
Interacting with Computers 21 (2009) 304–315
Contents lists available at ScienceDirect

Interacting with Computers

journal homepage: www.elsevier .com/ locate/ intcom
An integrative approach to requirements analysis: How task models support
requirements reuse in a user-centric design framework

Cyril Montabert a, D. Scott McCrickard a,*, Woodrow W. Winchester b, Manuel A. Pérez-Quiñones a

a Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
b Grado Department of Industrial and System Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
a r t i c l e i n f o

Article history:
Received 3 January 2007
Received in revised form 5 June 2009
Accepted 7 June 2009
Available online 10 June 2009

Keywords:
Requirements engineering
Task modeling
Reuse
Critical parameters
0953-5438/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.intcom.2009.06.003

* Corresponding author. Tel.: +1 540 231 6698; fax
E-mail address: mccricks@cs.vt.edu (D. Scott McCr
a b s t r a c t

Many software systems fail to address their intended purpose because of a lack of user involvement and
requirements deficiencies. This paper discusses the elaboration of a requirements-analysis process that
integrates a critical-parameter-based approach to task modeling within a user-centric design framework.
On one hand, adapting task models to capture requirements bridges the gap between scenarios and crit-
ical parameters which benefits design from the standpoint of user involvement and accurate require-
ments. On the other hand, using task models as a reusable component leverages requirements reuse
which benefits design by increasing quality while simultaneously reducing development costs and
time-to-market. First, we present the establishment of both a user-centric and reuse-centric require-
ments process along with its implementation within an integrated design tool suite. Secondly, we report
the design, procedures, and findings of two user studies aimed at assessing the feasibility for novice
designers to conduct the process as well as evaluating the resulting benefits upon requirements-analysis
deliverables, requirements quality, and requirements reuse.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The ability to maximize the chances for a software project to
succeed is an ongoing challenge in every sector of the industry. De-
spite the establishment of a countless number of development pro-
cesses and best practices, over 50% of projects are reported as
challenged due to significant cost overruns, major delays, and
deliverance with only partial functionalities, while more than
30% simply have to be aborted (The Standish Group, 1994). These
challenged and terminated projects cost companies billions of dol-
lars every year just in wasted development efforts. Requirements
inconsistencies and lack of user involvement have been identified
as the principal cause in project failure (European Software Insti-
tute, 1996; The Standish Group, 1994; Thayer and Dorfman,
1997). On one hand, the requirements-analysis phase is crucial
for the design outcome of any software system since a software
solution is successful only to the extent where it meets its intended
purpose. Overlooking the requirements phase or establishing
requirements that fail to properly reflect the real needs of users
is frequent (Berry et al., 2005; Holtzblatt and Beyer, 1995; Martin,
1984) and can be extremely costly to rectify, as a late correction of
requirements deficiencies can impact the costs by a factor of 200
(Boehm, 1981). Although it is necessary for requirements specifica-
ll rights reserved.

: +1 540 231 6075.
ickard).
tions to capture the nature of users’ activity and equally important
for these requirements to be accurately established early in the
development process, obtaining good requirements is a difficult
enterprise that can only be achieved through a methodical process
(Bell and Thayer, 1997; Berry et al., 2005; Brooks, 1987; Wiegers,
2003).

It seems therefore both important and necessary to provide
designers with an adequate requirements-engineering infrastruc-
ture that facilitates the elicitation of quality requirements. How-
ever, user involvement is also a vital factor for project success.
Designers can gain significant knowledge from user involvement,
an understanding of not only users but also of the work practices
and the context within which activities are undertaken. This
resulting in-depth understanding of user activities can yield the
capture of requirements and thus contribute to the achievement
of more effective design solutions (Beyer and Holtzblatt, 1999;
Gould and Lewis, 1985; Kujala et al., 2005). Although the benefits
resulting from a strengthening of the role of users upon project
qualities can hardly be debated, the economical constraint associ-
ated with most endeavors and the reluctance from the managerial
corpus to reallocate human resources can hinder user involvement
tremendously (Mirel, 2000; Wilson et al., 1997). As such, it is
therefore critical that a platform for requirements analysis capable
of both offering user centricity and fostering requirements quality
at minimal expenditure be established.

mailto:mccricks@cs.vt.edu
http://www.sciencedirect.com/science/journal/09535438
http://www.elsevier.com/locate/intcom


C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 305
Because we feel that requirements veracity is the cornerstone
for software project success—delivery within allocated timeframe
and budget of a system that supports clients’ real needs—and be-
cause we highlight a strong correlation between user involvement,
requirements, and costs, to safeguarding project success, this paper
discusses the foundation of a requirements-analysis process that
addresses the key attributes of user centricity and quality require-
ments and outlines its implementation within an integrated design
tool suite. We begin by describing the need for formal design ap-
proaches and metrics to capture and leverage key elements of a
planned design, focusing on critical parameters as a means to de-
fine a domain creatively and scientifically, on scenarios and sce-
nario-based design as a means to elaborate and contextualize the
problems and planned solutions in a design, and on task analysis
as an approach that explicitly represent the actions and processes
that users need to undertake when conducting an activity. We then
present the design, procedure, and results of two user studies
aimed at assessing both the feasibility and the payoff resulting
from the deployment of our proposed requirements methodology.
Finally, we present our conclusions and suggest future research
direction for this line of work.
2. Background and related work

To address the critical issues of lack of user involvement and
quality requirements, we first need to investigate requirements-
analysis techniques and their potential relationship to one another
as it has been argued that ‘‘technique integration provides the best
avenue for improving requirements engineering” (Sutcliffe, 1997).

Critical parameters are a set of formal metrics or attributes that
allows designers to assess whether a system serves its purpose
(Newman, 1997). These modeling parameters are judged critical
because the success or failure of software projects lay within
the degree to which the targeted parameter values are reached.
These figures of merit present the characteristics of being persis-
tent for a given class of design problems while also being widely
accepted. The invariant nature of critical parameters for a partic-
ular class of design problems offers the ground for a lingua franca
that could enable designers to set up a framework for identifying,
relating, and comparing classes of design problems within a given
problem domain. In addition, once critical parameters have been
identified, they do not need to be reestablished each time a sys-
tem is developed—which makes it worthwhile to develop tools
upon them. Because critical parameters are inherently vital to
the success of a system, the line of focus they offer can greatly
simplify the reach for requirements quality. In fact, because criti-
cal parameters are manipulable they can provide the foundation
for the establishment of predictive models that help promote
requirements validity and reduce the need for prototyping (New-
man et al., 2000). Although critical parameters alone do not have
the potential to be regarded as a driving entity for design, they
provide a foundation for setting up design objectives (Newman,
1997). Establishing desirable critical-parameter levels systemati-
cally as a part of the requirements-analysis phase can dramati-
cally increase the accuracy of requirements and thus hinge
whether a project will succeed or fail.

At the requirements phase, the adoption of user-centric ap-
proaches such as scenario-based design may help address the dire
need for user involvement. Through the elaboration of scenario
of use, designers identify and highlight users’ experiences, goals,
and needs with respect to the technology (Carroll and Rosson,
1992; Rosson and Carroll, 2002). Despite the widespread use and
popularity of the technique, scenario-based design remains criti-
cized for its recurrent bias, potential vagueness, and impending
lack of coverage (Diaper, 2002). Because of the criticality of quality
requirements in project success, these drawbacks rule out a stand-
alone reliance on scenario-based requirement analysis. Further-
more, scenario-based design does not offer sufficient built-in and
explicit techniques needed for capturing the critical-parameter
requirements of a system. Because success depends on both user
involvement and proper requirements, there is a crucial need for
the establishment of a technique capable of bridging the gap be-
tween scenarios and critical parameters.

