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Abstract— As the scaling of memory density slows physically, a
promising solution is to scale memory logically by enhancing the
CPU’s memory controller to encode and store data more densely
in memory. This is known as hardware memory compression.
Hardware memory compression decouples OS-managed physical
memory from actual memory (i.e., DRAM); the memory controller
spends a dynamically varying amount of DRAM on each physical
page, depending on the compressibility of the page’s content.

The newly-decoupled actual memory effectively forms a new
layer of memory beyond the traditional layers of virtual, pseudo-
physical, and physical memory. We note unlike these traditional
memory layers, each with its own specialized allocation interface
(e.g., malloc/mmap for virtual memory, page tables+MMU for
physical memory), this new layer of memory introduced by hard-
ware memory compression still awaits its own unique memory
allocation interface; its absence makes the allocation of actual
memory imprecise and, sometimes, even impossible.

Imprecisely allocating less actual memory, and/or unable to al-
locate more, can harm performance. Even imprecisely allocating
more actual memory to some jobs can be harmful as it can result
in allocating less actual memory to other jobs in highly-occupied
memory systems, where compression is useful.

To restore precise memory allocation, we design a new memory
allocation specialized for this new layer of memory and, subse-
quently, architect a new MMU-like component in the memory
controller and tackle the corresponding design challenges.

We create a full-system FPGA prototype of a hardware-
compressed memory system with precise memory allocation. Our
evaluations using the prototype show that jobs perform stably
under colocation. The performance variation is only 1%-2%; in
comparison, it is 19%-89% under the prior art.

Index Terms—Hardware compression; memory management.

I. INTRODUCTION

DRAM density scaling increasingly lags behind other com-

ponents (see Figure 1). Unlike Flash, DRAM only supports

one layer of cells per die due to the tall aspect ratio of DRAM

capacitors. Unlike CPU scaling, DRAM scaling faces the

challenge of not only scaling transistors, but also capacitors,

which is difficult as smaller capacitors hold less charge.
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Figure 1: Memory, CPU, and NAND, scaling over the past 9 years [8], [14],
[15], [18], [22], [28], [43]–[48]. The chart shows dates of first availability.
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As DRAM scaling slows physically, memory compression

is a promising solution to scale up DRAM density logically.

Meta [55] data centers report their workloads have a high aver-

age memory compression ratio of 3x; compression ratio refers

to memory footprint before compression divided by mem-

ory footprint after compression (assuming every compressible

page is compressed). As such, hyperscale data centers (e.g.,

Meta [55], Google [25]) are using OS memory compression.

Unfortunately, OS memory compression incurs costly OS

overheads; for example, whenever a process accesses an OS-

compressed virtual page, the MMU incurs a costly page fault

to wake up the OS to expand the virtual page to a full physical

page [32]. As such, data centers can only compress a small

fraction of the total pages – only the extremely cold pages

and save little (e.g., 5%-20% of) memory [25], [55]; this is a

far cry from what can be theoretically saved given the high

memory compression ratio of typical workloads.

To affordably compress more memory data (e.g., lukewarm

or even hot data) to save more memory, prior works have

explored hardware memory compression [13], [17], [24], [33],

[34], [37], [40], [52], [59], where the memory controller in

the CPU transparently compresses and decompresses memory

values. Unlike traditional systems, where physical memory is

actual memory (i.e., DRAM), hardware-compressed memory

decouples physical memory from actual memory (see Figure

2); the memory controller spends a varying amount of DRAM

on each physical page according to the compression ratio of

its content. To distinguish from physical memory, prior works

call DRAM machine-physical memory [13], [35].

Figure 2: (a) A traditional system, where physical memory is DRAM. (b)
Hardware memory compression decouples physical memory from DRAM.

This decoupling complicates memory management, how-

ever. The seminal work – MXT [52] – identifies that machine-

physical memory can run out when physical memory is still

abundant (see Section II-A). To prevent the system from

running so low on free machine-physical memory that not even

OS threads (e.g., swap daemons) can run and result in system-

wide deadlock, MXT provides hardware support to enable the

OS to cap the total/system-wide machine-physical memory

usage (see Section II-A).

Problem: We identify the decoupling of physical and

machine-physical memory also complicates memory alloca-
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tion. Memory allocation – giving memory to a process or

a group of related processes (a.k.a a job in Unix [12]) – is

required to ensure stable/predictable performance and even

correctness. In traditional systems (i.e., ones without hardware

compression), memory allocation is precise. For example, after

a cloud user specifies and pays for N GB of memory for

his/her VM, the host can and – typically will – precisely

allocate N GB of actual memory to the VM, regardless of

whether the VM’s guest OS is compressing memory internally.

By decoupling physical memory and machine-physical mem-

ory, however, hardware-memory compression makes memory

allocation 1) imprecise and 2) sometimes even impossible
under the existing memory allocation interface.

Why Imprecise? Since the actual size of each physical page

can vary dynamically according to the compression ratio of the

page, to precisely allocate the specified S amount of actual

memory (i.e., machine-physical memory) to a process/job, OS

cannot simply allocate to it S amount of physical memory, like

in traditional systems. A plausible option is to allocate S · C
amount of physical memory, where C is the job’s compression

ratio; but since compression ratio is an application-level char-

acteristic that is uncontrollable by and often unknown to the

OS, the OS does not know how much physical memory to al-

locate. Overestimating or underestimating a job’s compression

ratio can make the allocated machine-physical memory several

times more or less than specified and, therefore, imprecise.

Why Sometimes Impossible? The OS allocates physical

pages to a process by pairing them with the virtual pages

that the process is currently using. When every in-use virtual

page in a process already has a physical page (e.g., when the

process is fully in memory, without anything swapped out), the

OS cannot allocate meaningfully more physical pages to the

process and, thus, cannot allocate to it more machine-physical

memory (see Section III-C Figure 8). If such processes (i.e.,

processes that are fully in memory) could still be allocated

more machine-physical memory, they could still benefit from

having more of their data decompressed and faster to access.

Consequences: Allocating less memory to a job, either due

to allocating imprecisely or not being able to allocate, means

more of the job’s physical pages must be compressed and more

of its accesses will suffer from decompression and additional

translation overheads. Getting significantly less memory than

specified can even cause a job to spill out to swap and slow

down even more. In a highly-consolidated memory system,

where compression is useful, even imprecisely allocating more
memory to a job is harmful as it leads to allocating less

memory to other jobs and harming their performance.

Observation: We observe every layer of memory (e.g.,

virtual, pseudo-physical, physical) has its own specialized

memory allocation interface (e.g., malloc/mmap for virtual

memory, page tables+MMU for physical memory); the only
exception is the new layer of machine-physical memory

that hardware memory compression decouples from physical

memory. Trying to make do without a specialized memory

allocation interface for this new layer of memory naturally

gives rise to various memory allocation problems.

Proposal: We architect a new MMU-like component to

enable the OS to directly allocate machine-physical memory

and, thus, avoid all problems due to allocating it indirectly
through allocating physical memory. We call our proposal

the Direct Machine-physical Memory Allocation Unit (DMU).
Figure 3 gives an example of what DMU can enable.

Figure 3: An example difference between hardware-compressed memory
systems with and without DMU. (a) With DMU, each job can be precisely
allocated its own dedicated amount of machine-physical memory, regardless
of the memory needs of another job. (b) Without DMU, how much machine-
physical memory a job uses is affected by another job. When a job’s memory
needs increases (e.g., Job 2 at t1 and t2), the needed space can be freed up
from another job (e.g., Job 1) by compressing more of its data (see Job 1 at
t1) or even spilling out some of its data to storage (see Job 1 at t2.)

Challenges: There are several design challenges. As one
example, when the memory controller frees up memory trans-
parently via compression, the OS does not know which
machine-physical pages are freed and, thus, can be (re)-

allocated; this complicates the traditional page-based alloca-

tion, which requires the OS to express which pages to allocate.
Idea: We create a specialized interface for machine-physical

memory – an objective-based allocation that allows the OS

to directly express how much machine-physical memory to

allocate to individual jobs to precisely satisfy user-specified

memory needs; exposing to the OS how much memory

hardware has freed from a job, so that the OS can (re-)allocate

them, is simpler than exposing which pages the memory con-

troller has freed. DMU meets the memory allocation objective

for a job by guiding the memory controller to compress the

job precisely down to its machine-physical memory allocation

(i.e., no more, no less); if it is not sufficiently compressible,

DMU raises a fault (like a page fault) to assist the OS with

spilling out parts of the job to keep it within its allocation.
We make the following contributions in this paper:
1) We identify hardware memory compression causes a

new memory management problem: it makes memory

allocation imprecise and, sometimes, even impossible

under the existing physical memory allocation interface.

