
Proselytizing Pervasive Computing Education:
A Strategy and Approach Influenced by Human-Computer Interaction

D. Scott McCrickard and C. M. Chewar
Center for Human-Computer Interaction and Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0106
{mccricks, cchewar}@cs.vt.edu

Abstract
A course on pervasive computing should be

structured around key functions throughout a systems
development process to cover common underlying
concerns throughout science and engineering
disciplines—development of design rationale,
prototyping, evaluation, and component reuse.
However, broader considerations of usage context and
appreciation for research and methodological
contributions from other disciplines must be strongly
factored into course planning. To achieve both goals,
we suggest learning objectives, a general strategy and
approach using case-based learning.

1. Introduction

Pervasive computing drives many new concerns
and solutions, such as new programming, architecture,
and network paradigms, and requirements for design
and evaluation activities. How should a pervasive
computing class be developed and included in an
undergraduate or graduate computer science program?
How would central themes taught in this course
complement other courses, like software engineering,
human-computer interaction (HCI), or even theory or
systems topics? What are some successful pedagogical
approaches for teaching pervasive computing?

We approach these questions from the perspective
of a professor at a mid-sized to small school, tasked
with the job of developing a semester-long course on
pervasive computing within a computer science
program, though only vaguely familiar with the topic
at all. Certainly, resolving questions like these is an
important and promising endeavor—we already have
seen firsthand the excitement and engagement it
inspires in students. Judging from current evidence of
groundbreaking applications that extend into many
different disciplines, coupled with this technology’s
potential to more deeply touch the lives of ordinary
people, pervasive computing will undoubted be a hot

area for research contribution and industry
employment in the years to come. With pervasive
computing applications, understanding implications
that result from shifting technical and social constraints
necessitates a broad, multidisciplinary perspective in
its students—but with this comes a unique ability to
push the boundaries of our own disciplines. Pervasive
computing certainly is a topic departments would want
to include to address state-of-the-art computing.

Perhaps our professor starts to appreciate challenge
of developing a pervasive computing class trying to
nail down a definition of the term itself and a
consensus of its subtopics. Part of the difficulty may be
in identifying fields or more traditional topics in which
it is rooted as a sub-discipline. Clearly, there are HCI
concerns that drive the field, but most HCI textbooks
and handbooks do not yet include a chapter on the
area. Several new journals and conferences address
many important and specific questions, but there are
few seminal papers to help the computer science
professor carve out the essential questions. The heavy
technology implementation component of the subject
is grounded in computer engineering and network
concerns and surrounded by social and ethical
questions, clouding disciplinary underpinnings even
more. Before long, deeper challenges with connecting
the many topics together to form a coherent course
theme will surely confront the course developer, as
will integrating the pervasive computing course theme
of with other parts of the computer science program.

These three challenges—course content selection,
thematic integration, and programmatic integration,
contain many subtleties that should be factored into
course planning, such as identifying critical learning
objectives, approaches used in related courses, and
typical aspects of computer science student culture.
We explore these subtleties in section 2. Section 3
presents a strategy and pedagogical approach for
addressing enduring pervasive computing learning
objectives. An example demonstrates how the three
challenges with our strategy and approach.

2. Key Education Challenges in PerCom

In a review of recent research within ubiquitous
computing, Abowd and Mynatt note three important
interaction themes pushed by the research community:
natural interfaces, context-aware applications, and
automated capture and access [2]. These themes
broaden the reach of computational devices and
provide a basis for pervasive computing. By
introducing the term everyday computing to apply to
systems providing support for continuous, daily
actions executed concurrently and interrupted by other
activities, Abowd and Mynatt define an essential
characteristic of pervasive computing [2]. This concept
is further articulated by several goals: everyday
practice of people must be understood and supported,
activities must be augmented with devices that support
new experiences, and devices must be networked for a
holistic user experience [1]. To support everyday
computing and make progress toward acceptance by
sizable users groups, they argue that two important
research challenges within the ubiquitous computing
field must be resolved—evaluating systems and
solving social issues [2], as well as defining
appropriate physical interaction techniques [1]. The
importance of these issues in the broad development of
the everyday computing initiative is a pivotal message
that must transfer to coverage of pervasive computing
topics.

