early in the design process to show how new
task flows such as the collaborative feedback system
would work. Design goals in terms of critical
parameters were indirectly presented to clients.
Developers would describe a system as having low
interruption or distraction instead of introducing them
directly to the IRC values. Claims were also not
directly shown to clients. Information about specific
claims was shared through the lightweight and
summative usability evaluations and through general
discussions during those meeting. The more detailed
parts of the CDR, such as the claims map and its
component claims were used by developers to iterate
on their designs and weigh different design options.
For example, following discussions with their client
during the third iteration, the VTAssist developers
wrote several claims to specify the upsides and
downsides of developing on the handheld versus the
tablet PC (Figure 12).

VTAssist on pocketPC
+ Easy to position for use.
+ Lighter to move around
+ Not very expensive.
- Smaller display area.
- Smaller control area.

VTAssist on tabletPC
+Larger Display
+Larger control area
+Attached to wheelchair
- Hard to position for use
- Heavy to carry around.
- Significant cost

Figure 12. Claims showing tradeoffs of developing
VTAssist for PocketPCs vs. tablet PCs

The CDR is the common point through which the
different stakeholders in a project communicate design
intentions. By linking between usability design
artifacts and agile artifacts, developers are able to see
the interactions between the interface design and the
underlying system implementation and make
appropriate tradeoffs and design decisions as
necessary. The multiple perspectives of the design it
shows allows for more high level discussions with
clients if necessary.

5. Discussion

This section revisits the key questions about the
tensions between agile processes and usability

engineering presented in Section 2.3 and details how
XP+SBD addresses them (Table 1). It summarizes the
conclusions from the design cases while highlighting
limitations of the approach.

The incremental development illustrated by the
CDR showed how it was possible to develop a
coherent and consistent interface design representation
by continuously reviewing the claims map and
refactoring the interface when the need arose due to
evaluation results or other factors. This allows agile
developers to maintain a consistent, incremental
release cycle throughout the project. However, it can
be difficult to determine how complete a design
representation should be. The developers in both
projects largely relied on their own judgment as to
what parts of the interface should be represented and
which do not need to be. There is a tradeoff between
completeness and manageability of the representation

that developers will have to balance when using a
design representation like the CDR. Critical
parameters were shown to be a useful guide for
defining overall project goals and measuring progress.
However critical parameters can be difficult to define
or measure depending on the type of system being
developed. The developers relied mostly on rough
estimates for the IRC values which still proved useful
in communicating design goals among themselves and
their clients.

The developers use of the claims and the claims
map showed how useful it can be to maintain a list of
interface design decisions and the potential tradeoffs
they entail. These helped them to see exactly what
parts of the interface needed to be tested in the current
iteration and which could be deferred or ignored.
Many of the evaluations were in fact folded into
regular client meetings.

Table 1. Table showing how XP+SBD approach addresses the tensions between agile methods and usability

How can developers design consistent and coherent interface architectures within an incremental agile
development framework?

 Incremental development of an interface supported by a design representation like the CDR
+ Can help developers maintain consistent and cohesive interaction design through continual evaluation
of explicit design rationale and systematic improvements.
+ Does not limit or excessively delay incremental software delivery
- Can be difficult to determine when a design representation is sufficiently complete

 Using critical parameters like IRC values to guide interface development
+ Can be used to measure design success through repeated evaluation of explicit metrics
- Critical parameters may be difficult to define and measure

How can usability evaluations be streamlined so they better fit in accelerated development cycles while
still providing useful results?

Maintaining an organized list of design tradeoffs, like a claims map, to guide lightweight usability
evaluations
+ Can allow designers to target specific areas of the interface to evaluate, thereby saving effort and
reducing the need to reevaluate parts of the interface in later iterations
- Requires additional effort by developers to plan and run usability evaluations

How can project members support communication and cooperation between designers, customers,
users and other stakeholders who have different backgrounds and expertise?