Our evaluations of the prior art [33] show this problem

can cause 19% to 89% variation in performance.

2) We are the first to explore a dedicated memory allocation

interface specialized for machine-physical memory.

3) We architect the Direct Machine-physical Memory Al-

location Unit (DMU) and prototype it on the FPGA.

4) In our FPGA evaluations, jobs perform stably when

collocated with jobs of different sizes, with only 1%-

2% average variation (down from the 19%-89%).
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II. RELATED WORK

Hardware memory compression enhances the memory

controller to transparently compress memory values and

move/pack them more densely to fit more data in memory.

To move data after compressing them, the seminal work

MXT [52] and many follow-on works [13], [17], [24], [33],

[37], [40], [59] enhance the memory controller to transparently

manage a new address translation table – a linear table

where entry i (or super entry i) is statically dedicated to

mapping 4KB physical page i to its current machine-physical

address(es). The table has enough entries for 2X (MXT [52]),

4X (TMCC [33]), or 8X (Compresso [13]) as many physical

pages as machine-physical pages. The table entries are stored

in memory and cached in the memory controller.

After compressing and packing the physical pages more

densely to free up machine-physical memory, the memory

controller tracks the freed memory in hardware-managed free

list(s) to use them in the future when the applications write to

more physical pages.

Prior works have addressed several key challenges.

A. Capping System-level Machine-Physical Memory Usage

Decoupling physical memory from machine-physical mem-

ory complicates memory management. Depending on the

current compression ratio, machine-physical memory can run

out before physical memory. Consider for example a system

with 2GB of machine-physical memory and 8GB of physical

memory; after the system uses just 2GB of physical memory –

with 8GB−2GB = 6GB of physical memory still free – the

system can completely run out of the 2GB machine-physical

memory if the memory values are all incompressible. When

a system entirely runs out of machine-physical memory, even

critical OS routines like the swap daemon do not have the

memory they need to run, causing the system to deadlock and

require a hard reboot.

To address this problem, when the hardware free list track-

ing free machine-physical locations runs low, MXT raises a

hardware interrupt to alert the OS to evict data from memory

and deallocate physical pages [1]. The OS is enhanced to

proactively zero deallocated physical pages so that the memory

controller can compress them perfectly to free up machine-

physical memory to replenish the free list. Later works all

inherit this approach, albeit sometimes with minor adaptations;

for example, Compresso [13] calls a host-side balloon driver

to spill out data from the host.

B. Reducing Penalty of Accessing Compressed Data

While accesses to compressed data are faster than under OS

compression, they are still slower than uncompressed data due

to needing decompression. As such, MXT compresses data in

a recency-aware manner by managing a part of DRAM as a

cache to store hot data uncompressed.

MXT, however, still frequently accesses compressed data;

its uncompressed data cache in DRAM has a small fixed size

of 100MB and, thus, can suffer from significant miss rates.

To further reduce decompression latency, many follow-on

works (e.g., RMC [17], LCP [37], Compresso [13]) explore

lightweight memory-block-level compression algorithms. Un-

like MXT, which uses aggressive 1KB-granularity compres-

sion, these later works individually compress and compact 64B

blocks to enable many times faster decompression.

Block-level compression, however, requires fine-grained ad-

dress translation; in general, the finer the translations, the

higher the translation miss rates. Block-level compression

also needs costly page recompression: writes to a block can

make the block less compressible and, thus, bigger so that

it no longer fits in its current location; migrating the block

elsewhere leaves behind an unused location/space fragment,

which is later reclaimed via a costly page recompression [13].

These issues have renewed interest in recency-aware com-

pression [33], [34]. Leaving hot pages uncompressed, so that

hot pages continue to use coarse translation, can reduce overall

translation overheads. Selectively recompressing LRU pages

can also make page recompression less frequent.

Later recency-aware compression works (TMCC [33] and

its extension DyLeCT [34]) improve uncompressed data hit

rate over MXT by scaling up uncompressed memory to

gigabytes, up to the entire memory. They take an OS-inspired

approach – adaptively compress only the minimum pages

needed to meet the system’s current memory demand. They

compress more pages only if the hardware free list drops below

a threshold (see Figure 4). They also make uncompressed

memory exclusive with respect to compressed memory, not

inclusive like MXT.

Figure 4: Recent prior works [33], [34] on recency-aware compression adapts
to the current memory demand. Memories shown contiguously for clarity only;
when assigning machine-physical memory to individual physical pages, the
memory controller uses arbitrary machine-physical pages and sub-pages at
the top of the free lists.

To further improve hit rate, TMCC globally ranks uncom-

pressed pages fully-associatively via a doubly-linked Recency

List. The list’s head tracks the most-recently used (MRU)

physical page; the list’s tail tracks the least-recently used

(LRU) uncompressed physical page. TMCC statically reserves

memory to store a statically-dedicated linked list node for each

physical page and call these linked list nodes recency nodes.

While MXT, TMCC, and DyLeCT evaluate 1KB subpage-

level and 4KB page-level compression algorithms, recency-

aware compression can work complementarily with block-

level compression; for example, lightweight compression can

be used on cold pages while leaving hot pages uncompressed.
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The hot pages of recency-aware compression can also benefit

from bandwidth-only lightweight block-level compression [2],

[6], [23], [36], [41], [53], [57], [58], which only improves

the effective bandwidth of a page, without shrinking the size

of the page. Instead of packing compressed blocks densely to

store more data, bandwidth-only compression stores each com-

pressed block in-place [42] or adjacent to its original location

[58] and, thus, requires little or no overhead translation.

III. ALLOCATION OF ACTUAL MEMORY: BACKGROUND,

IMPORTANCE, AND NEWLY-INDUCED PROBLEMS

This section describes the importance of precise memory

allocation and how hardware compression interferes with it.

A. Background on Allocation of Actual Memory

Unlike the various layers of logical (e.g., virtual, pseudo-

physical) memory, which are needed for correctness1, actual

memory (i.e., DRAM) is only needed for performance;

programs can always run correctly on swap alone, with little

or no actual memory. The more actual memory, the less

frequent are costly events such as swapping in/out, memory

compression/decompression, OS file cache misses for storage-

intensive applications, and garbage collection for Java and

other managed programs.

We focus on the allocation of actual memory; as such,

‘memory’ always refers to actual memory, unless stated

otherwise.

In multi-tenant systems (e.g., cloud, cluster), consolidating

more jobs per server requires allocating to each job the mini-

mum memory it needs to meet its performance needs. Special

cases aside, the host does not know how much memory each

job needs for performance; this depends on complex factors

such as the current input data size, what are the important

processes in the VM, the execution times of these processes,

and how they vary with memory. The host is unaware of these

aforementioned factors that determine each job’s individual

memory needs; requiring users to expose some of these factors

(e.g., what are the current inputs) also raises privacy concerns

that go against the emerging trend of confidential computing.

As such, multi-tenant systems universally require users to

specify the actual memory they need for performance; the

host then precisely allocates the specified actual memory, so

that users need not worry about the host being a potential

cause when their jobs’ memory-related performance is poor.

For example in cloud, after a user selects and pays for a VM

or function [3] of a certain memory size (e.g., M GB), the

host launches a VM or container with the specified memory

size (e.g., M GB); when M GB is allocated to the VM, no

matter how much data the VM accesses or whether its guest

OS internally compresses memory, everything stays in the M
GB of allocated physical memory, which is traditionally the

1For example, a program calling malloc can crash if the virtual memory
size is smaller than the malloc size (e.g., mallocing 5GB on a 32-bit machine,
which only supports 4GB of virtual memory); similarly, a program calling
malloc can crash if the pseudo-physical memory size of a VM is smaller than
the size of a single malloc request.

actual memory. In on-site clusters, which mostly use Slurm

[56], the “mem” limit parameter in the job submission script

is used by Slurm to set the memory.limit in bytes parameter

in the job’s Cgroup, which is the Linux feature to control

the resource usage of containers; if the job script does not

explicitly specify “mem” limit, Slurm implicitly sets a default

Cgroup memory.limit that is proportional to the number of

requested cores [29].