A successful approach for formalizing and leveraging designers’
understanding of users’ activities is task analysis (Taylor, 1991).
While task analysis can take multiple forms, the core objective of
this procedure remains the characterization and representation
of the physical actions and/or mental processes that users need
to undertake when conducting an activity. When conducting a
hierarchical task analysis (Annett, 2003; Annett and Duncan,
1967), designers study and decompose the required tasks users
perform while carrying out an activity. The tasks constituting the
activities are systematically broken down into subtasks which
are more manageable, until the desired level of granularity is at-
tained. The resulting work-product of a hierarchical task analysis
process is a task model, a graphical representation usually in the
form of a tree graph that explicitly enumerates all the tasks consti-
tuting an activity as well as the hierarchical and temporal relation-
ship between these tasks. On one hand, the task centricity of
hierarchical task models makes the approach a candidate for the
characterization of these tasks in terms of critical parameters. On
the other hand, this formalization of tasks can leverage the accu-
racy of the description of users’ activities (Paternò et al., 1997),
contribute to the disambiguation of user activity while allowing
for the identification of inconsistencies, and reinforce designers’
understanding of a usage situation, making task models a solid
infrastructure for requirements analysis (Souchon et al., 2002)
capable of mitigating scenario downsides. An integrative approach
to requirements analysis making use of critical parameters and
task models within a scenario-based framework (Montabert and
McCrickard, 2006) shows potential to address both the structure
and formalism required for an accurate depiction of systems
requirements (Richardson et al., 1998) as well as foster user
involvement—key attributes in project success.

An influential factor for requirements quality at minimal expen-
diture is reuse; specifically, the reuse of design components that
provide insight and direction for the end product. Constructing
with components that have been tested, verified, and validated
not only reduces costs but can also fuel productivity and make
for better products (Grady, 1997; Lim, 1994; Matsumoto, 1982;
Matsumoto, 1993; Sutcliffe, 2000). In the software world, where
less than 15% of novelty is introduced into a new project, a success-
ful implementation of systematic reuse mechanisms would tre-
mendously impact costs and quality (Zand and Samadzadeh,
1994). While efforts to integrate reuse within the software com-
munity have been made (Estublier and Vega, 2005), reuse is often
introduced too late in the development process. Applied to the
field of HCI, reuse strategies largely have been limited to the super-
ficial reutilization of interface components. To capitalize on the
benefits of reuse, Sutcliffe (2000) advocates the introduction of re-
use as early as possible in the development cycle. Despite the fact
that the software community unanimously acknowledges the
importance of early reuse within the software development pro-
cess, few efforts have been spent establishing requirements reuse
and little progress has been made (van Lamsweerde, 2000). This
paper particularly focuses on the ways that our design-by-reuse ap-
proach, in which designers leverage existing task models through
identification of critical-parameter values, can lead to improved
design requirements.

Issued from the detailed analysis of scenarios within a scenario-
based design process, claims encompass the key issues contained



306 C. Montabert et al. / Interacting with Computers 21 (2009) 304–315
in scenarios and can serve as a foundation for the capture of reus-
able design knowledge (Sutcliffe, 2000; Sutcliffe and Carroll, 1999).
Previous research efforts have shown the effectiveness of a critical-
parameter-based taxonomy for the indexing of knowledge reuse
(Fabian et al., 2004). However, because of the abstraction gap be-
tween critical parameters and scenarios, a sole reliance on sce-
nario-based design could fail to provide designers with a
mechanism that allows the establishment of the desirable criti-
cal-parameter levels, thus restraining the true reuse potential of
claims at the requirements phase. The task centricity and hierar-
chic nature of task models can facilitate the acquisition of the
classification levels, yielding a significant step toward the estab-
lishment of an effective reuse solution (Krueger, 1992).

The domain of notification systems—the realm of secondary
agents immerged into attention-divided environments (e.g. Ishii
and Ullmer, 1997; van Dantzich et al., 2002)—presents valuable
attributes for the purpose of our research work. In particular,
three clearly identified and recognized critical parameters—inter-
ruption, reaction, and comprehension (IRC)—reflect desired attri-
butes of a notification system that must be taken into account
during requirements gathering and design (McCrickard et al.,
2003). Any notification system, existing or planned, has an IRC va-
lue associated with it: each of I, R, and C ranges from 0 to 1, with a
value of 0 indicating that the parameter is not desired by users of
the system and a value of 1 indicating that it is. It is possible for
the values to be any number between 0 and 1, but prior work sug-
gests the most interesting and important systems tend to have
values of or close to 0 or 1 (McCrickard et al., 2003).

The different possible values for the critical parameters define
the design space for notification systems. For example, an IRC value
of 1 1 0 (where I is 1, R is 1, and C is 0) is described as an alarm that
is intended to interrupt its users with information requiring an
immediate reaction; such as a calendar reminder of an upcoming
appointment. Conversely, an IRC value of 0 0 1 is described as
ambient media that is intended to raise the comprehension level
of its user with minimal interruption or external reaction; such
as a constantly updated display of temperature that resides on
the computer desktop. Each of the eight possible IRC values reflects
a different sub-category of systems within the notification systems
domain, as detailed in (McCrickard and Chewar, 2003; McCrickard
et al., 2003).

Important in the establishment of IRC levels are consistent and
accurate methods for calculating critical parameters. For existing
systems, IRC values can be determined by conducting usability
tests to determine core usability components like cost of interrup-
tion, relative response time, and hit rate, then using those compo-
nents to calculate IRC values (Chewar et al., 2004a,b). Determining
IRC values for planned systems is more speculative, requiring
designers to assess the needs of the users toward identifying the
system goals. Yet without consistency among designers on a design
team in the determination of critical parameters, the usefulness of
the system would be severely limited. One approach to ensure con-
sistency is through a series of multiple choice questions for design-
ers that requires them to speculate on four key concerns: the
desired effects (user goals) of receiving a notification, the relative
importance and relationship between tasks, the relationship be-
tween the notification and existing knowledge, and the monitoring
and interpretation effort required due to characteristics of the noti-
fication. Tool development and testing reflected that the overall
accuracy of IRC resulted in a difference of less than 20% for each
of the three values (Chewar et al., 2004a,b). This tool, and, more
importantly, the characteristics of the IRC framework, were essen-
tial in the work in this paper.

The IRC value reflects that user attention is a limited resource
within the notification systems domain that must be redirected
from the current activity to gain crucial information. As such, the
success of this genre of systems depends significantly on their abil-
ity to exhibit the adequate critical-parameter levels. The field of-
fers auxiliary development infrastructures such as a claims
library (Fabian et al., 2004; Payne et al., 2003) relying on critical
parameters, generalized tasks, and generic tasks nomenclature
(Sutcliffe, 2002) as well as an integrated design tool suite—LINK-
UP—aimed at providing guidance to the design of notification sys-
tems (Chewar et al., 2004a,b). To capitalize on these previous ini-
tiatives, we focus the implementation and evaluation of our
integrative approach to requirements analysis on this particular
class of systems within the LINK-UP framework.
3. An integrative approach to engineering requirements

To address the attributes of user involvement, requirements
quality, and low costs essential to project success, we support
the integration of alternative yet complimentary techniques for
engineering requirements that can potentially bring the best of
all worlds. The methodology we are proposing integrates a criti-
cal-parameter-based approach to task modeling within a user-cen-
tric design framework.

3.1. Critical-parameter-based task models for requirements capture

To assist designers with the formulation of desirable critical-
parameter levels and to bridge the abstraction gap between sce-
narios and critical parameters, we presented a task-modeling ap-
proach centered on critical parameters (Montabert et al., 2005)
which involves a systematic hierarchic decomposition of tasks into
their stages-of-action constituents along with a simultaneous
decomposition of their critical-parameter characterizations. In fact,
because a high-level task encompasses a user interaction, it can be
decomposed in terms of stages of action (Norman, 1986). The
stages of action organize subtasks involved when users form cog-
nitive relationships as they interact, whether through physical ac-
tions and/or mental processes with a system. The stages of
perception, interaction, and making sense allow users to under-
stand the information the system communicates while the stages
of forming a goal, establishing an action plan, and carrying its exe-
cution, allow users to act upon the system to achieve their desired
state. Because Sutcliffe’s generic tasks pattern the simple unit pro-
cedures that are carried out to accomplish a single goal and exhibit
a granularity level similar to the stages of Norman’s model of ac-
tion, they can subsequently be used to characterize the cognitive
and/or physical activity that occurs at each stage (Sutcliffe,
2002). Furthermore, although critical parameters numerically cap-
ture the criteria for success of an interaction, such levels may not
be persistent throughout the crossing of each of the stages of ac-
tion that define an activity but may rather translate into a particu-
lar sequence of critical-parameter objectives. We consequently
motivate for the recognition of an additional level of critical
parameters that can be used to numerically characterize not the
objectives of an entire task that we refer to as task-level critical-
parameter specifications but the objectives of an individual stage
of action that we refer to as stage-of-action-level critical-parameter
specifications (SOA-level critical-parameter specifications). Design-
ers can then associate claims to characterize the key features asso-
ciated with each stage of the activity. Not only does such an
approach to task modeling extend the traditional hierarchical task
analysis and offer structure during the requirements phase, but
each task model also creates a more comprehensive and formalized
embodiment of a task’s requirements.

