
Collaborating on Mobile App Design through Pair
Programming

A Practice-Oriented Approach Overview and Expert Review

Mohammed Seyam
Department of Computer Science

Virginia Tech
Blacksburg, VA
seyam@vt.edu

Scott McCrickard
Department of Computer Science

Virginia Tech
Blacksburg, VA

mccricks@cs.vt.edu

Abstract—In many of today’s small companies and startups,
developers may not give enough attention to the importance of
UX/UI design for the product under development. Moreover,
such small teams may lack the required organization skills that
help them to collaborate and work together. As a result, such
teams usually face problems with delivering the “right” product,
as well as not being able to follow a sustainable development
process. In a similar context, CS students in programming classes
are facing almost the same problems of small teams in industry.
To tackle these problems, various approaches for integrating
agile development methods and UX design methods have been
proposed to help developers carefully consider the UX
requirements, and to be able to organize their work environment.
In this paper, we explore how such integration can be a good fit
for both CS students and software developers, especially for those
who work on mobile development. We present our proposed set
of integration guidelines, and then we focus on Pair
Programming (PP) as an agile practice that promotes a
collaborative work environment. The expert reviews conducted
in this paper helped us exlore how PP can be introduced to CS
students (and later, to developers in the market) to support
collaborative work environments. Moreover, Using PP in class
provides an adaptive and collaborative teaching approach that
can be used in CS programming labs. We also discuss the pitfalls
that can affect developers during PP sessions, and how to avoid
such negative effects. We conclude by providing a set of
recommended practices that can be applied to introduce PP for
developers in both academic and industrial contexts.

Keywords—Frameworks for collaboration; collaborative
software development; collaboration in education; agile methods;
pair programming; UX design

I. INTRODUCTION
Software developers in small teams and startups and CS

students in programming classes basically share two common
problems: (1) they are usually concerned with how to build the
required product (the lab assignment or the course project in
the case of students), with less focus on how they approach the
actual customer non-functional requirements (that are mostly
User Interface (UI) requirements), and (2) they don’t give
enough time to decide how they are going to work on their
project, and they usually work with unplanned approach with
the main goal of delivering a working piece of software. To
tackle these problems, developers need to pay more attention to
the non-functional requirements (specially the UI
requirements), and they need to follow a flexible development

approach that helps them stay focused with minor planning and
without hindering their progress towards delivering working
software.

By definition, agile methodologies are concerned with how
the software should be developed, while UI design focuses on
how the end users will work with the software. Although the
two aspects are following different guidelines for each to
achieve their goals, integrating agile and UI design practices
seem to be a promising combination that can help software
developers to better handle the UI requirements as well as to
follow a semi-structured development approach to help them
manage their programming work.

Since collaborative development environments are very
important to success of any agile team, in this paper we explore
how Pair Programming (PP) can help developers collaborate
effectively on their development processes. One of our
research objectives is to study how a collaborative work
environment can help developers build better and usable
interfaces. However, for this specific paper, we focus on how
we can promote a more collaborative work environment
through an agile practice such as PP.

II. RELATIONSHIP BETWEEN AGILITY AND USABILITY
Agile methodologies have appeared to deal with the new

problems that began to evolve with the new era of web – and
then mobile – applications. For a while these were known as
"lightweight" methodologies, but then the term "Agile
methodologies" appeared to describe this group of new
methodologies. These methodologies attempt a useful
compromise between no process and too much process,
providing just enough process to achieve reasonable results.

Agile methodologies have attracted a lot of attention; the
main reason was that they seek to cut out inefficiency,
bureaucracy, and anything that adds no value to a software
product. Proponents of agile methodologies often see software
specification and documentation as adding no – or minimum –
value [1] . Agile methodologies are less document-oriented,
usually emphasizing a smaller amount of documentation for a
given task, and strongly advocate for human communication
and collaboration over defined and repeatable activities as
mechanisms for developing quality software [2].

What is important about agile methodologies is not only the
practices they use, but also their recognition of people as the
primary drivers of project success, coupled with an intense
focus on effectiveness. They stress two concepts: the
unforgiving honesty of working code and the effectiveness of
people willing to work together [3].

Usability Engineering (UE) and User eXperience (UX) are
currently considered important concepts to the software
mainstream [4]. UE deals with issues such as system
learnability, efficiency, memorability, errors and user
satisfaction [5]. UX and its related aspects are being considered
by software engineers and researchers because of the huge
demand on the web, mobile, and internet applications in
general. The UE and UX processes focus on developing
systems that are adapted for end users.

Chamberlain and Sharp in [6] argue that although there are
similarities between agile development principles and UX
design guidelines, there are also differences that make it hard to
combine both in a single project. The three main similarities
are:

1. Both of them rely on an iterative development
process, building on empirical information from
previous cycles or rounds.