B. Consequences of Losing Precise Memory Allocation

Imprecisely allocating less memory to a job than how

much its user has carefully specified can obviously harm its

performance. Below, we describe other negative consequences.

Interfering with profiling: To discourage users from over-

specifying memory, cloud/clusters charges/queue jobs accord-

ing to their specified memory. Determining how much to

specify to minimize cost or wait time while meeting perfor-

mance needs often requires users to profile2 their jobs under

different memory sizes that they specify. For example, since

OS memory compression gives a graceful tradeoff between

performance and memory size, a user deploying it in a VM

can specify various smaller (e.g., 3/4, 1/2) VM sizes across

different profiling runs to find the smallest memory size that

meets performance needs for later production runs.

Imprecisely allocating different amounts of memory from

what the user specifies during different runs can make per-

formance unpredictable across runs and, therefore, render

profiling ineffective, or even useless.

Causing system out-of-memory: Even imprecisely allo-

cating more memory to a job can be harmful. It can cause

a mostly-occupied memory system to run out of memory,

preventing other jobs from getting their needed memory and/or

slowing down their memory allocation.

To estimate the magnitude of the slowdown, we compare

performance with and without precise allocation on a real-

system – a traditional server with 24-cores, Ubuntu 22.04,

and an NVMe storage for swap. We collocate two jobs per

experiment; Job 1 runs a GraphBig benchmark, while Job 2

runs a file-processing program that accesses a 140GB file via

mmap().

To evaluate precise memory allocation, we set the Cgroup

memory.limit of Job 1 to the memory footprint of GraphBig

(i.e., 98GB) and set Job 2’s Cgroup to use most of the

remaining memory in the system (i.e., 90GB, as the system

has a total of 190GB). We turn off OS memory compression

as it currently does not work well with Cgroups.3

2User profiling may not be always perfect and sometimes cause over-
specification of memory. As such, a provider may ‘steal’ a little bit of memory
that the user has specified/purchased (even if no provider admits they do and
many publicly announce they do not [4], [31], [54]). ‘Stealing’ memory still
requires precisely deallocating memory in a controlled manner, according to
the prices and priorities of different classes of VMs/services.

3Unlike VMs, Cgroups cannot enforce precise memory allocation when
using OS memory compression; Cgroups only limit each job’s uncompressed
memory size, but not its total (i.e., uncompressed + compressed) memory size.
As such, a program controlled by a Cgroup can still use up to all the memory
in the system. We verify this empirically using the latest Linux kernel.
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Figure 5: Execution time of the same GraphBig [30] benchmarks and dataset (datagen-8 5-fb [19]) used in prior works [33], [34], when collocated with a
2nd job. Results remain similar under the full range of ‘Swappiness’ settings.

We evaluate imprecise memory allocation by repeating the

above without Cgroups. Job 1 slows down by 8X, on average

(see Figure 5). Figure 6 shows what happened during the

precise and imprecise memory allocation experiments. The

performance of Job 2, which runs the file-processing program,

improves only slightly (i.e., by 7%) because the additional

memory only marginally improves Job 2’s file cache hit rate.

Figure 6: Left: Precisely allocating machine-physical memory. Right:
Imprecisely allocating more machine-physical memory to a job.

As sensitivity analysis, we re-evaluate imprecise memory

allocation by (i) setting wrong memory.limit so that the sum

of the two limits exceeds system memory size and (ii) setting

wrong memory.limit initially and correcting it when system

memory is low. The slowdown remains similar (see Figure 5).

In summary, even imprecisely allocating more memory to

a job can be harmful as it can lead to imprecisely allocating

less memory to other jobs.

C. Memory Allocation under Hardware-compressed Memory

Hardware memory compression reduces physical memory to

a logical memory layer. As such, when specifying how much

actual memory their jobs need for performance, users will

specify machine-physical (instead of physical) memory. Mean-

while, for service providers, reliably meeting user requests

for machine-physical memory is also easier than meeting user

requests for physical memory (see Figure 7).

To precisely allocate a specified S amount of actual memory

(i.e., machine-physical memory) to a process/job, the OS

Figure 7: What type of memory users should specify and the impact on service
providers. (a) When jobs specify machine-physical memory, if a server has
more unrequested machine-physical memory than the specified amount, the
provider is certain the server can meet the memory request; this assumes
the system can also ensure every job uses only up to its requested amount,
which is enabled by our work. (b) When jobs specify physical memory, the
provider cannot be certain whether a server can meet the request even if
the server has more unrequested physical memory than the specified amount;
while the provider can be certain the request can be met if the server has more
free machine-physical memory than the specified physical memory, reserving
for each job the same amount of machine-physical memory as the physical
memory the job specifies defeats the purpose of memory compression (i.e, to
use more physical memory than the system’s machine-physical memory).

cannot simply allocate S amount of physical memory, like

previously in traditional systems. This is because hardware-

compressed memory spends a dynamically varying amount of

machine-physical memory on each physical page, depending

on how compressible are its values. A plausible option is to

allocate S · C amount of physical memory, where C is the

job’s compression ratio. But a program’s compression ratio is

uncontrollable by and often unknown to the OS; so, the OS

does not know how much physical memory to allocate.

The OS can perhaps pessimistically assume a low com-

pression ratio of 1 (i.e., assume nothing is compressible). This

means allocating only as many physical pages as the machine-

physical pages in the system (and not more). This yields no

benefit (i.e., no increase in effective capacity) and only loss

(i.e., compressed data are slower to access).

To get strong benefit (i.e., much more than OS com-

pression), the OS can perhaps optimistically assume a high
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(e.g., 4X) compression ratio. When assuming 4X, allocating a

specified S amount of machine-physical memory means allo-

cating 4S physical memory. For jobs with < 4X compression

ratios (e.g., 2X), this means allocating more machine-physical

memory than specified (e.g., by 4X/2 = 2X).

Imprecisely allocating a job 2X the machine-physical mem-

ory can have similar effect as improperly setting 2X the

Cgroup memory.limit (see orange, yellow bars in Figure 5).

Concretely, when prior works (e.g., MXT) run low on free

machine-physical memory (e.g., due to imprecisely allocating

too much memory), many memory accesses from user jobs

must be blocked to make time to slowly spill out data and

free up enough machine-physical memory to safely avoid

deadlock. Meanwhile, the OS neither knows nor controls the

compression ratio of each job; as such, the OS knows not

which jobs are using too much machine-physical memory and,

therefore, cannot surgically block and spill out data only from

offending jobs (e.g., by inflating the memory balloons in their

VMs). As such, all jobs can slow down significantly.

Despite making allocation imprecise, hardware memory

compression needs precise allocation more frequently than

traditional systems. Hardware memory compression is most

useful for memory systems that are mostly-occupied (if not,

why compress?); intuitively, the more occupied the mem-

ory, the higher likelihood that imprecisely allocating more

machine-physical memory to a job than specified can cause

the system to run out of memory.

Even when all processes are fully in-memory, with nothing

spilled out, imprecise memory allocation is still harmful.

Imprecisely allocating more memory to Job A (e.g., because

it is less compressible than estimated) may mean needing to

compress another Job B more aggressively; this slows down

Job B in an unpredictable manner that depends on the com-

pression ratio of Job A. The problem gets worse under recency-

aware compression, which selectively compresses colder data;

jobs that access memory less often than other jobs can get

over-compressed.

Ideally, each job should be compressed into its specified

memory (e.g., into 100GB if it specifies 100GB) and not get

over-compressed (e.g., down to 20GB) when a collocated job

is less compressible and/or more memory-intensive than it.

The OS, however, has no means of asking hardware to spend

more memory on the ‘over-compressed’ victim job (e.g., the

Job B), so that more of its pages can become uncompressed.

When allocating machine-physical memory indirectly through

allocating physical memory, the OS cannot allocate more

machine-physical memory to a process that cannot be allocated

more physical memory. As shown in Figure 8, a process cannot

be allocated more physical pages when every virtual page used

by the process already has a physical page (e.g., when the

process is fully in memory, with nothing swapped out).