In the domain of notification systems for instance, the critical-
parameter-based task-model notation presents the class corre-
sponding to the high-level critical-parameter specifications



C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 307
(McCrickard et al., 2003) at the root of the tree. The IRC constitu-
ents are then decomposed and related to the stages of action they
coerce. Finally, generic tasks are associated to the stages of action
to describe the basic stage-based tasks, then characterized by SOA-
level critical-parameter specifications.

Fig. 1 describes an example critical-parameter-based task
model. As a first step in designing a notification system, a design
team would identify one (or perhaps more) target types of noti-
fication systems from the eight possible types—in the case of
this example, an alarm. This identification of types takes place
through selection of critical-parameter values—again for this
example, by answering a series of multiple choice questions that
Fig. 1. An example critical-parameter-based task model for a notification task exhibitin
decomposed (interruption and reaction) and related to their governing stages of action. S
critical-parameter specifications capture the objective of each corresponding stage on a
highlight the importance of the three critical parameters of
interruption, reaction, and comprehension. Each type of notifica-
tion system has at least one associated task model that breaks
down the critical parameter classification into an ordering of
the parameters (e.g. interruption followed by reaction) and then
an assignment of stages of action to critical parameter (e.g. per-
ception–interpretation-making sense to interruption). Designers
can then perform SOA-level critical-parameter specifications.
We hypothesize that the discussions and debates that occur
within the design team lead to a deeper understanding of the
task at hand and a better set of requirements; a hypothesis ex-
plored in Section 5.
g an alarm behavior. The critical-parameter constituents of the alarm behavior are
utcliffe’s generic tasks are used to describe the basic activity of each stage. SOA-level
0-to-1 scale as is identified during design processes.



308 C. Montabert et al. / Interacting with Computers 21 (2009) 304–315
3.2. Critical-parameter-based task models as a reuse catalyst

Although we explored in Fabian et al. (2004) the critical-param-
eter-based classification method for claims within a knowledge
repository, we also unveiled some of the difficulties associated
with the acquirement of such attributes. A reliance on critical-
parameter-based task models can be a major advance in address-
ing the criteria selection (Krueger, 1992), a vital facet for the setup
of a successful reuse solution at the requirements phase. As a reuse
mediator, designers can utilize the artifacts issued from the sys-
tematic hierarchical decomposition involved with the critical-
parameter-based task-modeling approach to extract relevant
knowledge from the repository. In fact, by using the subtasks
which describe the nature of the activity at the stages of action
along with the SOA-level critical-parameter values which encom-
pass their objective, designers have access to search attributes
offering a finer level of granularity to characterize the lowest level
of the hierarchic model out of reused components, while the struc-
ture of the modeling process leverages simultaneously the veracity
associated with the capture of these attributes.

Furthermore, because tasks constitute a shared body of knowl-
edge (Whittaker et al. 2000), we can capitalize on the task centric-
ity of critical-parameter-based task models to leverage reuse
further. In fact, since task models detail the important tasks of a
system and tasks are often similar across many projects, it is pos-
sible for task models to be generalized and reused—particularly if
the tasks are sufficiently generalized (Lim and Long, 1994;
Wurdel et al., 2007). Critical parameters provide a means to gen-
eralize tasks within a broader domain, and the identification of
critical parameters for a domain (in the case of our work, the noti-
fication systems domain) and the calculation of values for the
parameters that match the design goals facilitate the identifica-
tion of task-model templates. Creating generic task-model tem-
plates along with related basic tasks can provide designers with
a standard and reusable starting point for requirements analysis
that can be employed in new situations, providing support for
the design-by-reuse paradigm already implemented through the
reuse of claims.

Finally, it is also imperative for the effective implementation of
a reuse mechanism to address the design-for-reuse paradigm. Be-
cause software projects often only entail a minimal amount of nov-
elty (Zand and Samadzadeh, 1994), requirements associated with a
project constructed from an instantiated task model should be rel-
evant to other projects sharing a similar instantiated task model,
which thus exhibits a tremendous reuse potential. By preserving,
indexing, and promoting the reutilization of critical-parameter-
based task models instantiated from generic templates, we facili-
tate providing designers with a ready-at-hand platform capable
of yielding the reuse of claims sets, rationales, and entire project
constituents (Montabert and McCrickard, 2006)—a reuse solution
at the requirements phase.

3.3. Reuse-centric and user-centric requirements analysis

The requirements-analysis process that we are proposing inte-
grates task modeling and scenario-based design to support and
promote the systematic capture of the desirable critical-parameter
requirements of an interactive system—figures of merit that have
the potential to pave the way to design quality and increase
chances of success for the resulting artifact. Key attributes to this
approach to requirements analysis are a strong reliance on user
involvement, disambiguation and validation of requirements
through structure and formalism, and extensive knowledge reuse.
First, we anticipate that strong user involvement at the require-
ments phase may yield the capture of a true reflection of actual
needs and expectations as well as facilitate the acceptance of the
hypothetical system once completed (Beyer and Holtzblatt, 1999;
Mirel, 2000; Wilson et al., 1997). Second, through the introduction
of structure and formalism via task modeling, we expect to lever-
age an in-depth understanding of both the activities and the envi-
ronment within which these activities are evolving, which will
result in the elicitation of true and accurate requirements (Richard-
son et al., 1998). Third, we foresee an extensive reliance on knowl-
edge reuse at the requirements phase will maximize the reuse
payoff and improve the quality of the formulated requirements
while simultaneously reducing project costs and shortening
time-to-market (Sutcliffe, 2000). Although uniting scenarios, task
models, and critical parameters promise tremendous inference
for project success, how should this integrative approach to
requirements engineering be structured to concretize such poten-
tial payoff?

To structure this reuse-centric and user-centric requirements-
analysis process, we recommend commencing according to the ba-
sic steps and activities recommended by scenario-based design
best practice (Carroll and Rosson, 1992; Rosson and Carroll,
2002). The initial step involves an investigation of current work
practices. A formulation of a root concept allows setting up the
high-level goals for the project and ensures stakeholders share a
common initial vision. This high-level vision can then be refined
through conducting various field studies, interviews, and artifact
investigations as well as other ethnographic inquiries. Problem
scenario elicitation ensues, an accurate description of users and
their activities in the problem domain, a phase throughout which
stakeholders can intervene and bring revisions and validations.
Once the problem domain has been adequately framed in a prob-
lem scenario, the activity phase follows. This second phase of the
requirements-analysis process focuses on the services the hypo-
thetical system needs to support to address the situation crafted
in the problem scenario. These services are accurately narrated
within an activity scenario. On one hand, because we are putting
forth a process centric to knowledge reuse in the form of claims
relying on a critical-parameter-based taxonomy and identified an
abstraction gap between scenarios and desirable critical-parame-
ter specifications, we need to setup a mediation avenue prior to
the conduct of the claims analysis. On the other hand, because
the activities described within activity scenarios belongs to the
analytic domain, user involvement alone fails to guarantee proper
validation. Since the services described in scenarios involve tasks,
it is possible to formalize these tasks through a hierarchical task
analysis. In fact, Paternò and Mancini (1999) motivate that in order
to achieve requirements veracity, one should start with an infor-
mal scenario and extract information from it to create and formal-
ize the task model. It then becomes possible to characterize each of
the tasks involved in the design model (Norman, 1986) in terms of
critical parameters and decompose these task-level critical param-
eters further through the reuse or the elaboration of critical-
parameter-based task models. Coupled with a knowledge reposi-
tory, these critical-parameter-based task models can serve as a
foundation for effective requirements knowledge transfer to occur
in the form of claims in lieu of traditional scenario-based claims
analysis (Carroll and Rosson, 1992; Rosson and Carroll, 2002).