The work Smailagic and Siewiorek incorporates a
user-centered design approach to respond to
development challenges of handheld devices and
wearable computers [8]. The interdisciplinary design
methodology they have developed consists of five
stages, including a requirements analysis and
walkthrough, participatory response to storyboards,
mock-up prototype creation, software implementation
and testing, and full implementation and field trial
evaluation. A strength of this approach is that it has
been tested by more than two dozen generations over a
ten-year period, resulting in numerous examples of
process and product. Another key benefit provided to
students is the big picture appreciation of concurrent
design activities throughout a variety of disciplines.

Specifically within the software development and
HCI domains, there have been many recent arguments
for important research directions related to pervasive
computing. A recent workshop on mobile, ad-hoc
collaboration argued for a comprehensive probe into
increased empirical research to understand important
usage opportunities, development of prototype systems
and applications, and sociological research on the
impact of such technology [5]. Researchers at

ubiquitous computing conferences argue for activity-
centered approaches to design to support diverse and
distributed activities common to the field [3], with a
focus on requirements development rather than merely
creating and implementing new technologies.

In practice, issues related to the broader impact of
technology often beleaguers its introduction and
adoption—privacy concerns and ethical implications.
Some argue that engineers developing new
technologies must thoroughly understand all possible
consequences from appropriate as well as unintended
use, and design them to be impervious to malicious
adaptation [9].

2.1. Pervasive computing learning objectives

The important arguments related to pervasive

computing can be expressed as several pervasive
computing learning objectives. Computer science and
HCI students should be able to:

• Explain key enabling technologies, user and group
activities and goals, and application domains that drive
innovation in pervasive computing state-of-the-art.

• Appreciate a wide variety of social implications,
ethical dilemmas, and policy issues that are brought
about because of pervasive computing, to include
concerns for privacy and liberties.

• Understand how multidisciplinary activities drive
and contribute to system lifecycle development stages.

• Demonstrate how traditional computer science and
HCI skills and methods can adapt to solve pervasive
computing research, design, and evaluation problems.

• Recognize a variety of new solution approaches
for overcoming technical issues related to pervasive
computing implementation concerns.

• Identify new opportunities for pervasive
computing innovation and application redevelopment,
to include support for new community and
collaborative activities, improving universal access
issues, providing new forms of interaction and display,
and resolving usability problems.

These learning objectives are deliberately selected
to focus on broader themes that will remain relevant in
a quickly changing technology landscape, preparing
students to make long-term contributions to pervasive
computing research and development. While it is
tempting to select a variety of interesting and
important topics to paint a loosely connected survey of
a new area, this will often not provide students with as
rich of an experience as a course designed around

enduring themes. Unfortunately, it seems like survey
approaches (such as the course described in [7]) are
already being used to teach pervasive computing
topics. Course designs that exercise system lifecycle
development decision-making include benefits of
active and situated learning, but often suffer from the
time required to master specific programming
languages or resolve/coordinate technical difficulties—
often at the expense of bigger picture topics that
transcend current implementation techniques.

3. Proposed Strategy and Approach

To teach pervasive computing to computer science
and HCI students, we propose a general strategy that
will achieve thematic and programmatic integration.
Coupled with a case-based learning approach that
allows flexible and wide ranges of course content
selection, the three challenges for teaching pervasive
computing are addressed.