Conversely, for a job that is taking up too much machine-

physical memory due to being more memory-intensive and

thus evading compression under recency-aware compression,

the OS has no way of instructing the memory controller to

spend less machine-physical memory on it (i.e., to compress

Figure 8: OS cannot meaningfully allocate more machine-physical memory
when every virtual page used by the job already has a physical page.

it more).

D. No Simple Solution

To address the problem of imprecise allocation, a plausible

solution is to modify the OS to periodically sample the

compression ratios of allocated physical pages (e.g., by reading

their content) and, in turn, estimate each job’s compression

ratios. Periodic sampling raises the question of precision,

especially for short-lived processes like Function-as-a-service

(FaaS) and micro-services. It also introduces a new continuous

OS overhead that is not even in OS memory compression and,

thus, contradicts the goal of hardware memory compression –

reducing OS overheads for compression. The alternative of

users sampling compression ratio, instead of the host OS, and

then reporting them to the host OS can burden the users and

raise new trust concerns for the service providers; furthermore,

a faulty sampling can cause system-level problems (e.g.,

system running out of memory), unlike the various types of

user-level sampling being done today, where faulty sampling

only affects that user’s program.

In comparison, when the guest OS performs memory com-

pression in today’s systems, neither the system nor the users

sample compression ratio; the VMs can only use up to the

memory that they booted up with, regardless of the compres-

sion ratio of their workloads. In other words, memory allo-

cation remains precise under OS memory compression. This

is because the host OS directly allocates machine-physical

memory (as physical memory is machine-physical memory in

traditional systems) and need not use compression ratios to

reverse engineer how much physical memory to approximate

the desired amount of machine-physical memory to allocate.

Meanwhile, there can be no simple solution to the second

problem where the OS cannot allocate more machine-physical

memory to jobs to which no more physical pages can be

allocated (e.g., jobs that are fully in memory).

IV. RESTORING PRECISE ALLOCATION VIA DMU

We note every layer of memory – virtual memory, pseudo-

physical memory, and physical memory – has its own al-

location interface, except for the new layer of machine-
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physical memory that hardware compression decouples from

physical memory. Trying to make do without its own allocation

interface for this new layer of memory naturally gives rise to

various memory allocation problems.
As such, we explore a direct hardware interface to enable

the OS to directly allocate machine-physical memory. Directly

allocating machine-physical memory eliminates the need for

sampling compression ratios (either at system- or user-level),

just like OS memory compression (as discussed in Section

III-D). Furthermore, allocating machine-physical memory di-

rectly enables the OS to allocate more of it to processes to

which no more physical memory can be allocated.
To support the new memory allocation interface, we ar-

chitect a new MMU-like component that we call the Direct
Machine-physical Memory Allocation Unit (DMU). DMU re-

sides in the memory controller (MC), as only the MC is aware

of machine-physical memory (see Figure 9).

Figure 9: DMU’s placement in the processor. The caches, the MMU, and the
contents of the MMU (e.g., TLB entries and their permission bits etc.) remain
completely unchanged because DMU manages machine-physical memory as
a new layer that is independent from the virtual and physical memory layers.

DMU enables the OS to directly allocate machine-physical

memory to specific processes/jobs that need precise allocation.

For example, when jobs A and B specify A GB and B GB,

the OS can allocate via DMU A GB and B GB of machine-

physical memory to them, respectively. For processes/jobs that

do not need precise memory allocation (for example, single-

user systems like desktops typically do not specify memory

requirements for any process), DMU treats them collectively

as one logical job (e.g., compress them together); in hardware,

DMU implicitly allocates to this logical job all the remaining

machine-physical memory in the system (see Figure 10 (a)).

Figure 10: An overview of DMU and how it interacts with software.
Contiguity in machine-physical memory is shown for clarity only.

Like how different layers of memory are allocated

(mostly) independently, machine-physical memory allocation

is (mostly) independent from physical memory allocation

(e.g., it cares not if 4KB physical pages or huge pages are

allocated). When the OS allocates more physical pages to a

process as it touches more virtual pages, DMU guides the MC

to compress the allocated physical pages into the allocated

machine-physical memory (see Figure 10 (b)).

Physical memory allocation is only affected when the al-

located physical memory cannot fit in the allocated machine-

physical memory. DMU raises a compressed memory fault,
like a page fault, to alert the OS (see Figure 10 (c)) to deallo-

cate some of the process’ physical pages (e.g., by spilling out

some values) and cap how many physical pages to allocate to

the process (i.e., allocate more only after deallocating more).

Challenges: Architecting a new MMU-like component to

allocate machine-physical memory faces several challenges:

(1) MMU exposes a page-based allocation interface where

the OS expresses which physical pages to allocate to a process

by recording them in a page table and exposing the table

to the MMU. Specifying which pages to allocate requires

knowing which pages are free; but when the memory controller

transparently compresses physical pages to free up machine-

physical memory, the OS does not know which machine-

physical pages are free. The freed machine-physical pages

can also soon be no longer free as the compression ratio

fluctuates; correctly cleaning up out-of-date OS records of

pages previously exposed as free can be complex due to

needing to handle various software-hardware race conditions.

(2) Specifying which machine-physical pages to allocate to

each job restricts which machine-physical pages to use for the

job. In comparison, prior works without precise allocation can

store any data in any free location. Finding/tracking individ-

ually for each job the specific machine-physical locations the

job is allowed to use can require complex changes to the MC.

For example, hardware memory compression maintains many

(e.g., 64 [33]) free lists, each to track free spaces of a different

size to later use them to store compressed data of matching

sizes [33], [35], [40]; maintaining for each job its own full

collection of free lists to track free spaces within the specific

machine-physical pages allocated to the job is complex.

A. Objective-based Memory Allocation

We note page-based allocation expresses to hardware the

higher-level objective of how much memory to allocate in
an indirect manner; collectively, the specified set of physical

pages indirectly convey to hardware the total physical memory

to allocate. Although indirect, specifying which physical page
to allocate allows the OS to also specify which virtual page
to use the page. Traditionally, this leads to a key benefit of

the page-based allocation – relieving hardware from making

decisions on virtual-to-physical address mappings, which helps

keep hardware ‘dumb’ and simple (see Figure 11.a).

We observe in the context of hardware memory compres-

sion, which intelligently manages machine-physical memory,

this key benefit of page-based allocation simply disappears;

hardware transparently compressing and packing data more
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densely requires hardware to actively decide the machine-

physical address(es) to use for each physical page. Rather

than simplifying hardware, a page-based allocation would

complicate hardware (i.e., causing the two design challenges).

As such, instead of allocating the machine-physical memory

indirectly by specifying individual machine-physical pages, we
propose and architect a more direct Objective-based allocation
to enable OS to directly express the high-level objective of how
much machine-physical memory to allocate (see Figure 11.b).

Specifying how much machine-physical memory to allocate

only requires knowing how much machine-physical memory is

free; exposing to the OS how much machine-physical memory

is free is less complex and much faster than individually

exposing which machine-physical pages are free. Furthermore,

the OS specifying only high-level objectives, instead of micro-

managing which machine-physical pages to allocate, gives

hardware the freedom to store any data anywhere like before

(see Figure 11.b); as such, DMU can keep the same number

of free lists as before.

Figure 11: Contrasting different approaches of memory allocation. (a) Tra-
ditional page-based allocation: OS allocates physical memory by allocating
specific physical pages to a job. (b) Objective-based Allocation: OS conveys
to DMU the high-level objective of how much machine-physical memory to
allocate; DMU guides the MC to meet the memory allocation objective.

Figure 12 summarizes the benefits of objective-based allo-

cation over reusing page-based allocation.

1) Expressing How Much to Allocate: Unlike a page table,

which has many entries to record the set of allocated physical

pages, the OS records the total machine-physical memory to

allocate to a process in a single 64B memory block; we call it

the Compression-Objective Control Block or, simply, control
block. Each control block contains an 8B field called the Total
Allocation Objective; it records a single value (e.g., 19 GB)

Figure 12: Benefits of using objective-based allocation.

that can be increased or decreased at any granularity (e.g, 4

KB or 3 MB) through a single memory allocation.