We anticipate the formalism and structure involved with the
constitution of the task models to leverage an in-depth under-
standing of the activity, improve scenario coverage, allow for the
identification of inconsistencies or misspecifications, and ulti-
mately contribute to the elicitation of true requirements, while
the reliance on the task models themselves offers refined charac-
terizations of the activities, which also contribute to accurate
requirements. Next, we discuss the key implementation facets
and rationale of this integrative requirements-analysis methodol-
ogy within the requirements tool of the LINK-UP system (Chewar
et al., 2004a,b).



C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 309
4. A reuse-centric and user-centric infrastructure for
engineering requirements

Although we have established the overall structure of our inte-
grative requirements-engineering process, we still need to identify
and organize the steps involved in the conduct of each of the en-
tailed activities. Fig. 2 presents a flowchart of the key activities
supported by the infrastructure along with the relationship be-
tween each major phase and the knowledge repository. To support
verification and refinement, the tool implements the requirements
process in an iterative fashion. Furthermore, to promote user
involvement beyond early system analysis, during each activity
the requirements tool enables designers to bond directly with
the negotiation tool of the LINK-UP system (Chewar et al.,
2004a,b). This ready-at-hand accessibility to the external module
enables designers to engage stakeholders into participatory negoti-
ation sessions where ideas can be exchanged, refined, and
validated.

After the completion of the preliminary examinations involved
in the elaboration of the root concept and various studies of the
work practices in their natural settings, designers are ready to
Fig. 2. Flowchart of the supported activities with an integrative view of Carroll’s sce
knowledge repository. The stages connected by straight lines are adopted from the earl
parameter generation and task modeling. Curved lines indicate stages where design know
iterative nature of the activities.
access the requirements tool. Initially, an introductory page pro-
vides a comprehensive description of the objectives of require-
ments analysis, an overview of the supported key activities, and
emphasizes the decisiveness of such phase with respect to project
success. The rationale for this page is to sensitize designers to the
importance of requirements engineering and motivate them to
conduct this phase adequately.

4.1. Scenario-based domain analysis

To support the basic steps of a scenario-based requirements
analysis, the proposed tool supports the elaboration of a problem
and an activity scenario. First, the key activities, supporting arti-
facts, and social context of the workplace within which activities
take place identified during the preliminary examinations are
crafted in a problem scenario. The elaboration of such scenario
description enables designers to formulate aspects of the stake-
holders and their activities in the problem domain that have impli-
cations for design. After having clarified the scope and objective of
problem scenarios, the requirements tool allows designers to pro-
vide a scenario title which should encompass actors, plot, and
nario-based requirements-analysis process as well as their relationship with the
y stages of scenario-based design, adapted to account for key elements of critical-
ledge is taken from and added to the knowledge repository. Dotted lines indicate the



310 C. Montabert et al. / Interacting with Computers 21 (2009) 304–315
scope before they can enter their narration. Following the formula-
tion of the problem scenario, users and their interaction with an
envisioned system are described within an activity scenario. The
elicitation of such narration allows designers to recognize and
mine the activities the target system needs to support to address
users’ real needs. After having clarified the scope and objective of
activity scenarios, the tool allows designers once again to specify
a scenario title exhibiting similar attributes as the problem sce-
nario stage prior to the entering of the scenario description.
Encouraging designers to specify such peculiar traits within the
scenario titles enables users reviewing the coverage and adequacy
of the description to quickly identify the designers’ discernment of
the key elements of the narration. By following such scenario-
based domain analysis, the tool ensures an early user involvement
and a user-focused base within the requirements phase.

4.2. Task-modeling activity

Once the validation criteria for the scenario phase have been
satisfied, we can turn to a task-centric formalization of the activity
scenario, as suggested by Paternò and Mancini (1999). In fact, Laf-
renière (1996) reinforces the complementarities of both ap-
proaches by arguing scenarios should be regarded as a concrete
user-oriented approach to depict people’s tasks, thoughts, and
aspirations, whereas hierarchic task models represent an abstract
system-engineer oriented approach that formally describes tasks
in a context independent form. However, because our require-
ments tool is grounded onto the domain of notification systems
and we assume that this class of systems supports a single notifi-
cation task, it is not necessary for the tool to sustain a traditional
hierarchical task analysis infrastructure. Rather, the tool directly
bridges toward the formulation of the critical-parameter-based
model for the notification task. The first step of the modeling activ-
ity consists of establishing the task-level IRC values for the design
model (Norman, 1986), which characterize the notification objec-
tives of the system. Designers inexperienced with the critical
parameters associated with the domain of notification systems
can take advantage of an IRC Calculation Wizard to obtain the
desirable levels for their target system. By inquiring designers
Fig. 3. Screenshot of the requirements tool summary page, which offers a comprehensive
scenarios, desirable task-level critical-parameter values, critical-parameter decompos
parameter values, and claims IDs).
about the notification behavior of the target system along with
typical users’ expectations and benefits resulting from the notifica-
tion, this modeling assistant enables designers to obtain accurate
estimates for the desirable critical-parameter specifications (Che-
war et al., 2004b; Chewar et al., 2004a). Designers presenting
expertise with the domain can circumnavigate the module and
specify the numerical value of this trait directly. After having
established the targeted task-level critical-parameter values,
designers specify the generalized tasks that most adequately mod-
el the primary tasks commonly associated with their envisioned
system as well as indicate both visual and interactive design con-
cerns associated to the target system’s specific surroundings.

Next, the requirements tool presents designers with a standard-
ized starting point for their task-modeling activity in the form of a
generic task-model template. In particular, the tool presents all of
the available templates corresponding to the class of systems asso-
ciated with the desirable critical-parameter levels previously
established. Allowing this filtering per meta-task genre increases
the scalability of the tool and facilitates the identification of a prop-
er template. Designers can select and base their task-modeling
activity from a standardized template exhibiting the adequate
meta-task. The tool then provides designers with all of the avail-
able task models instantiated from the selected template during
the requirements phase of previous projects. However, if none of
the generic templates adequately fit, designers can pursue the con-
struction of a new one. The first step of this task model template
creation process entails establishing the connectivity for the lower
levels of the hierarchy through the specification of the governing
critical-parameter components constituting the ideal meta-task
genre corresponding to the set desirable task-level critical-param-
eter specifications for each of Norman’s six stages of action. To
facilitate subsequent task-model template reuse, designers can
textually describe the behavioral objective of the notification upon
users and their associated primary task modeled by the hierarchic
archetype. The template creation process proceeds with the speci-
fication of the applicable subtasks and psychological factors for
each stage of action. The applicable subtasks for the generic model
are extracted from the stage-of-action breakdown of Sutcliffe’s
generic tasks (Montabert, 2006), while the psychological factors
view of the work-product sets of the requirements process (i.e. problem and activity
ition pattern, stage-of-action scenarios, basic tasks, targeted SOA-level critical-



C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 311
intervening in the IRC equations are estimated using a five-point
scale (Chewar et al., 2004b). The tool then generates the SOA-level
critical-parameter values and commits the newly constructed task-
model template to the knowledge repository for consecutive reuse.