2. They both place an emphasis on the user, encouraging
participation throughout the development process.

3. Both approaches emphasize the importance of team
coherence.

On the other hand, the main differences between the two
approaches according to [6] are:

1. UX advocates require certain design products to
support communication with developers, while agile
methods seek minimal documentation.

2. UX encourages the team to understand their users as
much as possible before the product build begins,
whereas agile methods are largely against an up-front
period of investigation at the expense of writing code.

In [7], Ambler showed what he called "challenges" of
combining agility with UX design. Four of Ambler’s main
challenges are:

1. Different goals: based on Lee’s work in [8], Ambler
argues that agile methods focus on the design,
implementation, and maintenance of software
systems, while overlooking the design of the human-
computer interfaces through which those systems are
used. On the other hand, UX designers focus on
developing systems so end-users can use them
effectively but do not account for the underlying
system design, implementation or market-driven
forces that are of most importance to software
engineering.

2. Different approaches: The UX methods try to get a
holistic view of user needs and come up with an
overall plan for the user interface before starting
implementation, while agile methods favor little up-

front design and focus instead on delivering working
software early.

3. Organizational challenges: The agile community
follows a highly collaborative organizational strategy
where teams are self-organizing, which is not the
common case with UX teams. Hodgetts in [9] shows
that a center for UX with a strong organizational and
management hierarchy can be problematic as opposed
to the fluid organizational structure that agile teams
have.

4. Process impedance mismatch: The agile community is
always against early detailed designs, which they refer
to as Big-Design-Up-Front (BDUF). On the other
hand, many within the UX community prefer more
comprehensive modelling early in the project to
design the user interface properly before actual
development begins.

These differences basically exist because of the fact that
those who invented agile methodologies are mainly
programmers who focus on building working software rather
than usable software. They deal with what users want (i.e. what
users say they want) rather than what users need (i.e. what
users will actually use the software for).

The similarities between agile development guidelines and
UX design principles, together with the advantages of
following the two families of methods have encouraged
researchers and practitioners to find ways to combine them in
their development projects. However, the differences that were
presented in the same section have always been challenging for
those who want to go for such combination. Some examples of
such integration approaches are presented in [4], [7], [10] [11],
[12], and [13].

III. RECOMMENDATIONS FOR INTEGRATING AGILITY AND
USABILITY

Based on our literature review, we found that the suggested
integration approaches may not fit the main targets of our
research, which are developers of small teams and CS students.
Therefore, we proceeded by exploring how to integrate agile
methods with UX design principles in a light practice-oriented
approach that can be accepted, digested, and easily applied by
developers.

We started working on this by surveying some of the
suggested integration approaches (examples were given in the
previous section). We also had a case study where practices
from a more general framework (the “Tragile” Framework
[14]) have been applied in a small project to demonstrate the
applicability of combining practices from both agile and UX
areas.

Based on our literature review, and considering the
implementation of some practices on a case study, we can
summarize our recommendations for applying UX principles
within agile environments for small teams in the following
points.

1. Although agile methods aim at satisfying customers,
they need explicit practices to satisfy UX/UI
requirements.

“Satisfying customers” has always been claimed to be the
main objective of agile methods. Therefore, most of the
proposed agile practices tend to focus on rapidly providing
high-quality software that achieves user goals. However, such
goals are usually related to system’s functionality; giving less
consideration for the non-functional requirements. Hence,
providing UX-specific practices ensures that this category of
requirements (i.e. the interface requirements) will have the
same priority as the regular functional requirements, while still
maintaining the agility of the software development process
and the quality of the produced software.

2. It’s usually better and easier for small teams to be
given practices to apply rather than guidelines to
follow.

Although agile methods are about flexibility and
adaptability, it is still need to be manageable and controllable
especially for the less-experienced teams. High-level guidelines
are useful as introductory ideas to the agile thinking, and they
give project managers and experienced developers the space to
innovate by applying such guidelines on their own ways.
However, guidelines can be misinterpreted or misapplied by
less-experienced team members, which can lead to major
development problems. Providing detailed practices
encourages team members to collaborate regardless their
experience level, and avoids the problems associated with
doubting what the real meaning of particular guidelines could
be.

3. The simpler (lighter) the practices are, the easier for
developers to apply

With less-experience developers, or developers who are
new to the agile world, it’d be important to introduce agile
methods for them through straightforward easy-to-apply
practices rather than complicated ones. Both agile and UX
practices have different levels of complexity considering
introducing and applying them. The case study showed that
developers not only learned the simple practice faster and
easier (which is expected), but they also got the sense of agile
thinking through such simple practices and then they gained
the required level of self-confidence for them to delve in
“heavier” practices that need deep understanding of agile and
UX concepts.