A shared design representation showing both high and low level views of the interaction design
+ Allow different stakeholder groups with different backgrounds to understand and give feedback about
the design.
+ Can make interplay of usability and agile development work explicit and understandable
+ Can focus planning meetings by reminding stakeholders of key design decisions and concerns
- Requires designers to actively maintain links between agile and usability artifacts

The cases also show that a design representation
consisting of easy to understand artifacts that make
connections between the different concerns of the
stakeholder groups can support communication and
cooperation. Communication and buy-in is vital for
these different groups to work together effectively.
This representation allowed different stakeholders to
have a shared understanding of the overall design and
to make informed tradeoffs when conflicts came up.
However, maintaining this kind of representation does
take some effort.

6. Conclusions and future work

There is a need to develop ways to design software
systems that can draw on the best practices and tools of
different disciplines. To that end, this work has
focused on finding ways for agile software developers
and usability engineers to work together more
effectively by addressing the conflicts between
extreme programming and scenario-based design. We
end with four guidelines for usability specialists and
agile practitioners that can be derived from this work.

- Share design documents and artifacts when

possible. Maintaining communication among team
members is vital. Sharing these artifacts can
augment face-to-face communications and allow
developers to make informed decisions about
design tradeoffs.

- Strive for continuous interface improvement.

Incremental additions to an interface can gradually
erode overall usability. Always be aware of
possible improvements and do not be afraid to test
new ideas. A larger number of smaller, more
focused usability studies can result in a similar (or
better) level of understanding as a small number of
large test—and it better fits with the agile
philosophy.

- Integrate usability into day to day development

tasks. Continuous improvements require
continuous user feedback. Conduct informal
evaluations when more complete usability
evaluations are not feasible. Have clients or other
team members look over new interface features.
Such data can be valuable when you know who
you’re designing for, what data you’re collecting
and why you’re collecting it.

- Avoid having team members overspecialize in

one area. Team cohesiveness is important to
maintain velocity. Members with separate focus

areas/expertise should have an understanding of
each other’s specialties to prevent
misunderstandings and wasted work.

Future efforts will build on the foundation laid out

in this work and address some of the shortcomings that
were identified. The researchers are currently
developing a tool that allows designers to build and
manage CDRs. This will help to mitigate some of the
problems associated with CDR management that were
experienced in this study. This tool will be built on top
of an existing knowledge management framework,
LINK-UP, which acts as a design knowledge
repository of claims [11][20]. This will open the
additional research question of how knowledge reuse
through claims can support agile usability development
processes.

Our next study will evaluate this approach with a
practical development project through an industry
partner. We will be able to evaluate how well the
XP+SBD approach works in a realistic design
situation. This will allow us to avoid some of the
limitations of this study but will present new
challenges due to the presence of additional factors
will be more difficult to control.

7. Acknowledgements

We wish to thank the student developers and
project clients for their valuable feedback, Miten
Sampat for his help with the SeeVT location-tracking
system, and Robert Biddle for his insights and
encouragement.

8. References

[1] Beck, K., “Embracing change with extreme
programming”, Computer, vol. 32, no. 10, 70-77, Oct. 1999.
[2] Beyer, H., Holtzblatt, K., and Baker, L., “An Agile
Customer-Centered Method: Rapid Contextual Design”,
XP/Agile Universe ’04, 2004, 50-59.
[3] Bhatia, S., Dahn, C., Lee, J. C., Sampat, M., and
McCrickard, D. S., “VTAssist-A location-based feedback
notification system for the disabled”, in Proc. ACMSE ’06,
2006, 512-517.
[4] Carroll, J. M. and Kellogg, W. A., “Artifact as theory-
nexus: Hermeneutics meets theory-based design”, in Proc.
CHI ’89, 1989, 7-14.
[5] Chamberlain, S., Sharp, H., and Maiden, N., “Towards a
Framework for Integrating Agile Development and User-
Centred Design”, in Proc. XP ’06, 2006, 143-153.
[6] Constantine, L. L., “Process Agility and Software
Usability: Toward Lightweight Usage-Centered Design.”
Information Age, vol. 8, no. 2. Reprinted in L. Constantine