3.1. Strategy: Reiteration for Function Focus

One possible strategy for teaching pervasive
computing follows from an approach we have used in
teaching HCI to computer science students. Like the
emerging field of pervasive computing, technological
change has certainly been a very important factor of

interface development in general over the past decade,
a challenge that has been confronted when considering
educational approaches to HCI. Rather than presenting
a variety of loosely connected topics, we have sought
thematic and programmatic integration by organizing
the course around several visitations of a design
process. As depicted in Figure 1, in each design
process iteration, we focus on a different development
function and set of supporting methods, tools, and
issues: developing design rationale, prototyping,
evaluation, and reuse. For example, in the first phase
of the course, a lifecycle design process (such as a
scenario-based design method) is introduced to the
students. In the next phase, all steps in the design
process are revisited while considering various
methods and outcomes supporting the function of
developing design rationale. In the third phase, each
step of the design process is again revisited, but while
considering prototyping functions instead. As
prototyping throughout a design process confirms and
extends design rationale, we can draw parallels
between contemporary approaches. In the next stage,
methods, tools, and issues related to evaluation
functions are introduced as approaches for prototyping
and validating rationale (thus producing reusable
artifacts that would be appreciated in terms of the
design cycle in the final stage of the course).

Figure 1. Reiteration for Function Focus (RF3), a strategy recommended for achieving thematic

and programmatic integration in pervasive computing education.

Figure 2. Student survey responses, summarizing incoming experience and attitudes of

junior/senior CS and CE majors, as related to the four functions of our strategy

This course framework, which we refer to as

Reiteration for Function Focus (RF3), allows students
to be exposed to a wide variety of methods and design-
related issues, but facilitates higher-level learning
objectives that require comparison, synthesis, and
abstraction. We feel that this approach would be useful
for achieving the learning objectives expressed
previously. Our recommendation for placing emphasis
on the functions of developing design rationale,
prototyping, evaluation, and reuse is based on two
claims (supported by evidence in the next section):

1) Upper-level undergraduate students typically
lack practical experience to appreciate the
multidisciplinary role of each function within a
development processes,

2) Each function represents enduring concepts
firmly grounded in engineering and scientific process,
yet is renewed through contemporary methodological
and technological research contributions and uniquely
able to address social/ethical issues and spur
innovation.

3.2. Programmatic obstacles

In developing a computer science course that
focuses on an emerging area, we wanted to connect
individual topics on methods, tools, and issues to the
wider development functions of developing design
rationale, prototyping, evaluating, and reusing
components. A key factor in recommending this

strategy was the nature of practical experience
incoming students would typically have at that point.
Recognizing that students must experience some
exposure to and even frustration with these functions
to prime continued interest in learning, we conducted a
survey of undergraduates signed up for Introduction to
HCI. These students are all junior or senior year
computer science or computer engineering majors,
representative of the population expected in a
pervasive computing class. The survey probed
experience in each of the four functions; results are
listed in Figure 2.

After reviewing the results of our survey, we were
pleased to see some areas in which students would be
primed to learn about methods, tools, and issues
related to these functions. For example, we are pleased
that students were often confronted with experiences
beyond a grade that made them value the quality of a
product they developed. It was also encouraging that
students tend to have some base of experience in
justifying their designs and reusing components.
However, there are many other points of concern
apparent in, especially related to the average lengths of
project experience, thinking about issues related to
universal access and user diversity, and generating
program requirements. These student responses
reinforce the importance of structuring presentation of
emerging topics around these four functions—essential
aspects of professional and academic computer science
efforts. However, they also motivate the selection of a
particular pedagogical approach, discussed next.

3.3. Approach: Case-based learning

To address the functions and learning objectives we
propose, many which involve the examination of social
issues, we sought a pedagogical approach that would
bring students quickly to key decision points and allow
them to sort out the alternatives, but compensate for
lack of functional experience. While hands-on
experience would allow practice of some of the
functions and parts of the learning objectives, we fear
it would be at the expense of the big picture, especially
in a class on emerging technologies without robust and
widely accepted tools. Instead, the case method uses
short discussions and activities framed on case
materials to help students learn key concepts.