4. Some practices of agile development and UX design
are common sense, however, they need to be planned,
guided, and made sure to be applied.

Based on the developers’ feedback from the case study,
they were surprised that some practices that they do from time
to time are actually recommended agile and UX/UI practices.
However, they were not able to evaluate their performance
because they were not consistent in applying such practices.
Therefore, even with the simple “common” practices, planning
and guidance are important so that developers performance can
be measured, and to help project manager and the other team
members to reflect on their own work. Such consistency in

applying practices helps teams adjust their performance while
progressing towards applying “heavier” practices.

Hence, the general theme of the four recommendations can
be seen as: practices are always more manageable and easier to
follow than high-level recommendations.

IV. TOWARDS A COLLABORATIVE PRACTICE-ORIENTED
INTEGRATION APPROACH

Based on the above recommendations, we decided to focus
on studying specific practices that are both agile and UX-
oriented. One of such practices is Pair Programming (PP),
which is an old technique that goes back to the mid-1950s as
shown in [15]. However, PP hasn’t gained the IT community
attention until its revival by Kent Beck when he introduced his
eXtreme Programming (XP) methodology [16].

PP, together with SCRUM daily meetings [17], have
always been argued to be the most effective practices that
support the agile manifesto’s first principle, which values
“Individuals and interactions over processes and tools” [18].
PP is also considered to be a typical application for the sixth
principle of the twelve agile principles, which states: “The
most efficient and effective method of conveying information
to and within a development team is face-to-face conversation”
[19]. Therefore, PP seems to be a reasonable choice for us to
begin exploring as a practice to support collaborative software
development, which will help us reach our objective of better
team organization and enhanced development process.

Moreover, PP has always been studied as an agile practice;
giving less consideration on how it could affect UI design. For
example, [20] presented a study of using PP for teaching
Human Computer Interaction (HCI) class, but their study
didn’t show the impact of applying PP on the UIs developed in
such class. Therefore, we are extending our work to study how
PP can be used to design better user interfaces through
considering UI design requirements as well as the regular agile
development requirements.

Unlike the previous studies that applied agile methods in
classrooms, we are interested with the UX requirements as well
as the regular development tasks. Moreover, we are focusing
on applying certain practices that we believe to be easier to
follow than the regular agile guidelines. Our proposed practices
are related to how to introduce PP to students, activities that
ensure that students fully comprehend the new environment,
practices to gradually apply PP in both in-class and take-home
assignments, and specific practices to enforce an in-class agile
environment rather than the traditional class settings.

By exploring PP as a collaboration-promoting practice for
software developers (either on companies or CS classes), we
aim at achieving three main goals:

1. To provide CS educators with a new adaptive
teaching approach that is more collaborative and
student-oriented, which they can use in their
programming labs instead of the traditional task
assignment approaches.

2. To extend our work to be applied in industry for
teams who are designing UIs for mobile devices.

3. To enhance software development process for small
teams by providing practices that support
collaboration and knowledge transfer among team
members.

V. UNDERSTANDING IN-CLASS PP THROUGH EXPERT REVIEWS
To better understand how developers interact with each

other while working in pairs, and to ensure that we have better
understanding for the context of developers in a classroom
setting (i.e. students), we conducted an expert review with two
pairs of experienced Android developers to understand from
them the potential advantages and pitfalls of this approach. One
pair of experts was graduate students, and the others were
undergraduates:

1. For graduate students: they are current CS PhD
students who worked in the field of mobile
development for long time. They’ve also worked as
Graduate Teaching Assistants (GTAs) for the mobile
development class. Therefore, they are experienced in
programming in general, mobile development, and
education. It was important for our research to get this
level of experienced developers to practice PP so that
they share their thoughts and feedback on how the
process was for them, as well as what worked and
what didn’t work when it comes to practicing PP.

2. For undergraduate student: they are senior students in
CS department, and both of them worked as
Undergraduate Teaching Assistants (UTAs) for
mobile development class. Their Android
development experience level is lower than the
graduate level, but they are experts in dealing with
students in programming classes.

Based on that background, we moved forward to conduct
two active walkthrough PP sessions to get the participants
expert reviews about the process. We observed their
interactions throughout the session, and they shared their
insights during and after the sessions. We – together with the
experts – agreed that the programming assignment that was to
be worked on during the sessions should have some major
criteria, which led us to come up with the following task
requirements (categorized based on the corresponding criteria):

1. To be a familiar task: to implement a calculator that
performs the basic operations and runs on android
devices.

2. To be flexible: the task was open for whatever
assumptions and decisions made by pairs. A
calculator can be anything from two simple text boxes
that use the devices keyboard to a full-sized screen
with all buttons and operations.