Following the selection of a generalized template as a basis for
the modeling activity, the requirements tool provides an array of
available instantiated task models. These task models result from
the instantiation of the selected template through previous pro-
jects. To further pattern the task-model elaboration, reuse of such
instantiated task models offers designers a more refined abstrac-
tion level, benefiting the effectiveness of the reuse solution (Krue-
ger, 1992). Designers can select a declination of the generic task-
model template that presents similar task-level critical-parameter
objectives, and directly edit the task-model attributes to create a
precise representation of their notification task. However, if none
of the template digressions’ targeted critical-parameter levels ade-
quately suit, designers can pursue the construction of a new one.
The first step of the instantiation practice involves, for each stage
of action, a selection of the basic tasks available from the parent
template that constitute the activity. Furthermore, because obser-
vations revealed that designers tend to refer to an activity instead
of describing meticulously its constitution during the scenario-
based domain analysis, leaving broad unspecified areas, to leverage
validity, the system implements the elaboration for each stage of
action of a scenario that narrates the subtask conduction, both
ensuring proper generic task selection and reinforcing scenario
coverage. After the specification of these attributes for each of
the six stages, the requirements tool generates the desirable
SOA-level critical-parameter values and displays a summative
view of the task-modeling activity. As a requirements analysis
milestone, this summary page allows designers to comprehen-
sively review, verify, and validate the work-product of their mod-
eling enterprise before moving forward.

A claims characterization completes the hierarchic task-model
elicitation. First, in the form of a recommendation system, the
requirements tool suggests potentially relevant claim-sets associ-
ated with the reused task model through projects. Second, to ex-
tend the model with additional claims, designers can access the
search interface of a claims library and utilize the work-product
established during the hierarchic modeling phase (i.e. SOA-level
IRC values and generic tasks) to extract relevant knowledge from
the repository, or create new claims (Fabian et al., 2004). Claims
associated with the task model are committed to the repository
and will be recommended through the subsequent reuse of the in-
stance. Fig. 3 presents a screenshot of the system summary page of
the requirements tool.
5. Validation through user evaluations

How accessible is the implementation of such process to novice
designers? Does our integrative approach to requirements engi-
neering really have the potential to bring the best of each individ-
ual technique and hold the promises of effective reuse at the
requirements phase? To answer these questions, we present the
design, procedure, and results for two studies. The first is a feasibil-
ity study to examine whether a novice designer could understand
and conduct an analysis. The second is a benefits assessment to
ascertain the degree to which requirements are impacted by the
use of the tool.

5.1. Feasibility study

To provide insight about the possibility for novice designers to
conduct successfully the activity of the process as well as the
usability of the infrastructure, we invited seven students enrolled
in an undergraduate HCI introductory class to participate in a
usability evaluation of our requirements tool. Most of these novice
designers had been previously exposed in the course of their cur-
riculum to scenario-based design and the concept of claims analy-
sis, but none of them were familiar with any of the notions
involved in our critical-parameter-based task-modeling approach
(i.e. hierarchical task analysis, IRC critical parameters, Norman’s
stages of action, and Sutcliffe’s generalized and generic tasks).
The inexperience of these candidates with respect to the majority
of the facets of our process provided the opportunity to educate
them to a similar degree in our novel design approach, then assess
the difficulty associated with the task-modeling activity and self-
sufficiency of the tool in communicating the concepts involved.

5.1.1. Method
Each participant received a set of generic instructions about the

procedure and format of the evaluation but received no training or
presentation about either the requirements tool or its supported
process prior to the beginning of the assessment. In fact, to obtain
a genuine evaluation about the self-sufficiency of the tool for the
successful conduct of the entailed activities, we wanted the partic-
ipants to remain naïve with respect to the supported activities and
concepts involved in the process. Designers received a root concept
as well as a problem and activity scenario and accessed the
requirements tool. During their progression through the system,
participants completed a trans-test questionnaire. After the com-
pletion of their requirements analysis, each participant completed
a post-test questionnaire. No time constraints were associated
with the evaluation.

5.1.2. Results
Encompassing twenty-four questions relying on a seven-point

Likert scale, the trans-test survey focused on specific aspects of
each page such as the difficulty of introduced concepts, clarity of
the instruction, and ability for the tool to assist the understanding
of such concepts through the provision of sufficient help. Results
from the trans-test survey revealed the difficulty of some of the
concepts involved with the task-modeling activity but also indicate
the ability of the help section to mitigate such difficulties (Monta-
bert et al., 2005).

Associated to a seven-point Likert scale, the post-test ques-
tionnaire entailed a usability portion as well as a section targeting
the comprehensive user understanding of the tool and of its sup-
ported activities. First, to evaluate the usability of the tool, we
created and administered a questionnaire. The first set of ques-
tions, loosely based on Nielsen’s usability heuristics (Molich and
Nielsen, 1990), suggested that the requirements tool was indeed
usable (individual results for each the heuristics are available in
Montabert, 2006). Second, the remaining portion of the question-
naire evaluated participants’ understanding and ability to
complete the process. User ratings reflect a participants’ under-
standing of the objective and value of the tool (M = 5.71,
SD = 0.45), as well as an understanding of the terms, diagrams,
and concepts presented in this tool (M = 5.29, SD = 0.70). Users
rated themselves able to conduct a requirements analysis for
the given scenario with the tool (M = 6.00, SD = 0.76). Further-
more, with respect to the sample scenario, an inquiry of partici-
pants’ artifacts subsequent to the evaluation revealed the
selection of the correct task-model template and basic tasks along
with the extraction of relevant claims from the repository, rein-
forcing the validity of these subjective ratings.

5.2. Benefits assessment survey

We invited seven undergraduate students to participate in a
user study. First, the study aimed at evaluating whether a



312 C. Montabert et al. / Interacting with Computers 21 (2009) 304–315
requirements-engineering process merging scenario-based
requirements analysis and critical-parameter-based task analysis
may be effective in leveraging scenario quality and capturing the
critical-parameter specifications of a system. Second, the survey
assessed whether a reliance on scenarios, task models, and critical
parameters may benefit requirements quality, introduce effective
reuse at the requirements phase, and increase the design quality
of the resulting artifact. Third, the study evaluated whether an
integrative requirements-engineering process exhibits potential
educational payoffs for an acceptable difficulty level.

These participants, in their senior year, were enrolled in a re-
search seminar on notification-system design. We preferred for
this second investigation participants having an intermediate
experience level with respect to the concepts and domain investi-
gated, as such designers present enough proficiency to evaluate
knowledgeably the process in terms of usefulness while remaining
candid enough to judge adequately the difficulty level. Although,
the participants had no formal expertise with either the conduc-
tion of hierarchical task analysis and task modeling or the use of
Norman’s stages of action and Sutcliffe’s generic and generalized
tasks, these students had knowledge of scenario-based design,
claims analysis, and IRC critical parameters through the design of
successful notification systems. In fact, each surveyed user was a
member of one of three design groups who developed systems
upon the SeeVT framework (Sampat et al., 2005), an infrastructure
that takes advantage of both wireless internet access and ubiqui-
tous computing to enable the development of location-based noti-
fication systems.
Fig. 4. User ratings of the effectiveness upon scenario quality and capture of critical
parameters as well as benefits upon design, requirements, and reuse resulting from
the use of the requirements tool (average ± standard deviation).
5.2.1. Method
The participants were divided into their three design teams

with each team tested independently. Each surveyed user received
a set of generic instructions about the procedure and format of the
evaluation but received no training or presentation about either
the requirements tool or its supported process. In fact, we wanted
to ensure that the participants of each design team would be naïve
with respect to the supported requirements process as well as the
supporting tool’s user interface at the start of the evaluation. The
participants first individually completed a demographic informa-
tion and pre-test questionnaire. Because this user evaluation aims
at comparing the quality of the requirements process supported by
our tool as well as the quality of its subsequent deliverables with
respect to the quality of these obtained solely from a traditional
scenario-based requirements analysis, in order to draw conclu-
sions about the benefits of using such infrastructure, each design
team was then instructed to re-conduct the requirements analysis
for each of its respective semester-long projects. In fact, asking par-
ticipants to re-conduct a requirements analysis yields two upsides.
On one hand, teams had originally followed a development process
solely based on scenario-based design which allows for a direct
comparison of the quality of the requirements process offered by
our tool. On the other hand, teams had already conducted their
preliminary work such as field studies and stakeholders analysis
during the original requirements phase of their respective projects,
which enables an evaluation of the process in a reasonable amount
of time while maintaining some degree of realism despite the con-
trolled nature of the environment. To increase the degree of real-
ism further, the groups were instructed to conduct their
requirements analysis in a collaborative fashion. The requirements
tool was then loaded on a large screen display, acknowledged as
the best avenue for the exchange of ideas within collaborative
work settings (Elrod et al., 1992). After the completion of their
requirements analysis, participants individually completed a
post-test questionnaire. No time constraints were associated with
the evaluation.
5.2.2. Results
The pre-test survey consisted of five questions associated to a