Like a page table, which records the physical memory
allocated to the virtual pages used by a process, each control

block records the machine-physical memory allocated to the
physical pages used by a process. Since a control block is

only 64B, the individual physical pages to be managed by the

control block must be recorded elsewhere; instead of adding

more hardware data structures, DMU reuses the recency node

(see Section 4) of each physical page by adding an OS-writable

control block ID field (see Figure 13). The recency nodes were

chosen because having a control block ID field also enhances

them to rank recency locally within each job (see Figure 10.d);

Section IV-B will describe in detail how to rank recency within

each job.

Process B’s 4KB Virtual Page

Process B’s 4KB Virtual Page

Process B’s 4KB Virtual Page

Process C’s 4KB Virtual Page

Process C’s 4KB Virtual Page

Process C’s 4KB Virtual Page

Figure 13: The physical pages of each process share the Total Allocation
Objective recorded in a control block. While the OS allocates a physical
page to a process, the OS can map the physical page to the process’ control
block by writing the control block’s ID to the physical page’s recency node.
Core OS structures (e.g., virtual and physical memory allocators, page tables)
remain completely intact because DMU manages machine-physical memory
as a new layer that is completely independent from the prior virtual and
physical memory layers.

The physical pages mapped to a control block can belong

to a single process or belong to multiple processes or jobs; as

such, a control block serves to enforce either an individual
allocation objective of a single process/job or a joint objective
across multiple jobs. We concisely call all process(es)/job(s)
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using the same control block collectively as one Collectively-
compressed Job (C-job).

To expose the recency nodes and control blocks to the OS,

DMU maps them to a reserved physical memory range (see

Figure 14). The OS can use existing software APIs to make

the address range uncacheable so that when the OS writes to

them, the stores go to memory and immediately affect DMU’s

operations. Like how in a page table entry, some fields are

updated by the OS while others (e.g., the accessed and dirty

bits) are updated by the MMU, the OS and DMU update

different fields within each control block and recency node.

Figure 14: Memory layout under DMU. To support many (e.g., 16384) jobs,
the control blocks only statically consume little (e.g., 16384 · 64B = 1MB)
DRAM. “Other metadata” refers to other hardware data structures not touched
by DMU (e.g., the translation table).

On power up, DMU maps all physical pages to control

block 0, which we call the implicit control block. Unlike other

control blocks, to which the OS allocates machine-physical

memory by writing to their Total Allocation Objectives, DMU

implicitly allocates machine-physical memory to the implicit

control block. The OS writes to the Total Allocation Objective

field in implicit control block only ever once – the total DRAM

in the system discovered from the BIOS to initialize DMU

after the OS boots up.

2) Exposing How Much Memory is Free: A key benefit

of specifying how much machine-physical memory (instead

of which machine-physical pages) to allocate is only needing

to expose to the OS how much machine-physical memory

(instead of which machine-physical pages) are free. Exposing

how much is free is fast. When free memory can be exposed

very quickly and efficiently, the OS can simply ask DMU (see

Figure 12.b 1©, 2©) how much machine-physical memory is

currently free to allocate right before each memory allocation

(see Figure 12.b 3©), without ever needing to record any
previously-exposed free memory; this avoids having old OS

records to clean up when the free memory exposed previously

is no longer free (e.g., as compression ratios fluctuate).

Each control block has an Unused Allocation field to

dynamically track how much machine-physical memory al-

located to a control block is currently unused. This field is

READ-ONLY to software and updated by DMU. For example,

when the MC compresses a physical page and frees up Z
bytes of machine-physical memory, DMU arithmetically adds

Z to the Unused Allocation field of the control block to which

the physical page is currently mapped. Table 1 describes how

DMU updates Unused Allocation in all the ways that are

common across all control blocks (i.e., implicit or not).

Table 1: When and how DMU updates the Unused Allocation in a control

block in all the general cases that are common across all control blocks.

MC and OS Actions Machine-
physical Mem

Unused
Allocation

MC compresses a physical page. Z bytes freed += Z bytes
MC spends more machine-physical

memory on a physical page (e.g., to make
a hot page uncompressed).

X bytes used –= X bytes

While allocating a physical page, OS maps
the page to the control block.

Y bytes used –= Y bytes

OS deallocates a physical page that is
currently mapped to the control block.

Y bytes freed += Y bytes

The Unused Allocation in the implicit control block exposes

to the OS how much machine-physical memory is currently

ready to be allocated (see Figure 12.b 1©). When the OS

allocates m more bytes to a control block i (i.e., by writing

T+m to its Total Allocation Objective, where T is the current

value in this field), DMU subtracts m from the implicit

control block’s Unused Allocation and adds m to the Unused

Allocation of control block i. These simple arithmetic-based

memory allocation operations allow the OS to allocate in O(1)
up to all of the Unused Allocation in the implicit control block.

If the host wishes to allocate to a job more machine-

physical memory than there is currently available under the

implicit control block’s Unused Allocation, system software

can ask DMU to compress more pages to free up more memory

to increase the Unused Allocation. Each control block has

an Unused Allocation Objective field; DMU asynchronously

compresses each block’s C-job to increase the block’s Unused

Allocation to match this objective. This second objective is

a best-effort target, rather than a rigorous ‘military’ objective

like Total Allocation Objective; a compressed memory fault

is raised only if the latter is unmet, but not if the former is

unmet.

Instead of increasing the implicit control block’s Unused

Allocation Objective, the OS can also increase other control

blocks’ Unused Allocation Objectives and deallocate from

them the freed machine-physical memory. The Unused Allo-

cation in a regular control block exposes to the OS how much

machine-physical memory can be deallocated from the block.

After the OS deallocates m bytes from a block (i.e., by writing

T-m to its Total Allocation Objective), DMU subtracts m from

its Unused Allocation and adds m to that of the implicit block.

Deallocating machine-physical memory from a user job’s

control block corresponds to a potential deployment scenario

where the host precisely ‘steals’ from user jobs that have over-

specified their memory needs (see Footnote 2 in Section III-B).

To support the host with determining how much to ‘steal’ from

a user job without noticeably harming its performance, each

control block contains a #Accesses to Compressed Pages field

to record how many of the accesses to the control block’s

physical pages are to compressed physical pages; the host may

read this field to estimate the potential performance overhead

on the control block’s C-job due to increasing the block’s
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Unused Allocation Objective. The host may use the ‘stolen’

memory to cache more file pages for its own jobs; if a user

job later needs its ‘stolen’ machine-physical memory, the host

may evict the file pages to free up machine-physical memory

to re-allocate back to the user job.

3) Allocating Minimum Uncompressed Memory: When a

job runs low on uncompressed physical pages, the job can slow

down significantly as most accesses will be to compressed

pages. In this case, leaving more of the recently-used physical

pages uncompressed may be better even if this requires spilling

more virtual pages or file pages to storage.

As such, each control block also supports an objective of

how many recently-accessed pages to leave uncompressed

at the very minimum. Leaving recently-accessed pages un-

compressed essentially creates a fast cache; as such, we call

the new objective the Min Uncompressed Cache Objective.

Setting it to 100MB in a control block functionally creates

for the block a private L4 cache with a minimum of 100MB.

Only pages that are deliberately left uncompressed after recent

accesses to them (as opposed to incompressible pages) count

towards meeting this third and final objective.

B. DMU Backend to Enforce the Allocation Objectives

Today, after the OS allocates physical memory to a process

through the MMU, the MMU stores the process’ virtual pages

into the allocated physical pages.

Similarly, after the OS allocates machine-physical memory

to a C-job through DMU, DMU guides the MC to compress

its physical pages into its allocated machine-physical memory.

The select physical pages to compress in each C-job should be

the C-job’s coldest pages. Traditionally, each VM or Cgroup

has its own thread (e.g., swap daemon) to rank the recency

of the virtual pages in the VM or Cgroup and use it to select

victim pages [26]. Ranking recency locally within individual

VMs or Cgroups (as opposed to globally across all VMs

or Cgroups) prevents the swap daemon from excessively

swapping out from a VM/Cgroup that is less memory-intensive

than another co-located VM/Cgroup. But giving each control

block its own compression scheduling hardware, like having

its own LRU/swap thread in each VM/Cgroup, can incur costly

hardware overhead.