3. To have usage context: that assignment definition
stated that this calculator will be used by fourth and
fifth graders (ages 8-11 years old) to introduce them
to calculators and get them to be familiar with them.

4. To have no specific interface requirements: as we
wanted to observe how pair will come up with

interfaces that fit the required task based solely on
their understanding of the usage scenarios.

5. To be time-limited: pairs should deliver their working
prototype within one-hour time frame. We wanted to
see how time constraints would affect interactions as
well as decisions made by developers.

The experts collaboratively decided that for one-hour
session, exchanging roles between driver and navigator would
occur every 15 minutes, with the session facilitator working as
a time-keeper. After getting seated and prepared with the
required information and tools, the sessions were ready to start.

A. Session 1 (Graduate experts)
Developer A was more experienced in Android

development than developer B, as he worked more time with it
and taught more classes related to it than B. However, both of
them were experienced developers and they defined themselves
as “we don’t know everything about Android programming,
but we are confident that we can find solutions for the
problems we face even if they are completely new to us”.
Although they dealt with each other before, it was their first
time to work together in pair on a programming assignment.

The first decision made by them was about which IDE they
should use. Both of them were experienced with Eclipse, while
only B was the one familiar with the newer Android Studio
platform. From that point, A had the suggestion to go with the
“common ground”, which the Eclipse, so that they can save
time to focus on the application rather than getting to know
about the new tool.

It was important to notice that before making this decision,
B explained the main benefits of using the newer tool, which
were unknown to A. B has even did a short demo showing
some of the “nice” features provided by Android Studio.
However, both of them were satisfied by working on the IDE
that they both knew about. So, their decision of working on the
older tool didn’t prevent A from learning some features about
the tool that they decided not to use. This is an important point
about PP and collaborative environments, which is that
developers don’t only learn about what they are using, but also
about the options/tools/approaches that they decided not to use.

Once developer A – the first driver – was done with setting
up the new project, they stopped to talk about the layout that
they should use for their application. After exchanging some
verbal ideas, they hold markers and began drawing on a
whiteboard right behind them. They approved using the “grid
view” element although both of them didn’t work with it
before. They were confident about their ability to try something
for the first time as long as it will achieve the required results.
Therefore, they directly moved forward and began
implementing their basic solution idea.

Opposite to their expectations, dealing with grid view
wasn’t that easy, and they had to handle some issues related to
sizing, positioning, and alignment of cells. Suggestions to solve
such problems came from the two developers, as they faced
those problems during the first three rounds of the four-round
session. Most of the times developer A’s suggestions were
approved and out to action even if B had some other solutions,

but that didn’t cause any problems as A’s suggestions were
based on experience and usually provided better solutions.
However, two main points affected this type of interaction:

1- Developer A suggested a line of code to be written by B,
while B showed him that this might not be the right way to do
it. However, A insisted that it’s a good way to do it, so B just
did as what A proposed and they moved forward. Starting from
this point, B’s level of interaction and suggestions were less
than before.

2- Later when an error was found by the debugger,
developer A tried to fix it by editing some parts written by B.
However, they discovered that the problem aroused from the
previous suggestion of A. It then became clear that B was right
on the first place. Starting from that point, B’s level of
interaction increased as his suggestions, comments, and
insights were much more than before. Moreover, A began to
consider B’s inputs and asked for his approval more carefully
than the previous round.

These two points show the importance of self-confidence,
mutual respect, and openly sharing thoughts for the success of
PP sessions. For this specific session, the two experts had good
levels of self-confidence and even higher level of mutual
respect for each other. However, A seemed to be more
confident about his abilities, which made him – to some extent
– disregard B’s suggestions. This style of interaction doesn’t
lead to a “good” PP session. However, it was smoothly
corrected with B’s trials to always share his thoughts and with
both of them discussing what they are working on. Facing
situations like the two previously-shown above could lead PP
session to success or failure based on how the pair handle it.

The discussion about users and usage scenarios appeared
early when the pair worked on the main layout. They began
asking and answering questions about what would the users (8-
11 years old kids) need to find in such application. Based on
their assumptions, they decided to include only the main
arithmetic operations (addition, subtraction, multiplication, and
division). They excluded fractions, and that’s why they didn’t
include the “dot” button in their final version. They planned to
work on some graphics to better fit the young users but the
time didn’t allow for this. However, they skipped an important
function, which is the ability to delete one or more digits in
case of errors. That mistake appeared only on their final test
before delivering the product. Although it’d be easy for them to
correct that problem, it still shows that their discussions have
missed some major usage scenarios. This shows that PP
enhances the developers’ awareness about user experience, but
it still needs supporting steps to ensure that developers fully
understand how users will interact with their application.