five-point Likert scale which focused on assessing the experience
level of evaluators with respect to the concepts of scenario-based
design, notification-system design, IRC parameters and require-
ments engineering. To obtain a reference level, the pre-test ques-
tionnaire asked participants to rate the quality and validity of the
initial requirements elicited during the original iteration of the
SeeVT projects (Bhatia et al., 2006; Nair et al., 2006; Sciacchitano
et al., 2006). The results of the pre-test questionnaire indicate that
the participants presented a broad range of expertise levels with
respect to each concept. As a whole, participants reported an aver-
age expertise level for scenario-based design, notification-system
design, and IRC parameters. Participants revealed to be somewhat
inexperienced with respect to engineering requirements. More-
over, each design team encompasses members exhibiting different
expertise levels with respect to each concept (the complete break-
down of the team constituents is available in Montabert, 2006).

The post-test survey was associated to a five-point Likert scale
and targeted both the difficulty level as well as the benefit assess-
ment associated with the overall requirements-analysis process
and its supporting infrastructure. Asked to rate the difficulty level
of the entire process along with its interface implementation, par-
ticipants rated the process as easy to conduct (M = 4.25, SD = 0.42).

The survey then evaluated the effectiveness of the critical-
parameter-based task-modeling approach for leveraging scenario
quality and critical-parameter capture, as well as the benefits upon
requirements quality, reuse, and subsequent design artifact result-
ing from the use of our tool. Participants deemed each evaluated
criteria as successful with average user ratings in excess of four
and no observable trends between participants’ experience levels
and ratings despite the diverse level of competencies. In particular,
the task-modeling activity was rated effective upon the quality of
scenario descriptions (M = 4.00, SD = 0.58) and capture of desirable
critical-parameter levels (M = 4.57, SD = 0.53). Furthermore, our
integrative approach to requirements engineering was judged as
beneficial for achieving quality requirements (M = 4.43, SD =
0.53), reuse (M = 4.57, SD = 0.53), and design quality for the result-
ing artifact (M = 4.42, SD = 0.49). Fig. 4 shows the mean and stan-
dard deviation of the users’ ratings for each of these five questions.

To assess the potential for educational payoff resulting from the
use of the tool, the post-test questionnaire instructed participants
to rate their awareness level of the importance of requirements for
project success after having completed their requirements engi-
neering with the tool. Users rated themselves as aware (M = 4.29,



C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 313
SD = 0.76). Furthermore, ratings suggest a pattern between users’
experience levels and awareness levels, as users inexperienced
with requirements-engineering practices exhibited higher aware-
ness gains about the importance of the requirements phase.

A follow-up question to the pre-test survey instructed partici-
pants to evaluate, once again, the quality and validity of the
requirements originally elicited for their SeeVT project now that
they had re-conducted an entire requirements analysis for their
project, but this time, using our process and supporting infrastruc-
ture. T-test shows that post-test quality and validity ratings of the
requirements originally elicited (M = 2.86, SD = 0.38) are signifi-
cantly smaller than the pre-test quality and validity ratings of
the requirements originally elicited (M = 3.57, SD = 0.53) with
t(12) = 2.88, p = 0.014.

Finally, comments about participants’ experience with the
requirements tool revealed that the system was enthusiastically
received with eloquent statements reiterating the ratings captured
throughout the questionnaire’s benefits assessment portion. Ver-
batim et literatim comments such as ‘‘the tool is great for providing
a base for successfully conducting requirements analysis” qualita-
tively confirmed the benefits upon requirements analysis, while ‘‘it
is great to be able to conduct a requirement process based on the
reuse of previous projects, it helps to get a feel for what we need
to achieve” and ‘‘I did not know requirements were so critical for
achieving good design. I really learned that by using this tool”
respectively transcribed the incidence of reuse upon requirements
and corroborated with the potential educational value resulting
from the use of the tool.

5.3. Findings

Results from both user studies suggest the potential of our inte-
grative approach to requirements analysis. First, results from our
preliminary study indicate the ability for novice designers to suc-
cessfully complete the activity entailed in our proposed require-
ments tool, judged usable. These results are key as they not only
exhibit the usability of the tool, but also its suitability as a potential
learning platform. Second, the results of our benefit assessment
survey suggest that a requirements-analysis process combining
scenario-based design and task analysis could be effective in lever-
aging scenario quality and capturing the critical-parameter
requirements of a system.

In addition, it appears that the use of scenarios, task models,
and critical parameters benefit requirements quality, promote re-
use at the requirements phase, and increase the design quality of
the resulting artifact. These patterns are reinforced by the signifi-
cant decrease between users’ self-assessments of the quality and
validity of their prior projects’ requirements recorded before and
after the experiment, suggesting the requirements tool contributed
to increase the value of the engineered requirements as well as
designers’ reference level and appreciation of requirements
quality.

Moreover, as the criticality of the role of user involvement in
developing quality requirements is replicate in the literature (Cheng
and Atlee, 2007), the proposed requirements tool actively responds
to this need by providing a more formal and structured approach
that facilitates a better understanding of user needs through offering
specific systemic components, implemented in a revised require-
ments analysis module, that support and foster more active and con-
tinuous user involvement through the requirements engineering
process. As discussed, the revised interface of the requirements anal-
ysis module allows designers to directly bridge with the participa-
tory negation module. It is our intent, through this systemic
component, to leverage requirements quality, validity, and foster
continuous user involvement beyond the early scenario states of
the process. By facilitating this cross-module communication,
designers will be more likely to engage user’s participation in the
requirements engineering process, whether for clarifying particular
aspects of the behavior of the target system or ensuring stakeholder
validation. The revised requirements analysis module enables
designers to directly access the negotiation tool of the LINK-UP sys-
tem. This provides a mechanism that supports the engagement of
users in a process throughout which ideas can be exchanged to lever-
age the validity of the problem scenario. In addition if needed,
designers can return to the scenario phase in an iterative fashion
and revise their previous scenario descriptions; thus, enriching,
overall, the requirements capture with a better understanding of
user needs and requirements.

The evaluation also indicates the overall process’ tasks and
implementation are deemed effortless to conduct and acknowl-
edges an increase in participants’ awareness levels of the impor-
tance of requirements in project success, which implies a
potential educational benefit resulting from this system with re-
spect to novices with the domain of engineering requirements.
The results of this study therefore provides support to our vision
that the use of task models provides a good avenue for bridging
the gap between scenarios and critical parameters while contribut-
ing toward reuse and forming a user-centric requirements-analysis
process which put forth user involvement and quality require-
ments, conditions necessary for project success.

6. Conclusions and future work

This paper presents an integrative approach to requirements
analysis which merges task modeling and critical parameters with
scenario-based design to foster project success. Key characteristics
of this approach to requirements analysis are a strong reliance on
user involvement by following an overall scenario-based design
practice, disambiguation and validation of requirements through
structure and formalism via hierarchical task analysis and criti-
cal-parameter characterization, and extensive requirements
knowledge transfer through the reliance on critical-parameter-
based task models and claims. This approach shows potential to
promote user involvement and leverage requirements accuracy
at minimal expenditure—criteria recognized as critical for project
success.