As such, a key design challenge is how to share the same

compression scheduling logic across all control blocks.

To address the challenge, DMU combines all the con-

trol blocks and recency nodes in a single cohesive fan-like

structure in Figure 15; DMU asynchronously walks the fan

to schedule compression to ensure that within each C-job,

compress only as many colder pages as needed, and across

C-jobs, the ASIC compressor is used fairly.

To select the coldest page in a C-job, DMU adds to

each control block an LRU pointer and an MRU pointer to

point to the recency node of the least-recently-used page and

the most-recently-used page, respectively, among all uncom-

pressed physical pages currently mapped to the block. Each

control block uses these two pointers to connect transitively
to all recency nodes of all the uncompressed physical pages

Figure 15: Compression scheduling in a small example with five compressed-
objective Control Blocks (CBs). DMU finds the next physical page to
compress after chasing at most two pointers. While multiple fields are read
to schedule each compression, they are all in one 64B control block, see (a).
Combining all OS-settable fields for one C-job into a single 64B control block
allows the control block to cache perfectly while the C-job is running.

that are currently mapped to the block; these recency nodes

together form a blade in the ‘fan’. Unlike prior works (see

Figure 4), which have a single global linked list containing

the recency nodes of all uncompressed pages, each blade is

a smaller linked list that only contains the recency nodes of

the uncompressed physical pages mapped to one control block.

When the OS writes a new control block ID in a recency node

(see Figure 13), DMU joins the recency node to the control

block’s blade if the physical page is currently uncompressed.

To rank recency locally within a blade, for every 100th

normal memory request, DMU logically moves the recency

node of the accessed page to the head (MRU end) of a blade

(see Figure 15.b) and, thus, logically ‘shifts’ all other recency

nodes towards the tail (LRU) end. If the accessed page is

compressed, DMU only joins the recency node of the page to

the blade after the page is reverted to uncompressed format

because each blade only tracks uncompressed pages.

To obey allocation objectives, DMU adds pointers to each

control block to connect to other control blocks in a ring that

forms the ‘wheel’ of the fan in Figure 15. DMU only selects

for compression physical pages that are currently mapped

to control blocks in the ring. DMU dynamically detaches a

control block from the ring according to the block’s current

objectives (see Figure 15.c).

To schedule compression, DMU fairly round-robins

through all control blocks in the ring (see Figure 15 1© to 4©)

continuously in the background. When visiting a control block,

DMU directs the MC to compress an OS-configurable number
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of physical pages recorded in the recency nodes at the LRU

end of the block’s blade. This configurable number – Pages to
Compress During a Visit – is recorded in each control block.

After compressing a physical page, DMU removes the page’s

recency node from its current blade. If the page turns out to

have a low compression ratio (e.g., < 1.15X), DMU leaves

it uncompressed, but still removes its recency node from the

blade to avoid uselessly compressing it again soon.

When a C-job cannot be compressed and stored into its
allocated machine-physical memory (i.e., when its Unused

Allocation drops to negative), DMU raises a compressed
memory fault. This is like how when the MMU cannot store

a process’ values into the process’ allocated physical memory

(e.g., when the process writes to a virtual page without a

physical page), the MMU raises a page fault to prevent the

store from using more physical memory and to alert the OS.

But unlike page faults in MMUs, which prevent faulting

stores from using more memory by aborting them (i.e., delet-

ing their values) and re-executing them later, writebacks can-
not be re-executed as they can take place arbitrarily long after

their original stores. As such, DMU serves faulting writebacks

and all following writebacks; this can make the control block’s

Unused Allocation more negative by using more memory.

DMU implicitly ‘borrows’ memory from the implicit control

block by reducing its Unused Allocation by the same amount.

Conversely, whenever a negative Unused Allocation increases,

DMU increases the implicit block’s Unused Allocation by the

same amount to ‘return’ the ‘borrowed’ memory.

The compressed memory fault is an asynchronous interrupt.

To avoid interrupt storms, DMU raises an interrupt once when

an Unused Allocation flips negative, instead of continuously
while it remains negative. The compressed fault handler

routine then spills out some of the faulting C-job’s values

and also caps (e.g., via Cgroups) how many physical pages

to allocate to the C-job (i.e., allocate more physical pages to
the C-job only after deallocating more from it).

The handler need not pause the C-job if the handler can

ensure the C-job will not keep growing in an unbounded man-

ner when the C-job keeps running. To ensure this, the handler

can first allocate a grace amount (e.g., 10MB) of machine-

physical memory to the control block to make its Unused

Allocation positive; if the handler receives another compressed

memory fault due to the Unused Allocation flipping negative

again, only then will the handler pause the control block’s

C-job. Later, when the spilling of the C-job’s values causes

the Unused Allocation to rise above 2X the grace amount, the

handler deallocates 1X the grace amount to restore the original

machine-physical allocation.

The alternative of page-based allocation, which slowly allo-

cates one page at a time, would require pausing the C-job after

the very first fault. Otherwise, there is the risk that the C-job

may grow faster than the slow memory allocation and make

Unused Allocation stay negative constantly, which prevents it

from flipping negative (note that flipping negative require first

turning positive). Preventing Unused Allocation from flipping

negative will prevent a second fault from ever getting raised.

Figure 16 summarizes how DMU enforces all three memory

allocation objectives.

Figure 16: Enforcing the three objectives. Contiguity shown for clarity only.

Figure 17 shows a comprehensive summary of hardware and

software interactions under DMU; it also shows how DMU

interacts with the underlying hardware memory compression.

Figure 17: A comprehensive summary of DMU.

C. Discussions
Multiple Memory Controllers: Intel Xeon CPUs [20] have

two MCs, each controlling multiple channels. Prior works

typically interleave different 4KB physical pages across MCs

and interleave an individual 4KB page across all channels

within the same MC [33], [34]. To allocate N bytes of

machine-physical memory, OS can write the Total Allocation

Objective twice, each to a different MC’s DMU to allocate

N/2 bytes of machine-physical memory.
Shared Pages: Different jobs can share the same physical

page (e.g., a C library page). But each physical page can only

be mapped to one control block at a time because each recency

node records only one control block ID; as such, each shared

physical page is only ‘charged’ to one control block, like how

Linux ‘charges’ a shared physical memory only to one Cgroup

[16]. Alternatively, the OS may map all shared physical pages

used by different jobs to a common control block and allocate

to the block enough machine-physical memory so all shared

pages stay uncompressed; note shared pages need not be

compressed because any degree of sharing already equates

to high compression. The OS can then decrease the Total

Allocation Objective in each job’s control block by the number

of shared physical pages the job is using (i.e., decrease the

objective by the same number of machine-physical pages).
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Virtual Machines (VMs): While Section IV mostly centers

on native execution and Cgroups, DMU works the same

for VMs except when the VM runs out of memory. The

compressed memory fault handler calls the hypervisor to

invoke the balloon driver inside the VM; balloon drivers are

extensively used by hypervisors today to reclaim memory from

VMs. The balloon driver inflates a memory balloon, which

uses up the pseudo-physical memory inside the VM and spills

the VM’s data to the VM’s file system or swap space.

D. Future Work

This is the first work that explores precise memory alloca-

tion in a system with hardware memory compression. This

paper focuses on designing the architecture support; many

software optimizations are left to be explored.

Determining the Optimal Objectives for Workloads:

Finding the optimal Total Allocation Objective for a workload

under DMU can rely on the same profiling approach as finding

the optimum VM size when using OS memory compression in

a VM; when using OS memory compression in a VM, users

re-run their workloads in VMs of different memory sizes to

find the size that meets the performance requirements and use

it for production runs (see Section III-B). For example, we

ran radiosity [39] in a 1GB AWS VM with OS memory

compression and in a 2GB AWS VM without OS memory

compression. Running radiosity in the 1GB VM costs only

half as much as running it in the 2GB VM, while only taking

3% longer. Through this simple profiling, one can conclude

that 1GB is a highly cost-effective memory size for radiosity.

Under DMU, users can run their workloads under different

total allocation objective values to find the optimal value that

fulfills their performance needs. Today, profiling is often done

manually and can burden users. A potential future work is to

explore new software techniques to automate this profiling.