It was clear for the pair on the final round that they will not
be able to deliver a fully-functional prototype, so they decided
to go for at least implementing one operation (which was the
addition). They skipped some interface requirements in favor
of providing a prototype that works even with some errors
(exceptions). On that final round, the discussion between the
pair was minimized to save time, and developer B was driving
the keyboard, with A’s intervention only to correct mistakes or
to suggest ideas that help B goes faster. At the end, they were
able to provide a working Android application that can be used

on an Android device to input two numbers and calculate their
sum.

The first words said by experts after they were done with
the session were “it was fun” and “it was exciting”. It was
obvious that they were practicing a game-style pairing where
their team was playing against time. Even if they didn’t
provide the complete required product, they were able to
deliver a small working version of it. The two experts declared
that they enjoyed the time spent during that session. Developer
A showed that it’d take him more time to work on such
assignment if he was to do it on his own, because developer B
used some coding practices that A would otherwise not use
them. Developer B indicated that it’d take him almost the same
time to do the same job, but he believed that the quality of the
task coming from the pair would definitely be better than of the
one he’d work on by his own. They both agreed that the one
who drives the keyboard is usually in a better position to decide
than the navigator. That clearly appeared on the final round
where developer B decided to go for a coding practice that A
didn’t prefer (using hard-coded listeners), but A didn’t stop
him because time was running and they wanted to have a
working demo. They also felt that sometimes the navigator
wanted to get the keyboard to do something that would be
faster than leaving it for the driver to do, but of course they
didn’t because it wasn’t allowed during that PP session.

Developer B showed that he wasn’t able to try some
solutions using his own way because developer A was usually
deciding on the fly while he’s driving the keyboard. This
obviously changed after the second round, which is related to
what developer A admitted: “B is really a good programmer, I
liked him. He’s really better than what I thought!”. This
feedback made it clear that even with some pre-assumptions
that can exist among developers, PP usually helps to correct
some of those false assumptions after the first rounds. The two
developers said that they both learnt new things from each
other. Those new things were more related to coding practices,
tips, and habits. They also showed that they enjoyed learning
how to deal with a new layout structure (the grid layout)
together, which made their learning time shorter. As for their
personal feelings regarding the PP session, they concluded with
almost the same sentence: “That was pretty awesome, and I
would like to do that more”.

B. Session 2 (Undergraduate experts)
Both developers C and D had almost the same experience

level in programming in general, and in Android programming
specifically. They knew each other before this session, but they
never worked together on programming assignments. In
assessing their experience level, they described themselves as
“being able to get the required knowledge to get the job done”.

Both of them were familiar with Eclipse, but only C
worked with the newer Android Studio. Unlike the pair of the
first session, they decided to go for Android Studio after C
explained its advantages and how it made some issues easier
for her. Starting from this point, almost all decisions were done
the same way: one developer suggests something showing her
rationale, the other approves. It was clear that this pair dealt
with more peer-to-peer interaction level, rather than the leader-
employee interaction model that appeared on the first round of

session 1. Therefore, it should be clear that introducing PP is
better to be done with developers of similar experience levels.
Once developers in certain environment get used to the
concepts of PP, pairing can then done among different levels of
developers, where the learning process can be more valuable
and beneficial.

Developer C was the first driver as she wanted to introduce
the new IDE to developer D. After a very short and general
introduction, they decided to write some basic lines of code.
They then stopped after minutes when they realized that they
didn’t agree on how the interface will look like. After spending
three minutes talking about that, they hold some markers and
began drawing their ideas on the whiteboard. Each of them had
her own design idea, with C suggesting a very basic and simple
interface, while D suggesting a more attractive interface with
more features. Both of them agreed that D’s idea was better,
but they also agreed that C’s proposal would be more feasible
because of the time constraints. Once agreed on the initial
components of the layout, they began implementing the code to
make it functional without giving any time to discuss the
positioning, look, or any details regarding the interface
elements.

The transition from being driver to navigator went
smoothly every time, and all the implementation decisions
were easily approved by the two developers. It was noticeable
that they didn’t have to perform any online search for their
work. They depended heavily on their previous knowledge and
what they already know. That led them to be more conservative
in their implementation choices, so that they don’t have to face
some sudden new situations that would prevent them from
being able to deliver a functional prototype on time.

One of the important observations about this session is how
the pair was so careful about “getting the assignment done”
rather than building a usable application. They were dealing
with the task as a class assignment that will be graded, without
considering how users will deal with it. The sizes and locations
of the text boxes, the alignment and positions of buttons, and
all the aspects related to the interface were left to the last
round. They wanted to make sure that users can input numbers,
click the required operation, and get results to appear on the
screen. At the end, they provided a functional product with a
poor design that lacks some basic usability requirements.