Through the grounding of our proposed user-centric and reuse-
centric requirements-analysis approach within the domain of noti-
fication systems and consecutive implementation, two user studies
recorded the feasibility and payoff associated with the use of such
process and infrastructure. On one hand, our initial study con-
firmed the ability for novice designers to comprehend the activities
involved with the critical-parameter-based task-modeling process,
complete the analytic procedure successfully, and extract relevant
reusable knowledge from a claims repository. On the other hand,
the subsequent study validated the coupling of critical-parame-
ter-based task modeling to scenario-based design improves sce-
nario quality, facilitates the capture of critical-parameter
specifications, and serves as a reuse catalyst while the emerging
requirements-analysis process fosters requirements and design
quality. The study also unveiled potential learning benefits associ-
ated with a potential deployment of such infrastructure as a teach-
ing platform for requirements-engineering practices.

While evidence exists that suggests the efficacy of the tool,
study findings should be balanced with the recognition of some
challenges in the experimental design. Experimental parameters
and controls were instituted that supported mitigating confounds;
including allowing participants to leverage their existing front-end
analysis work and allowing for the requirements-analysis process
to be conducted in a collaborative fashion. Also, more than seven
participants (comprising three design groups) were certainly
desired, but the long-term participant commitment necessarily



314 C. Montabert et al. / Interacting with Computers 21 (2009) 304–315
limited the number of participants. The experiences of the partici-
pants, collected over several months, led to insights that would
have been difficult to procure from a larger group due to the
needed time commitment. Finally and most notably, the academic
setting and use of undergraduates as designers, regardless of their
level of training, could not reflect fully an experienced design team.
However, the composite expertise of the designers and their
knowledge of the design domain of notification systems were
essential in the use of our critical-parameter-based task-model ap-
proach and reflect the approach a company could take in adopting
a critical-parameter-based approach to design—without the con-
trol and commitment costs that would be necessary in a controlled
study in a corporate environment.

As to provide some understanding of the value and challenges
associated with the use of our tool, questionnaires were designed
and administered that featured loosely structured questions to
more fully explore the participant’s perceptions of our tool. Appro-
priate quantitative techniques were used to provide some insight
into comparative differences in perceived quality of requirements
generated with or without the use of our tool. Through a more for-
mal analysis of participant responses (e.g. content analysis) was
not conducted, themes were observed by the researchers that ech-
oed the quantitative findings. These themes further highlight the
potential value of the tool and will be explored in future research.

Finally, through the integration and adaptation of multiple
requirements analysis techniques we provided the field with a
comprehensive environment for eliciting requirements, while a
capitalization on the task centricity of our approach via our criti-
cal-parameter-based task-modeling strategy not only offers the
extraction of quality requirements, but also yields the generation
of shareable domain-independent knowledge that can benefit the
entire HCI community (Whittaker et al. 2000).

We recommend future research effort to deploy our integrative
approach to other domains. In fact, we anticipate the extensions of
such requirements process to other areas may yield the systematic
identification of additional critical parameters, further validation
and refinement of critical-parameter based task-modeling tech-
niques, and increase both the quantity and reach of available
claims that can be exchanged.

Because claims can characterize attributes within the problem
space as well as attributes within the design space, claims offer
the inclination for bridging these two worlds. Using our proposed
approach in the design space, designers relate claims to their task
models which become permanently associated to task models
within the knowledge repository, making these problem claims
readily available for reuse in other projects through task-model re-
use. Once in the design space, designers will query the knowledge
library in search of claims which adequately address the issues
identified at the requirements phase. Continuing to extend the
capability of the knowledge repository by preserving relationships
between task models, problem claims and design claims may yield
tremendous payoff for the design community.

Acknowledgements

The authors would like to give great thanks to the people who
took part in our user evaluations. We would also like to thank Chri-
sta Chewar, Jacob Somervell, and Ali Ndiwalana for their comments
on early versions of this work. Finally, we could like to thank the
reviewers for their excellent and insightful comment on this paper.

References

Annett, J., 2003. Hierarchical task analysis. In: Holnagel, E. (Ed.), Handbook of
Cognitive Task Design. Lawrence Erlbaum Associates, Mahwah, NJ, pp. 17–35
(Chapter 2).
Annett, J., Duncan, K.D., 1967. Task analysis and training design. Occupational
Psychology 41, 211–221.

Bell, T.E., Thayer, T.A., 1997. Software requirements: are they really a problem? In:
Proceedings of the 2nd International Conference on Software Engineering (ICSE-
2), pp. 61–68.

Berry, D.M., Damian, D., Finkelstein, A., Gause, D., Hall, R., Simmons, E., Wassyng, A.,
2005. To do or not to do: if the requirements engineering payoff is so good, why
aren’t companies doing it? In: Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE ’05), p. 447.

Beyer, H., Holtzblatt, K., 1999. Contextual design. Interactions 6 (1), 32–42.
Bhatia, S., Dahn, C., Lee, J.C., Sampat, M., McCrickard, D.S., 2006. VTAssist – a

location-based feedback notification system for the disabled. In: Proceedings of
the 44th Annual ACM Southeast Regional Conference (ACMSE ’06), pp. 512–517.

Boehm, B.W., 1981. Software Engineering Economics. Prentice Hall, Upper Saddle
River, NJ.

Brooks, F.P., 1987. No silver bullet: essence and accidents of software engineering.
IEEE Computer 20 (4), 10–19.

Carroll, J.M., Rosson, M.B., 1992. Getting around the task-artifact cycle: how to make
claims and design by scenario. ACM Transaction on Information Systems 10,
181–212.

Cheng, B.H.C., Atlee, J.M., 2007. Research directions in requirements engineering.
FOSE 2007, 285–303.

Chewar, C.M., Bachetti, E., McCrickard, D.S., Booker, J., 2004. Automating a design
reuse facility with critical parameters: lessons learned in developing the LINK-
UP system. In: Proceedings of the 2004 International Conference on Computer-
Aided Design of User Interfaces (CADUI ’04), pp. 236–247.

Chewar, C.M., McCrickard, D.S., Sutcliffe, A.G., 2004. Unpacking critical
parameters for interface design: evaluating notification systems with the
IRC framework. In: Proceedings of the 2004 Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques (DIS
’04), pp. 279–288.

Diaper, D., 2002. Scenarios and task analysis. Interacting with Computers 14 (4),
379–395.

Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, F., Janssen, W., Lee, D., McCall, K.,
Pederson, E., Pier, K., Tang, J., Welch, B., 1992. Liveboard: a large interactive
display supporting group meetings, presentations, and remote collaboration. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’92), pp. 599–607.

Estublier, J., Vega, G., 2005. Reuse and variability in large software applications. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 316–325.

European Software Institute, 1996. European software process improvement
training Initiative (ESPITI) project: European user survey analysis. Technical
Report ESI-1996-TR95104, European Software Institute.

Fabian, A., Felton, D., Grant, M., Montabert, C., Pious, K., Rashidi, N., Tarpley III, A. R.,
Taylor, N., Chewar, C.M., McCrickard, D.S., 2004. Designing the claims reuse
library: validating classification methods for notification systems. In:
Proceedings of the 42nd Annual ACM Southeast Regional Conference (ACMSE
’04), pp. 357–362.

Gould, J.D., Lewis, C., 1985. Designing for usability: key principles and what
designers think. Communications of the ACM 28, 300–311.

Grady, R.B., 1997. Successful Software Process Improvement. Prentice Hall,
Englewood Cliffs, NJ.

Holtzblatt, K., Beyer, H.R., 1995. Requirements gathering: the human factor.
Communications of the ACM 38 (5), 31–32.

Ishii, H., Ullmer, B., 1997. Tangible bits: towards seamless interfaces between
people, bits, and atoms. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’97), pp. 234–241.

Krueger, C.W., 1992. Software reuse. ACM Computing Surveys 24 (2), 131–184.
Kujala, S., Kauppinen, M., Lehtola, L., Kojo, T., 2005. The role of user

involvement in requirements quality and project success. In: Proceedings
of the 13th IEEE International Conference on Requirements Engineering
(RE ’05), pp. 75–84.

Lafrenière, D., 1996. CUTA: a simple, practical, low-cost approach to task analysis.
Interactions 3 (5), 35–39.

Lim, W.C., 1994. Effects of reuse on quality, productivity, and economics. IEEE
Software 11 (5), 23–30.