Alternative Way to Use DMU: We focus on the use

case of giving users control of how much memory to save

via compression; for example, specifying a machine-physical

memory size of 2GB for a job that typically uses 6GB of

physical memory allows the user to save 4GB. However,

giving users this new control can also be a new burden to

the users. An alternative use case is let users specify physical

memory, instead of machine-physical memory, to express how

much logical data to store in memory and let the service

providers decide how much machine-physical memory to save;

the providers can use the saved space to consolidate/pack more

VMs to make the VMs cheaper. However, as compression ratio

can fluctuate, saving space and packing VMs too aggressively

can necessitate costly VM migrations that degrade QoS. As

such, to practically enable this second use case, a potential

future work is to explore scheduler-level enhancements to

maximize memory savings while maintaining QoS.

V. RESULTS

To evaluate DMU, we create a full-system (i.e., soft-

ware+hardware) prototype on the FPGA. The prototype boots

up Linux with two softcores. A 5-minute video demo of the

prototype is available at https://youtu.be/-1JG3JnIY3U. Below,

we describe the internal details of the prototype.

Software Side: To utilize DMU, we implement a Machine-

physical Memory Module (MPM) and install it in Linux as

a new loadable kernel module. MPM assigns control blocks

to specified processes and then reads and writes the control

blocks to allocate machine-physical memory to the specified

processes. We also add 10 lines of code in the existing kernel

code (i.e., mm/page alloc.c:get page from freelist) so that

whenever a physical page is allocated to a process, the added

code gets from MPM the ID of the control block assigned

to the process and records the ID in the page’s recency

node (see Figure 14). Conversely, we add 7 lines of code to

mm/page alloc.c: free one page so that whenever the kernel

deallocates a physical page, the added code zeroes the page

and zeroes the control block ID field in the page’s recency

node. To accommodate large pages (e.g., huge pages, higher-
order pages), when the kernel allocates or deallocates a large

page to or from to a process, the added code runs in a loop

to individually map/unmap every 4KB physical page that is

part of the large page to/from the process’ control block.

MPM also handles the compressed memory fault. The

handler spills out a job’s data by reducing the job’s Cgroup’s

memory.limit to below the job’s current physical memory

size. Note a job can be a part of multiple Cgroups (e.g., due

to hierarchical Cgroups [38]); as such, adding a job to a new

Cgroup need not conflict with the job’s pre-existing Cgroups.

Hardware Side: We implement DMU on an FPGA (see

Figure 18) by enhancing the memory controller RTL of

an open-source RISC-V softcore [9]. The DMU prototype

supports all three objectives per control block (see Figure 16).

Figure 18: Our full-system prototype on a Genesys 2 Kintex-7™ FPGA.
Linux boots up with two cores and 3979736 KB – 4X the 1GB DRAM on
board.

As for the underlying compression-capable MC that DMU

guides, we implement the address translation table of a

recency-aware design – TMCC [33], which has a single 8B

translation per page, and also TMCC’s free lists. 4 Whenever a

compressed page is accessed, our prototype decompresses the

page in memory (i.e., store the page in memory uncompressed)

like TMCC and OS memory compression; after decompressing

a page, it joins the page’s recency node at the MRU end of

the blade. For compression, we integrate only the LZ portion

4TMCC’s free lists of subpages follow after Linux ZSMalloc [27], [51]
algorithm to practically eliminate all fragmentation for storing compressed
pages. Our FPGA prototype helps confirm ZSMalloc is feasible in hardware.
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of the ASIC Deflate Verilog from [33] as our FPGA is small.

A. Measuring Performance Variation under Collocation

On our FPGA prototype, we measure performance variation

under collocation as the memory needs of one of the jobs

increases. We run three experiments, where each experiment

collocates two jobs; different experiments always keep Job 1

the same but vary how much data Job 2 stores in memory.

We measure the change in the performance of Job 1 across

the three experiments. Job 1 runs Single-source Shortest Path

(SSSP) from GAP5 [10] with datagen-8 0-fb [19] dataset.

With this dataset, SSSP has a maximum resident physical

memory size (RSS) of 70MB6; through profiling, we deter-

mine Job 1 performs well when allocated 40MB of machine-

physical memory (i.e., by setting the Total Allocation Objec-

tives of control block 1 to 40MB). Job 2 runs the same file-

processing program from Section III-B; we allocate 400MB

to Job 2.

The first experiment for SSSP uses a small 600MB file as

the input to the file-processing job. We call this first experiment

for SSSP the reference execution for SSSP; we compare other

SSSP experiments to this reference execution to evaluate how

much variation in performance SSSP can suffer.

The second experiment for SSSP uses a medium 800MB

file as input to the file-processing job. The performance of

SSSP remains within 99% of the reference execution (see

Figure 19 first green bar). “#Accesses to Compressed Pages”

in control block 1 reports 18791, while the reference execution

reports 18321; they are within noise range (i.e., 2.5%) of each

other. As such, Job 1 is still compressed by the same degree

as the reference execution, even though Job 2 is now bigger

compared to the reference execution.

The third experiment for SSSP uses a large 2GB file as input

to Job 2. After Job 2 uses 1.6GB of physical memory, it no

longer fits in its machine-physical allocation via compression

alone. DMU then raises a compressed memory fault to spill

out Job 2. But SSSP remains fully in memory; due to precise

allocation, SSSP uses the same amount of machine-physical

memory regardless of changes in Job 2. As such, SSSP retains

98% of its performance as the reference execution.

We repeat the above by using other GAP benchmarks

instead of SSSP. Figure 19 shows when collocated with

the medium file-processing job, GAP benchmarks perform

within 99%, on average, of their reference executions; when

collocated with the large file-processing job, it is 98% on

average.

As sensitivity analysis, we also evaluate DMU by running

the entire7 SPEC CPU20065 Integer suite concurrently as

Job 1. To account for the increased memory requirement, we

precisely allocate 280MB to Job 1 by increasing the Total

Allocation Objective of control block 1 to 280MB. Figure 20

5We do not use the newer GraphBig and SPEC CPU2017 benchmarks
because our attempts at compiling them under RISC-V were all unsuccessful.

6We choose a small dataset because FPGA softcores are slow.
7We exclude gcc, hmmer, libquantum, and h264 as they were still running

on the FPGA after 8 hrs even when running standalone using smallest inputs.

Figure 19: Performance of GAP benchmarks, with and without DMU, when
collocated with a file-processing job; performance is normalized to when
collocated with a small file-processing job with DMU. With DMU, GAP’s
performance varies only by 1 − 99% = 1% and 1 − 98% = 2% when
collocated with a medium and large file-processing job, respectively. Without
DMU, GAP’s performance varies by 1− 81% = 19% and 1− 11% = 89%
when collocated with a medium and a large file-processing job, respectively.
GAP benchmarks have an average memory compression ratio of 2X. The
compression ratio of Job 2 fluctuates between 3.5X and 1X .

shows that with DMU, when collocated with the medium file-

processing job, applications perform within 98%, on average,

of their reference executions; when collocated with the large
file-processing job, it is 97% on average.

Figure 20: Performance of SPEC benchmarks, with and without DMU,
when collocated with a file-processing job; performance is normalized to
when collocated with a small file-processing job with DMU. SPEC CPU2006
Integer has an average memory compression ratio of 3.1X .

B. Measuring Performance Variation without DMU

We repeat the previous experiments without DMU by allo-

cating machine-physical memory indirectly through allocating

physical memory. We refer to these as “without DMU” exper-

iments; these experiments use TMCC [33] as the underlying

compression and the out-of-memory interrupts proposed in

IBM MXT [52] (see Section II). In these experiments, we allo-

cate machine-physical memory indirectly through allocating

physical memory. Following after the optimistic assumption in

Section III-C, we allocate to each job up to 4X the physical

memory as the specified machine-physical memory by setting

the memory.limit of Job 1’s Cgroup to 4 · 40MB = 160MB
and Job 2 to 4 · 400MB = 1600MB.

When collocated with the medium file-processing job, SSSP

retains only ∼75% of the performance of its reference execu-

tion in Section V-A (see Figure 19 first yellow bar). Unlike

DMU, which ranks access recency locally within each job,

without DMU, the TMCC baseline ranks recency globally

across everything in memory; Job 1 accesses memory less

often than Job 2 and, thus, gets more compressed than Job 2.