Although the two developers claimed that they were
affected with the time limits and that they would have consider
usability issues if they had more time, it was clear that their
interest in user experience wasn’t a priority regardless time
constraints. They didn’t design a complete layout before
coding, they didn’t talk about interface components but in
implementation context, they left the layout design for the last
round, and they didn’t consider usage scenarios.

The two experts showed that they didn’t consider
“designing for school kids” or “serving as an introductory
calculator” as requirements of the application. Their suggestion
was: “we can later add some colors and graphics to be more
appealing to school students”. Developer C showed that if
there’s something that she’d change if she would repeat that PP
session, it’d be to “spend more time on design, for both
program structure and interface”. Both of them felt they

skipped that important part of design, and they thought they’d
have provided a better product if they considered design more
carefully.

When it comes to interaction and communication between
them, developer C liked that her partner was always talking
with her, and that she wasn’t the only one who talked all the
time. Being able to talk and listen while coding was an
important issue that the two experts emphasized its value for
the success of a PP session. They also felt that they were
learning together rather than learning from each other. Since
both of them were of a “similar academic intelligence level” as
stated by developer C, it was easy for them to express their
ideas and to be sure that the partner will understand what the
implementation suggestions and coding stuff.

It was important for the pair that their experience levels are
close to each other. Developer C talked about her reaction if
she deals with someone with more experience, showing that
she easily gets intimidated in such situations, and that she gets
shy and stressed, which lead her not to gain from working with
the experienced developers. On the other hand, developer D
had no problems in dealing with experienced developers, but
her reaction would be to leave him/her do the required job,
trusting that she’ll be only called if she’s needed to. For D, the
experienced developer will be the leader who’s responsible for
the hard work, while she will be the assistant who will help
only when required. These two different reactions to dealing
with more experienced partners emphasize the importance of
pairing developers of similar experience levels, especially on
the first PP sessions.

The two experts agreed that for a simple assignment like
that one, PP wouldn’t enhance their performance nor quality,
while it may does for larger projects with more requirements
and sophisticated implementation issues. However, their
opinion may be affected by the fact that they didn’t dedicate
enough time to the requirements that they should have focused
on (i.e. design, usability, and usage scenarios). The effect of PP
for them wasn’t clear because they jumped directly into coding,
which led them to miss the main and important advantages of
PP that would have helped them designing a better application.

C. Collaboration pitfalls during PP sessions
Based on our literature review on PP, together with the

expert reviews discussed above, we came to highlight some
pitfalls that can affect developers’ performance and interaction
during PP sessions. The following eight issues are ranked
(from higher to lower) based on the experts evaluation for
which pitfall would have the most negative effect on PP
sessions conducted by students. The first listed issue would
cause severe problems, while the last would have the minimum
negative effects.

1. Developers coming from different backgrounds

When introducing PP for the first time, it is hard to get
developers to talk to each other if they didn’t already have a
common background to start from and move forward. This,
however, can be useful with developers who are experienced
and comfortable with PP, where the diverse backgrounds will
add to their skills and widen the scope of their discussions
about the product under development.

2. Developers with different skill/experience levels

This can work well with pairs who are familiar with PP, so
that knowledge transfer can be a major benefit from practicing
PP. However, for beginners in PP, it’s more important to get
familiar with PP through being able to talk with their partners
as peers rather than as students or learners. As we showed on
the first session, the lack of peer-to-peer interaction had
affected the first two PP rounds until that got fixed as they
progressed in coding. Having pairs with partners of different
experiences levels will be required for those who are already
comfortable with PP, as that enhances the learning curve, helps
transferring knowledge, and puts collaborative environment
into action for the benefit of the whole team.

3. Lack of planning and time management

The two pairs didn’t work as time keepers during their
sessions, and our objective was to allow them to focus more on
their work rather than checking the time every now and then.
However, they knew that they were only allowed on hour to
finish their work. It was noticeable that during the two sessions
none of them have mentioned anything about time remaining.
They didn’t have any tentative plan on how work will go on
through the 1-hour time slot. That’s why the two pairs faced
the same problem on the final round where they had to wrap
their work up to be able to deliver a working demo. Therefore,
it’s important to consider time management between pairs as
something that they should consider early on the first PP round.

4. Jumping directly into coding without working on
design

Session 2 showed how the lack of proper software design
has affected the developers’ ability to deliver a quality product,
and it also affected their coding, debugging, and testing
experience. Less-experienced developers may oversight some
important aspects of software design when they get excited
about trying some new approaches (such as PP). That’s why
it’s important to direct pairs on their first PP sessions and guide
them throughout the development process to make sure that
they maintain the basic guidelines of software quality
procedures while working with their partners.