Users of the case method in similar disciplines tout
it as providing increased student engagement,
improved analytical skills and decision-making
abilities, and enhanced application of concepts to
practical problems [4]. Case methods are quite
common in business schools, law education, and
design disciplines like architecture. While case
methods are not a commonly practiced form of
pedagogy in computer science, there are reports of
successful uses, such as in teaching discrete event
simulation, compiler design, operating systems, and
computer architecture classes, allowing analysis of
complex design tradeoffs. Although cases are used in
slightly different ways and formats in each of these
other fields, they do have common characteristics. Like
any challenging HCI development project, the
professional activities in each of these other disciplines
require substantial time and resources—far more than
can be approximated in a classroom setting. As a
solution, cases provide a rich context in which to test
or discuss a concept, an efficient starting point for a
realistic, interactive experience. Other benefits in using
cases in education are apparent as well, such as how
continuous exposure to new cases helps instructors
maintain awareness of professional practices [4].

Our ongoing research is exploring various material
formats and classroom discussion techniques that are
most suitable for HCI instruction [6], and we anticipate
that many of our findings will be relevant to teaching
pervasive computing as well. To more clearly illustrate
our proposal for using a case-based learning approach,
the next section looks at how a series of lessons could
be taught in a pervasive computing class.

3.4. Integrating the strategy and approach

To demonstrate how a pervasive computing class

could be taught with the use of our strategy and a case-

based learning approach, we illustrate an arbitrary
point in a semester, perhaps weeks 4-7 (see Figure 1).
At this point, the design process concerns are revisited
for the second and third times, looking at how the
functions of design rationale and prototyping are
accomplished through various methods and tools.
While some of material would be delivered in
traditional lectures and out-of-class readings, an
integrated case study of an actual design effort
provides depth. Perhaps four different case studies
were introduced at the beginning of the semester, and
are also revisited. One of the case studies focuses on a
development effort for e-textiles, textiles with
integrated electronics devices. Although introduced
earlier to illustrate requirements analysis processes, the
e-textiles case is revisited in week 4, 6, and 7.

In week 4, the e-textiles case helps students
understand how to developing design rationale during
activity design. Through reading the case, students can
gain an appreciation of how claim and scenario writing
assisted designers in identifying key tasks to support
with e-textiles. Related class activities could involve
generating new design rationale to express other ideas
and interactive class discussion could focus on a
decision-making process to sort out the most promising
activities as the development process continues.
Material provided by the case supplies fuel for
discussion about broader social issues, such as support
for universal access and considerations of privacy and
personal liberty. Students may prepare position papers
to justify decisions for the continuing development
process based on further research probing these topics,
using aspects of the case as a starting point. A wide
variety of issues related to the topics at hand are
probed without sacrificing many class resources.

In week 6, the case is revisited to show prototyping
for requirements analysis, specifically by
storyboarding and working with potential users.
Existing case material demonstrates use of storyboards
to probe requirements for other candidate activities.
Again, this may be a starting point for critical analysis
that can extend to activities selected by students in
week 4. Students gain hands-on experience developing
storyboards and discussing them with potential users,
and then reflect on requirements for storyboarding
particular to pervasive computing. Class discussion
develops comparison skills, perhaps by evaluating
different storyboarding methods, and provides
opportunity to integrate cutting-edge contributions
from the research community.

In week 7, the e-textiles case illustrates the design
process function of prototyping in activity design, by
having potential users interact with simple mockups.
New case material continues to challenge student

sensitivity to broader topics. Perhaps a simple mockup
of e-textile devices can be created and used in a
classroom skit, allowing students to critique a method
of prototyping new activities with the devices. We can
discuss how mockup prototypes can be augmented for
an evolutionary implementation, and begin using
actual software/hardware toolkits to build and
demonstrate important system features.