The GAP benchmarks in Job 1 retain, on average, only 81%
of the performance of their reference executions.
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The performance of SSSP becomes even worse when it is

collocated with the large file-processing job; it only retains

13% of the performance of its reference execution (see Figure

19 first red bar). The large file is too big to fit in memory

despite compression; the hardware free list drops very low and

triggers a system-level out-of-memory interrupt. This causes

the OS to spill out data to Flash, including some of SSSP’s

memory values. GAP benchmarks only retain, on average,

11% of the performance of their reference executions.

SPEC benchmarks show a similar trend. Figure 20 shows

that without DMU, SPEC collocated with the medium file-

processing job only retains 87% the average performance of

the reference execution; when collocated with the large file-

processing job, the average performance drops to only 42%.

C. Overheads

Software: Enhancing the kernel so that whenever it allo-

cates a physical page to a process, also map the physical page

to a control block can incur a small OS overhead. To evaluate

this OS overhead, we run GAP Benchmarks [10], SPEC

CPU2017 Benchmarks [49], and GraphBig [30] with datagen-
8 5-fb [19] dataset in an x86 Linux Server and measure the

execution time of each application with and without our added

code. The added code incurs 1.3% overhead, on average, and

a worst-case overhead of 3%; they are similar with or without

transparent huge pages.

Hardware: We synthesize DMU and recency-aware com-

pression using Synopsys [50] and a 7nm process node library

[7]; their combined area and frequency are 0.035mm2 and

3GHz, excluding the ASIC compressor and decompressor.

VI. GENERAL HARDWARE COMPRESSION QUESTIONS

How does it compare to OS memory compression? We

compare the simulated performance of a recency-aware hard-

ware memory compression (TMCC [33]) with OS memory

compression across the same simulation window. We simulate

OS compression highly optimistically (e.g., no cache pol-

lution, compression/decompression calculations in hardware

instead of software) by simulating it as TMCC with two differ-

ences – eliminating address translation overheads in the MC

and adding page fault latency to each access to compressed

pages. We instrument and measure Linux’s ZRAM memory

compression to estimate page fault latency in OS memory

compression; it is 4us, on average, excluding the latency of

software decompression and compression routines. We follow

the same simulation methodology and benchmarks as [33].

Our Gem5 [11] results show OS compression retains only 61%

the average performance of a bigger memory with no need for

compression; hardware-memory compression retains 93%.

How does it interact with OS memory compression? In a

system with hardware compression, OS memory compression

can be disabled; this is an option in every major OS.

How to evict pages by compressibility? OS today does not

swap out pages according to their compression ratios; neither

does any prior work on hardware memory compression.

Hardware-encrypted Pages: Memory controllers can en-

crypt and decrypt memory [5], [21]. To compress an encrypted

page, the MC can decrypt it to compress the plaintext, encrypt

the compressed page, and store it back to memory as a

compressed page.
Cross-layer effects: Hardware memory compression op-

erates DRAM as an independent level of memory beyond

physical memory, like how caches operate independently from

virtual and physical memory settings. As such, hardware

memory compression is agnostic of the settings and object

layouts of virtual and physical memory (e.g., page alignments,

page table placement). While certain performance optimiza-

tions depend on physical memory settings [33], functional

correctness does not.

VII. CONCLUSION

This paper explores and addresses memory allocation prob-

lems under hardware memory compression. We architect

DMU, an MMU-like component to enable the OS to directly

allocate machine-physical memory. Unlike MMUs, which use

page-based allocation, DMU uses a new objective-based al-

location tailored for this new layer of memory. Our FPGA

evaluations show jobs perform stably under colocation, with

1%-2% variation, down from 19%-89% under the prior art.
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APPENDIX

A. Abstract

Our artifact demonstrates the video experiment (available at:

https://youtu.be/-1JG3JnIY3U) from Section V, which shows

how DMU restores precise memory allocation in a system with

hardware memory compression. This artifact demonstrates the

following three objectives from the paper: Total Allocation
Objective, Unused Allocation Objective, and Minimum Un-
compressed Cache Allocation Objective, just like in the video.8

We also release the RISC-V bitstream, the OS binary,

and the kernel module binaries to reproduce the results

8The Results section (i.e., Section V) of the paper presents two main
results: the video demonstrating DMU successfully enforcing the objectives,
and the main performance results (i.e., Figure 19). Due to limited time
before the camera-ready and limited FPGA resources, our artifact evaluation
only includes the first main results, instead of Figure 19, which is much
more time-consuming. Since the Results Reproduced badge requires all main
results to be evaluated, we were ineligible to receive it. Nonetheless, the
evaluators successfully reproduced the results for the experiment outlined in
the Appendix, (i.e., first main result).

of this experiment and to facilitate further exploration af-

ter artifact evaluation. The released artifacts are available

at https://github.com/HEAP-Lab-VT/DMU and at https://

doi.org/10.5281/zenodo.13753990.

B. Artifact check-list (meta-information)
• Program: SPEC CPU2006 mcf. It is included in the evaluation

setup.
• Compilation: No compilation required.
• Binary: All the required binaries are present at https://

doi.org/10.5281/zenodo.13753990. The binaries used are: (1)
OS binary, (2) Linux kernel module binaries, (3) mcf and
microbenchmark binaries, and (4) FPGA bitstream.

• Data set: Dataset (inp.in) for mcf is included in the shared
DOI link.

• Run-time environment: Ubuntu with Linux kernel 5.1.0.
• Hardware: (1) Genesys 2 Kintex-7 FPGA, (2) MicroSD card

reader/writer, (3) a Linux machine to connect the FPGA board.
• Execution: Detailed instructions are provided in README at

https://doi.org/10.5281/zenodo.13753990.
• Metrics: Following metrics will be evaluated: (1) Physical

memory usage statistics reported by the OS, and (2) DRAM
usage statistics reported by DMU’s kernel module. The com-
mands used to query these metrics are provided inside README
file.

• Output: The output is reported on the console; no output file
is created at the end of the experiment.

• Experiments: Details of how to run the experiment (i.e.,
commands and scripts) are present at https://doi.org/10.5281/
zenodo.13753990.

• How much disk space required (approximately)?: (1) 40GB
for Vivado Design Suite, (2) 1GB on the MicroSD card for
relevant binaries.

• How much time is needed to prepare workflow (approxi-
mately)?: (1) 2 hours to download and install Vivado Design
Suite. And (2) 10 minutes to prepare the MicroSD card.

• How much time is needed to complete experiments (approx-
imately)?: 1-2 hours

• Publicly available?: Yes
• Archived (provide DOI)?: Yes, available at: https://doi.org/

10.5281/zenodo.13753990.

C. Description

• How to access: The binaries and a README file are

present at https://doi.org/10.5281/zenodo.13753990.

• Hardware dependencies: A Linux machine, a Genesys2

Kintex-7 FPGA board, and a MicroSD card.

• Software dependencies Vivado Design Suite - HLx

Editions 2020.2.

• Data sets: SPEC 2006 mcf with inp.in (binary provided

at https://doi.org/10.5281/zenodo.13753990).

D. How to access

Please download the required binaries and follow

the installation instructions on https://doi.org/10.5281/

zenodo.13753990.

E. Experiment workflow

Detailed instructions are provided in the README at https:

//doi.org/10.5281/zenodo.13753990 on how to setup the ex-

periment workflow.
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F. Evaluation and Expected Results

• Co-located workloads receive the amount of machine-

physical memory they specify in the presence of hardware

memory compression, ensuring precise memory alloca-

tion.

• Workloads are compressed only when they can no longer

fit within their specified machine-physical memory in

plaintext (i.e., in their uncompressed format), ensuring

high-performance access to the memory values of the

workloads when compression is not required.

• When a workload can no longer be further compressed

(i.e., when the memory values of a workload are fully

compressed), the system swaps out only the memory val-

ues of that workload (i.e., all other co-located workloads

remain in memory and are not swapped out), instead of

crashing the workload.

• The combined resident set size (RSS) of all workloads

(i.e., the aggregate amount of memory used by all work-

loads) is significantly larger (i.e., up to 4 times greater)

than the amount of DRAM installed on the FPGA board.
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