5. Thinking about the assignment as a “task to be graded”

That problem was clear when dealing with undergraduates,
who were keen to follow the problem specifications and
translate the vague requirements in the safest and simplest
possible ways. Since they weren’t exposed to development
environments other than their programming classes and
projects, everything for them seemed to be a “graded task” that
they should get an A in it. Therefore, they ignored any
contextual issues related to the assignment, while focusing only
on the clear functional requirements stated on the problem
definition. Although that seemed normal for those students, PP
can’t succeed with such conservative way of thinking. If PP is
to be applied with undergrads, a more collaborative
environment should be encouraged with some other supporting
agile practices, which promotes the concepts of “collective
ownership of code” and “whole team participation”.

6. Considering on-time software delivery over product
quality

Although this is the case with most of development teams,
it comes into focus with PP teams. One of the major benefits of
PP is to ensure software quality because of the instantaneous
testing and the ideation that occurs within two minds instead of
one. So, if the “quality” is not achieved, PP loses one of its
main advantages. The reason for developers, either individuals
or in pairs, to sacrifice quality is the limited time. However,
pairs in PP sessions should manage to get the best use of
available time to produce the required functional product with
an acceptable quality level. The problem with the two pairs in
our two sessions was with their main goal, which was to
“deliver a working piece of software on time”, not to “deliver
quality software on time”. More practices should be put to use
to ensure that quality is part of the deliverable, not a
complementary feature.

7. Disregarding creative ideas in favor of traditional
solutions

Trying new coding approaches, working on unfamiliar
tools, and implementing uncommon solutions have always
been discouraged with the excuse of “time limits”. This fully
contradicts with the objectives of PP, where an important one
of them is to promote creative solutions and build an
innovative environment. Introducing PP to developers should
focus on the real objectives behind PP, not just to deal with it
as a development technique. The two sessions witnessed some
ideas that have been rejected because of the 1-hour time limit,
while the objective of PP is to encourage pairs to work on their
ideas and try to manage their time to be able to work on their
ideas (even by asking for more time if required, as creative
solutions are always easy to get approved for more time).

8. Giving less consideration to UI design

The pair on session 1 discussed some aspects related to UI
design that led them to assume certain usage scenarios and
helped them decide on some interface design issues. However,
that part was given a very small amount of time when
compared to actual implementation time. On the other hand,
session 2 developers didn’t consider UI design until the very
end of the process, and they didn’t discuss user preferences or
any usage scenarios. Although discussion and collaboration
between pairs would lead to better design decisions (as shown
on session 1), UI design should be assigned more time and
should be treated carefully by the pairs.

VI. RECOMMENDATIONS FOR INTRODUCING PP TO STUDENTS
FOR COLLABORATIVE ENVIRONMENT

One of the main advantages of collaboration is to promote
the culture of agility, where innovation is considered a core
value, rather than being a side gain. Based on our discussion
above, we are recommending certain practices that will help
instructors achieve better results when they introduce PP to
their programming classes.

1. For the first PP sessions, students are better not to be
paired randomly

It will be better to either let students select their partners, or
pair them based on their GPA (or their grades on previous
programming classes). This, however, can be changed in later

sessions so that students can be paired with new partners to
enhance knowledge transfer among students.

2. Assign the first PP round to high-level design and
session planning

Students should be encouraged to spend reasonable amount
of time only for software design, UI high-level design, and
planning for their development timeline and milestones. Later,
students will naturally start working on design and planning
without being “required” to do so, as the advantages of
spending some time on those non-coding tasks will positively
affects their programming work.

3. Introduce quality as a basic requirement, not as a bonus

When presenting the problem statement, ensure that quality
should be considered carefully by developers, and include
examples on how users will assess the product quality. Quality
attributes should address design, code, and UI.

4. Emphasize the role of talking and listening

PP session facilitator should make sure that pairs are in
continuous two-sided conversations. Students who are found to
be silent for long times should be asked for the reasons and
guided to participate in discussions with their partners.

5. Present the assignment as a challenging programming
task, not as a regular class assignment

Students get motivated when they feel they are solving a
real problem that requires them to be noticeably smart.
Working in teams of two makes this feeling even stronger with
the higher levels of competition among teams. Therefore, the
facilitator should shift students’ thinking from “what grade will
I get for that task?” to “How good is my task compared to the
required level of quality?”. This can be done by presenting the
culture of agile development, where teams are competing to
present the highest quality within the allowed time limits.

6. Students should be asked to explicitly consider user
context and usage scenarios

Aside from UI issues, students need to spend enough time
discussing who will use their software, how will users deal
with it, and what are the non-functional requirements (that may
have not been stated on the problem definition). From one side,
it gives them more insights about the application they are
working on. From another side, that will ensure the software
quality as it considers the unclear – yet important – non-
functional requirements. Moreover, such brainstorming will get
students to come up with innovative ideas that might have not
appear if they work based on the given assignment definition
on its own.