While this series of lessons could be supported by
an ongoing case study on e-textiles, a few additional
case studies on other pervasive computing topics
should also be integrated to support other lessons. This
will help expose students to key enabling technologies
and a wide variety of solution approaches, and
certainly provide interesting situations around which to
weave discussion of social issues and ethical
dilemmas. Creating the case material to support this
type of class should be a natural extension of research
efforts, but can also be accomplished with a little bit of
creativity on the instructor’s part. In this manner, we
connect contemporary methodological and
technological research contributions to firmly
grounded functions within engineering and scientific
processes.

4. Conclusions and Future Work

Within this paper, we have summarized challenges
and proposed solutions for course content selection,
thematic integration, and programmatic integration for
pervasive computing in a computer science curriculum.
We base our recommendations on critical objectives
suggested by research within the field, articulating
suggested learning objectives. To meet these learning
objectives, we propose a strategy that situates
contemporary pervasive computing methods, tools, and
issues within a more enduring structure, a strategy
implemented by our RF3 framework. As we probed
the background experience and attitudes of incoming
students, we recognized that this framework will fill
many gaps in their ongoing education, but must be
supported with an approach that allows active learning
without sacrificing undue classroom time. To this end,
we recommend case-based learning and illustrate our
vision with a sample series of lessons connecting
contemporary methodological and technological
research contributions to firmly grounded functions
within engineering and scientific processes.

Our ongoing research explores the use of case-
based learning in human-computer interaction (HCI).
We are looking at questions related to material
preparation and classroom interaction techniques. For
instance, we are evaluating two different approaches

for integrating case-based classroom activities with
semester project work. In one approach, students
revise an existing case study and develop a “version 2”
interface based on what they learn, challenging them to
implement, test, and document innovative ideas, yet
work from an existing body of knowledge. In the other
approach, students are challenged with the creation of
a case study (useful as instructional material in a future
course) that recreates and documents design rationale,
prototyping activities, and evaluation. Through this
process, students perform new research and selected
reengineering, but focus on analysis and opportunity
identification in the status quo. Other work we are
performing looks more broadly at how case studies can
be created and visualized as a natural part of an
interface design process. We look forward to sharing
these results and discussing other approaches with the
growing pervasive computing community.

5. References
[1] Abowd, G. D., Mynatt, E. D., and Rodden, T. “The
Human Experience.” IEEE Pervasive Computing 1 (1), Jan-
Mar 2002. IEEE Press, pp. 48-57.

[2] Abowd, G. D. and Mynatt, E. D. “Charting Past,
Present, and Future Research in Ubiquitous Computing.”
ACM TOCHI 7(1), 2000, pp. 29-58.

[3] Christensen, H. B. and Bardram, J. E. “Supporting
Human Activities–Exploring Activity-Centered
Computing.” In Proc. of UbiComp 2002, pp. 107-116.

[4] Herried, C. F. “Case Studies in Science: A Novel
Method of Science Education.” Journal of College Science
Teaching 23 (2), Feb 1994, NSTA, pp. 221-229.

[5] Korteum, G., Gellersen, H. W., and Billinghurst, M.
“Mobile Ad-hoc Collaboration.” In Extended Abstracts of
CHI ’92. Apr 1992, ACM Press, p. 931.

[6] McCrickard, D. S., Chewar, C. M., and Somervell, J.
P. “Design, Science, and Engineering Topics—Teaching
HCI with a Unified Method.” In Proc. of the Technical
Symposium on Computer Science Education (SIGCSE '04),
March 2004, ACM Press.

[7] Rudolph, L. “What I Did on My Fall Vacation—
Pervasive Computing Class.” IEEE Pervasive Computing 2
(2), Apr-Jun 2003. IEEE Press, pp 100-104.

[8] Siewiorek, D. P., and Smailagic, A. “User Centered
Interdisciplinary Design of Wearable Computers.” In
Human Computer Interaction Handbook, Jacko, J. A. and
Sears, A., eds. Lawrence Erlbaum, 2003, pp. 635-655.

[9] Stone, A. “The Dark Side of Pervasive Computing.”
IEEE Pervasive Computing 2 (1), Jan-Mar 2003, IEEE
Press, pp 4-8.

