
Supporting Classroom Information Management
with SCOUT

Quranna Khan♣     D. Scott McCrickard♦      Sherian Clay♣

♣Computer Science Department
Hampton University

Hampton, VA

♦Georgia Institute of Technology
College of Computing

 Atlanta, GA 30332-0280
cskhan@hotmail.com     mccricks@cc.gatech.edu     sherianc@hotmail.com

INTRODUCTION

The classroom of the new millennium will not look
like the pencil-and-paper versions that we remember
growing up. New technology promises to capture the
information exchanged in a class and to make it
accessible at later times.  Blackboards and whiteboards
will be replaced with liveboards and smartboards,
cameras will be placed in the classroom, and students
will use laptops and hand-held computers to ask
questions and take notes. However, collecting the
information is only a small part of the problem.
Somehow, students and faculty must be able to manage
this information and stay abreast of updates and
changes.

This problem has already found its way into the
classroom because of the existence of course sites on
the World Wide Web.  A course Web site is a set of
Web pages that typically contains information about
class notes, assignment specifications, and examination
overviews.  In the not-so-distant  future, these sites will
contain recordings of the lectures, reports of class
discussions, and other information.  Professors could
simply point students to the Web page and tell them to
keep up with the notes and assignments for the term.

The Web site for a course is a dynamic entity.  Pages
are continually added, and existing pages are
constantly updated.  Due dates get moved,
specifications for programs are re-specified, and just in
general professors have some kind of change of heart
or mind about something previously written on their
tentative schedule.  Keeping up with the changes is a
continual challenge for students, and few tools have
been developed to help them.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page.  To copy otherwise, to
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
’99 ACM Southeast Regional Conference
1999 ACM 1-58113-128-3/99/0004      5.00

While the indexing and searching problems have been
widely studied for many years (resulting in solutions
such as TFIDF [4]), the explosion of Web use has
provided new forums for their use.  Several systems
have demonstrated the viability of TFIDF for Web-
based tasks such as citation indexing and information
surfing [1,3].  However, often the standard solutions
must be augmented to meet the needs of a specific
situation such as classroom information management.

We address these problems with an information
management tool called SCOUT.  SCOUT (Searching
Course Objects Using TFIDF) allows the user to stay
aware of the contents and changes in content that
might be made to a Web site by providing information
on recently modified pages, important upcoming dates,
and keyword-based searches.
SCOUT combines widely used technology and
solutions specific to course-related problems to create
a tool capable of alleviating students' information
management problems.

SCOUT

SCOUT provides students and faculty with the means
necessary to stay abreast of changes to course Web
sites.  A user provides a course base URL, and SCOUT
indexes the information at that page and at all linked
pages that are in the course directory structure.  The
user can then perform three types of searches on the
information:

• Last modification searches allow the user to
search for pages at a class Web site that have been
recently modified.  Users can select the number of
days since the last time they visited the site, and
SCOUT will provide a list of all pages that have
been modified in the time.

• Calendar outlooks identify pages that contain
date references for future events. The user
specifies a number of days, and SCOUT finds all
date references for that number of days in the
future.  It is best used for finding homework due
dates, midterms, and special events.



• Keyword searches work much like a search at
Alta Vista, Excite, and other search engines.  The
user can type in a series of words, and SCOUT
returns an ordered list of pages that it thinks are
most relevant.

The user can select pages is the returned list to get
information about the page, including its title, URL,
and last modification time.

Perhaps the best way to demonstrate the potential uses
of SCOUT is to examine some scenarios where it
proves to be useful.

Last Modification Professor Smith is notorious for
repeatedly changing assignment specifications on his
course Web site throughout the school term.  Deadlines
are extended, page limits are changed, content
descriptions are modified, all to the frustration of his
students.  One student has found a solution with
SCOUT -- whenever she logs in, she types in her
course URL and the approximate number of days since
she last checked the site, and SCOUT provides a list of
course Web pages that have been recently modified
(see Figure 1).

Figure 1: Results from a last modification search.

Calendar Outlook Assignment due dates, special
talks, and scheduled midterms are typically stored on a
course Web site.  Since items are continually added, it
is difficult to keep track of all of the important
upcoming events.  By checking the calendar outlook
on SCOUT for a certain number of days, users can see
what events have been planned and can adjust their
schedules appropriately. For example, if on May 5 a
user performs a calendar outlook for the next seven
days, SCOUT would return a list of all date references
between April 5 and April 12.  SCOUT understands
numerous abbreviations and shortcuts for date
references, so pages containing April 7, Apr. 10, and
Apr 8 would all be returned.

Keyword Search Professor Brown heads a discussion
class that requires its students to write essays on topics
and readings from class.  One student wants to write an
essay on hypertext authoring systems, a topic that has
been discussed many times in class.  Although the
class summaries are provided at the Web site, it is
difficult to remember which classes covered the topic
of interest. After entering the search phrase “hypertext
authoring systems” into SCOUT, it returns a list of
class summary pages that contain one or more of the
words.  Best of all, the page list is ordered from best to
worst match, so the student can start with the
discussions that contain the most relevant information
(see Figure 2).