(Ed.), Beyond Chaos: The Expert Edge in Managing
Software Development. Addison-Wesley, Boston, MA, 2001.
[7] Cooper, A., and Reimann, R., About Face 2.0: The
Essentials of Interaction Design, Wiley Publishing Inc.,
Indianapolis, IN, 2003.
[8] Greenberg, S., and Rounding, M., “The notification
collage: posting information to public and personal displays”,
in Proc. CHI ’01, 2001, 514-521.
[9] Hix, D., and Hartson, H. R., Developing user Interfaces:
Ensuring Usability through Product and Process, John
Wiley & Sons, Inc., New York, NY, 1993.
[10] Lee, J. C., Chewar, C. M., and McCrickard, D. S.,
“Image is Everything: Advancing HCI Knowledge and
Interface Design Using the System Image”, in Proc. ACMSE
’05, 2005, Vol. 2, 376-381.
[11] Lee, J. C., Wahid, S., Chewar, C. M., Congleton, B.,
and McCrickard, D. S., “Spiraling Toward Usability: An
Integrated Design Environment and Management System”,
Computer Science, Center for HCI, Virginia Tech,
Blacksburg, VA, Tech. Rep. TR-722, 2005.
[12] Leuf, B. and Cunningham W., The Wiki Way: Quick
Collaboration on the Web, Addison-Wesley, Boston, MA,
2001.
[13] McCrickard, D. S., Chewar, C. M., Somervell, J. P., and
Ndiwalana, A., “A Model for Notification Systems
Evaluation-Assessing User Goals for Multitasking Activity”,
ACM TOCHI, vol. 46, no. 3, 312-338, 2003.
[14] Miller, L., “Case Study of Customer input For a
Successful Product,” in Proc. ADC ’05, 2005, 225-234.
[15] Nelson, E., “Extreme Programming vs. Interaction
Design”, Fawcette Technical Publications, 2002.
http://www.fawcette.com/interviews/beck_cooper/.
[16] Newman, W., “Better or Just Different? On the Benefits
of Designing Interactive Systems in terms of Critical
Parameters”, in Proc. DIS ’97, 1997, 239-245.
[17] Norman, D. A., “Do companies fail because their
technology is unusable?”, Interactions, vol. 12, no. 4, 69,
2005.
[18] Olsen, G., “The emperor has no lab coat”, Interactions,
vol. 9, no. 4, 13-17, 2005.
[19] Patton, J. “Hitting the target: adding interaction design
to agile software development”, in Proc. OOPSLA ’02, 2002,
1-ff.
[20] Payne, C., Allgood, C. F., Chewar, C. M., Holbrook, C.,
and McCrickard, D. S., “Generalizing Interface Design
Knowledge: Lessons Learned from Developing a Claims
Library”, in Proc. IRI ’03, 2003, 362-369.
[21] Poppendieck, T., “The Agile Customer’s Toolkit”,
Poppendieck LLC, 2003. Available at
http://www.poppendieck.com/pdfs/Agile_Customers_Toolkit
_Paper.pdf
[22] Rosson, M .B. and Carroll, J. M., Usability
Engineering: Scenario-Based Development of Human-
Computer Interaction, Morgan Kaufman, New York, NY,
2002.

[23] Sampat, M., Kumar, A., Prakash, A., and McCrickard,
D. S., “Increasing Understanding of a New Environment
using Location-Based Notification Systems”, poster paper in
Proc. HCII ’05, 2005.
[24] Sharp, H., Biddle, R., Gray, P., Miller, L., and Patton, J.,
“Agile development: opportunity or fad?”, In proc. extended
abstracts CHI ’06, 2006, 32-35.
[25] Sutcliffe, A. G., “On the Effective Use and Reuse of
HCI Knowledge”, ACM TOCHI, vol.7, no. 2, 197-221, 2000.
[26] Wahid, S., Allgood, C. F., Chewar, C. M., and
McCrickard, D. S., “Entering the Heart of Design:
Relationships for Tracing Claim Evolution”, in Proc. SEKE
’04, 2004, 167-172.
[27] Wahid, S., and McCrickard, D. S., “Claims Maps:
Treasure Maps for Scenario-Based Design.”, In Proc. ED-
MEDIA ’06, 2006, 553-560.