VII. CONCLUSIONS
Integrating usability with agility has been

recommended by many researchers and practitioners to achieve
various benefits. However, the proposed approaches for such
integration haven’t deal with many of its problems. Since
collaboration among developers is essential for both agile and
UX teams, we decided to explore how Pair Programming (PP)
can help in creating a better collaborative work environment
for developers. We claim that the higher the interaction level

among developers using PP, the better UX they will achieve,
especially for the mobile app development. Our first step was
to investigate how PP can be introduced to developers in small
companies or in programming classes, which is the main scope
of this paper. We combined our literature review with expert
review sessions to come up with some practices to help
introducing PP to CS class students, with the objective of
helping students collaborate in a disciplined yet flexible way.
These practices will be extended to help developers working on
real-world development environments.

REFERENCES
[1] Tichy, W.F. Agile development: evaluation and experience. in Software

Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on. 2004.

[2] Lycett, M., et al., Migrating agile methods to standardized development
practice. Computer, 2003. 36(6): p. 79-85.

[3] Highsmith, J. and A. Cockburn, Agile software development: the
business of innovation. Computer, 2001. 34(9): p. 120-127.

[4] Sohaib, O. and K. Khan. Integrating usability engineering and agile
software development: A literature review. in Computer Design and
Applications (ICCDA), 2010 International Conference on. 2010.

[5] Nielsen, J., The usability engineering life cycle. Computer, 1992. 25(3):
p. 12-22.

[6] Chamberlain, S., H. Sharp, and N. Maiden, Towards a Framework for
Integrating Agile Development and User-Centred Design, in Extreme
Programming and Agile Processes in Software Engineering, P.
Abrahamsson, M. Marchesi, and G. Succi, Editors. 2006, Springer
Berlin Heidelberg. p. 143-153.

[7] Ambler, S., Tailoring Usability into Agile Software Development
Projects, in Maturing Usability, E.-C. Law, E. Hvannberg, and G.
Cockton, Editors. 2008a, Springer London. p. 75-95.

[8] Lee, J.C., Embracing agile development of usable software systems, in
CHI '06 Extended Abstracts on Human Factors in Computing Systems.
2006, ACM: Montral, Qubec, Canada. p. 1767-1770.

[9] Hodgetts, P. Experiences integrating sophisticated user experience
design practices into agile processes. in Agile Conference, 2005.
Proceedings. 2005.

[10] Sy, D., Adapting Usability Investigations for Agile User-centered
Design. Journal of Usability Studies, 2007. 2(3): p. 112-130.

[11] Beyer, H., User-Centered Agile Methods. Synthesis Lectures on Human-
Centered Informatics, 2010. 3(1): p. 1-71.

[12] Nielsen, J. Agile Development Projects and Usability. 2008.
[13] Hussain, Z., W. Slany, and A. Holzinger, Current State of Agile User-

Centered Design: A Survey, in Proceedings of the 5th Symposium of the
Workgroup Human-Computer Interaction and Usability Engineering of
the Austrian Computer Society on HCI and Usability for e-Inclusion.
2009, Springer-Verlag: Linz, Austria. p. 416-427.

[14] Seyam, M. and G.H. Galal-Edeen, Traditional versus Agile: The Tragile
Framework for Information Systems development. International Journal
of Software Engineering (IJSE), 2011. 4(1): p. 63-93.

[15] Williams, L. and R. Kessler, Pair Programming Illuminated. 2002:
Addison-Wesley Longman Publishing Co., Inc. 288.

[16] Beck, K. and C. Andres, Extreme Programming Explained: Embrace
Change. 2 ed. 2004: Addison-Wesley Professional.

[17] Sutherland, J., Scrum: The Art of Doing Twice the Work in Half the
Time. 2014: Crown Business.

[18] Manifesto for Agile Software Development. 2001 [cited 2015
01/20/2015]; Available from: http://agilemanifesto.org/.

[19] Principles behind the Agile Manifesto. 2001 [cited 2015 01/20/2015];
Available from: http://agilemanifesto.org/principles.html.

[20] Williams, L., et al. Eleven Guidelines for Implementing Pair
Programming in the Classroom. in Agile, 2008. AGILE '08. Conference.
2008.

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

	I. Introduction
	II. Relationship between Agility and Usability
	III. Recommendations for integrating Agility and Usability
	IV. Towards a collaborative practice-oriented integration approach
	V. Understanding in-class PP through expert reviews
	A. Session 1 (Graduate experts)
	B. Session 2 (Undergraduate experts)
	C. Collaboration pitfalls during PP sessions

	VI. Recommendations for introducing PP to students for collaborative environment
	VII. Conclusions
	References