Figure 2: Results of a term search.

HOW SCOUT WORKS

SCOUT consists of a user interface, a site crawler, and
a search engine.  When a user enters a site into the user
interface and presses the “Crawl” button, the site
crawler creates an index of the information at the site.
When the user selects a search type and enters the
appropriate parameters, the search engine checks the
index and returns a list of pages that matches the
query.

To provide a robust and platform-independent system,
we chose to implement SCOUT in Java.  Java is
Internet-aware, making it easy to access and download
Web pages.  Java's object-oriented nature allows us to
expand the functionality of the system by adding and
extending objects.  The new functionality could
provide advanced processing and filtering or could
handle new sources of information like audio or video
streams.

User Interface



The SCOUT user interface allows a user to crawl a
course Web site and search the pages that it contains.
Figures 1 and 2 show the interactors in the SCOUT
interface. The “Site'” entry box allows a user to enter a
course Web site.  The crawl button indexes (or re-
indexes) the contents of the indicated site.  The search
menu allows the user to choose between the different
types of search.  Each type requires a parameter that
must be entered in the accompanying entry box. The
two scrollable text boxes contain the results of the
search.  The left box contains the list of all pages that
match the search.  When the user selects a list entry,
the right box shows information about the selected
entry.  The text message at the bottom provides
feedback on the activities of the system.

Site Crawler

To collect the Web site information, we implemented a
site crawler that crawls the pages directly relating to a
course Web site. Given a base page, our site crawler
recursively visits all linked pages that are contained in
the base page's directory location.  By limiting the
crawling to pages under the base page, our crawler is
prevented from visiting enormous numbers of pages
that may not be relevant to the course.  As an
additional precaution, the crawler will only visit pages
within five hops of the base page - if a user could not
get to a page by visiting five links starting from the
base, then that page will not be indexed.

For each page, after the vital statistics like the title and
last modification time are noted, the words on the page
are collected for indexing.
Each word is checked against a stoplist of commonly
occurring words - if the word is in the stoplist, it is not
indexed.  Stoplisted words (words like “the”, “and”,
and “that”) are acknowledged as poor index terms
because they occur in almost every document and thus
cannot be used to distinguish between documents.  We
use a stoplist of the most common words in the English
language [2].  All words from the document not in the
stoplist are added to a document vector, a sparse vector
that indicates the number of times each word appears
in the document. The document vector is used by the
search engine to compute the similarity between a
query and the document.

In addition to the document vector, the crawler
maintains a list of references to dates.
The dates can be in a variety of different formats with
various abbreviations for months and various
punctuation styles.  Days of the week and years are
optional - if the year is missing the date is assumed to
be for the current year.  The list of dates is used by the
search engine for calendar outlooks.

Search engine

The search engine accepts a search query from the user
and returns a list of matching pages.  For last
modification searches, the engine returns a list of pages
that have been modified in the indicated time period.
For calendar outlooks, it returns pages with a date
reference in the passed range.

For keyword searches, the search engine uses a
weighting formula known as TFIDF to calculate the
similarity between each document and the query, and
returns an ordered list of all non-zero results.

TFIDF (term frequency, inverse document frequency)
is based on the assumption that a document is similar
to a term if it has a high term frequency (the term
appears often in the document) but the term has a low
inverse document frequency (the term does not appear
often in the set of all documents).

The formula wik = fik log2 (n/dk) is used to calculate the
weight of term k in document i, where fik is the
frequency of occurrences of term k in document i, n is
the total number of documents, and dk is the number of
documents containing term k.  The weights for each
term in the query are summed to find the overall
weight of the document for the query.

CONCLUSIONS AND FUTURE WORK

SCOUT provides methods to manage the changing and
growing information resources that are artifacts of
today's classroom.  SCOUT not only provides the
general searching mechanisms found in many search
engines today, but it can supply up-to-the-minute
indexing and specialized searches that uniquely attack
the problems of course Web pages.

As the online information grows, the model provided
by SCOUT should grow with it.  Classroom audio and
video can be textualized and indexed using a scheme
like TFIDF.  Just as specialized search mechanisms
were added to handle date references and modification
times, other such mechanisms may need to be added to
handle other task-specific types of information. As
technology invades the classroom, the colored
notebook binder of years past must give way to new
technologies capable of handing more than scribbled
notes and paper handouts.  We expect that SCOUT is a
step in the right direction.

REFERENCES



1. K. Bollacker et al.  CiteSeer: An autonomous Web
agent for automatic retrieval and identification of
interesting publications.  In Proceedings of Agents
’98, pages 116-123, 1998.

2. C. Fox.  A stop list for general text.  SIGIR
Forum, 21 (2): 19-35, 1990.

3. H. Lieberman.  Autonomous interface agents.  In
Proceedings of SIGCHI ’97, pages 67-74, 1997.

4. G. Salton and M. McGill. An Introduction to
Modern Information Retrieval.  McGraw-Hill,
New York, 1983.