Lim, K.Y., Long, J., 1994. The MUSE Method for Usability Engineering. Cambridge
University Press, Cambridge.

Martin, J., 1984. An Information Systems Manifesto. Prentice Hall, Paramus, NJ.
Matsumoto, Y., 1982. Software education in an industry. In: Proceedings of the 6th

Annual International Computer Software and Applications Conference
(COMPSA 1982), pp. 92–94.

Matsumoto, Y., 1993. Experiences from software reuse in industrial process control
applications. In: Proceedings of Advances in Software Reuse: Selected Papers
from the 2nd International Workshop on Software Reusability, pp. 186–195.

McCrickard, D.S., Chewar, C.M., 2003. Attentive user interfaces: attuning
notification design to user goals and attention costs. Communications of the
ACM 46 (3), 67–72.

McCrickard, D.S., Chewar, C.M., Somervell, J.P., Ndiwalana, A., 2003. A model
for notification systems evaluation – assessing user goals for multitasking
activity. ACM Transactions on Computer–Human Interaction (TOCHI) 10
(4), 312–338.

Mirel, B., 2000. Product, process, and profit: the politics of usability in a software
venture. ACM Journal of Computer Documentation (JCD) 24 (4), 185–203.



C. Montabert et al. / Interacting with Computers 21 (2009) 304–315 315
Molich, R., Nielsen, J., 1990. Improving a human–computer dialogue: what
designers know about traditional interface design. Communication of the
ACM 33 (3), 338–348.

Montabert, C., 2006. Supporting requirements reuse in a user-centric design
framework through task modeling and critical parameters. M.S. Thesis, Virginia
Polytechnic Institute and State University.

Montabert, C., McCrickard, D.S., 2006. Task models, scenarios, and critical
parameters: toward the establishment of an effective infrastructure for reuse-
centric requirements analysis. In: Proceedings of the 3rd International
Conference on Cybernetics and Information Technologies, Systems and
Applications (CITSA 2006), pp. 186–191.

Montabert, C., Bussert, D., Gifford, S.S., Chewar, C.M., McCrickard, D.S., 2005.
Supporting requirements reuse in notification systems design through task
modeling. In: Proceedings of 11th International Conference on Human–
Computer Interaction (HCII ’05).

Nair, S., Kumar, A., Sampat, M., Lee, J.C., McCrickard, D.S., 2006. Alumni campus
tour: capturing the fourth dimension in location based notification systems. In:
Proceedings of the 44th Annual ACM Southeast Regional Conference (ACMSE
’06), pp. 500–505.

Newman, W.M., 1997. Better or just different? On the benefits of designing
interactive systems in terms of critical parameters. In: Proceedings of the
Conference on Designing Interactive Systems: Processes, Practices, Methods,
and Techniques (DIS ’97), pp. 239–245.

Newman, W.M., Taylor, A.S., Dance, C.R., Taylor, S.A., 2000. Performance targets,
models and innovation in interactive systems design. In: Proceedings of the
Conference on Designing Interactive Systems: Processes, Practices, Methods,
and Techniques (DIS ’00), pp. 381–387.

Norman, D.A., 1986. Cognitive engineering. In: Norman, D.A., Draper, S.W. (Eds.),
User Centered Systems Design: New Perspectives on Human–Computer
Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 31–61.

Paternò, F., Mancini, C., 1999. Late-breaking results: developing task models from
informational scenarios. In: CHI ’99 Extended Abstracts on Human factors in
Computing Systems 1, pp. 228–229.

Paternò, F., Mancini, C., Meniconi, S., 1997. Engineering task models. In: Proceedings
of the 3rd IEEE International Conference on Engineering of Complex Computer
Systems, pp. 69–67.

Payne, C., Algood, C.F., Chewar, C.M., Holbrook, C., McCrickard, D.S., 2003.
Generalizing interface design knowledge: lessons learned from developing
a claims library. In: Proceedings of the 2003 IEEE International
Conference on Information Reuse and Integration (IRI ’03), pp. 362–369.

Richardson, J., Ormerod, T.C., Shepherd, A., 1998. The role of task analysis in capturing
requirements for interface design. Interacting with Computers 9 (4), 367–384.

Rosson, M.B., Carroll, J.M., 2002. Usability Engineering: Scenario-Based
Development of Human–Computer Interaction. Academic Press, San Diego, CA.
Sampat, M., Kumar, A., Prakash, A., McCrickard, D.S., 2005. Increasing understanding
of a new environment using location-based notification systems. In: Poster
paper in Proceedings of 11th International Conference on Human–Computer
Interaction (HCII ’05), auxiliary CD-ROM proceedings.

Sciacchitano, B., Cerwinski, C., Brown, I., Sampat, M., Lee, J.C., McCrickard, D.S., 2006.
Intelligent library navigation using location-aware systems. In: Proceedings of
the 44th Annual ACM Southeast Regional Conference (ACMSE ’06), pp. 371–376.

Souchon, N., Limbourg, Q., Vanderdonckt, J., 2002. Task modeling in multiple
contexts of use. In: Proceedings of Interactive Systems. Design, Specification,
and Verification (DSV-IS 2002), pp. 59–73.

Sutcliffe, A., 1997. A technique combination approach to requirements engineering.
In: Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering, pp. 65–74.

Sutcliffe, A., 2000. On the effective use and reuse of HCI knowledge. ACM
Transaction on Computer–Human Interaction (TOCHI) 7 (2), 197–221.

Sutcliffe, A., 2002. The Domain Theory: Patterns for Knowledge and Software Reuse.
Lawrence Erlbaum Associates, Mahwah, NJ.

Sutcliffe, A., Carroll, J.M., 1999. Designing claims for reuse in interactive systems
design. International Journal of Human–Computer Studies 50 (3), 213–241.

Taylor, F., 1991. Scientific Management. Harper & Row, New York.
Thayer, R.H., Dorfman, M., 1997. Software Requirements Engineering. Wiley-IEEE

Computer Society Press, Los Alamitos, CA.
The Standish Group, 1994. The CHAOS report. <http://www.standishgroup.com/

sample_research/chaos_1994_1.php> (retrieved 07.09.05).
van Dantzich, M., Robbins, D., Horvitz, E., Czerwinski, M., 2002. Scope: providing

awareness of multiple notifications at a glance. In: Proceedings of the 6th
International Working Conference on Advanced Visual Interfaces (AVI ’02).

van Lamsweerde, A., 2000. Requirements engineering in the year 00: a research
perspective. In: Proceedings of the 22nd International Conference on Software
Engineering (ICSE 2000), pp. 5–19.

Whittaker, S., Terveen, L., Nardi, B.A., 2000. Let’s stop pushing the envelope and start
addressing it: a reference task agenda for HCI. Human–Computer Interaction
15, 75–106.

Wiegers, K.E., 2003. Software Requirements. Microsoft Press, Redmond, WA.
Wilson, S., Bekker, M., Johnson, P. Johnson, H., 1997. Helping and hindering user

involvement—A tale of everyday design. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’97), pp. 178–185.

Wurdel, M., Forbrig, P., Radhakrishnan, T., Sinnig, D., 2007. Patterns for task- and
dialog-modeling. In: Proceedings of the 12th International Human Computer
Interaction International Conference (HCII 2007), pp. 1226–1235.

Zand, M.K., Samadzadeh, M.H., 1994. Software reuse: issues and perspectives. IEEE
Potentials 13 (3), 15–19.

http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/chaos_1994_1.php

	An integrative approach to requirements analysis: How task models support requirements reuse in a user-centric design framework
	Introduction
	Background and related work
	An integrative approach to engineering requirements
	Critical-parameter-based task models for requirements capture
	Critical-parameter-based task models as a reuse catalyst
	Reuse-centric and user-centric requirements analysis

	A reuse-centric and user-centric infrastructure for engineering requirements
	Scenario-based domain analysis
	Task-modeling activity

	Validation through user evaluations
	Feasibility study
	Method
	Results

	Benefits assessment survey
	Method
	Results

	Findings

	Conclusions and future work
	Acknowledgements
	References


