
DyLeCT: Achieving Huge-page-like Translation
Performance for Hardware-compressed Memory

Gagandeep Panwar, Muhammad Laghari, Esha Choukse†, Xun Jian
Virginia Tech †Microsoft Research

gpanwar@vt.edu, mlaghari@vt.edu, esha.choukse@microsoft.com, xunj@vt.edu

Abstract—To expand effective memory capacity, hardware
memory compression transparently compresses and packs mem-
ory values more densely together in DRAM. This requires intro-
ducing a new layer of hardware-managed address translation in
the memory controller (MC). However, for large and irregular
workloads that already suffer from frequent virtual address
translation misses in the TLB, adding an additional layer of
address translation can double the translation misses (e.g., by
adding a new miss in the MC per TLB miss). While TLB
misses can be drastically reduced by using huge pages, no prior
work has explored huge-page-like translation reach for hardware
memory compression. While compressing and moving an entire
huge page worth of data at a time can lead to huge-page-like
address translation, moving a huge page worth of data together
can consume an exorbitant amount of memory bandwidth.

This paper explores how to achieve huge-page-like translation
performance in this new address translation layer, while keeping
compression at the page (instead of huge page) granularity. We
propose dynamically shortening the translation entries of hot
pages to only a few bits per entry by migrating hot pages to
the limited number of DRAM locations whose addresses can be
encoded using a few bits; colder pages still use the bigger full-
length translations so that colder pages can be placed anywhere
in memory to fully utilize all the space in memory. Each short
translation is tiny (e.g., 2 bits); as such, a 128KB translation
cache filled mostly with short translations can achieve similar
(e.g., 2GB) total translation reach as a TLB filled entirely with
huge page entries. Evaluations show our idea – Dynamic Length
Compressed-Memory Translations (DyLeCT) – improves average
performance by 10.25% over the prior art.

I. INTRODUCTION

Main memory accounts for a significant portion of operating

cost for cloud service providers and hyperscalers. For example,

Meta, a prominent hyperscaler, reports that memory accounts

for 30% of total hardware infrastructure cost [46].

Hardware memory compression is a promising technique to

increase effective memory capacity [6], [7], [17], [27], [33],

[37], [43], [52]. It enhances the CPU’s memory controller

(MC) to transparently compress and pack data more densely in

memory; transparently migrating data in turn requires adding a

new layer of dynamic address translation beyond the existing

virtual-to-physical memory translation. Specifically, the MC

manages a linear array of translation entries that we call

the compressed-memory translation entries (CTEs). The CTEs

collectively form a large translation table that is stored in

memory. To avoid fetching a CTE from memory for every

memory request, the MC caches CTEs in a dedicated CTE

cache, which serves as a similar purpose as the TLB.

This new layer of dynamic address translation, however,

can significantly harm the performance of large and irreg-

ular workloads. These workloads already suffer from high

virtual memory translation overhead (i.e., high number of

TLB misses). Adding a new layer of address translation to

enable hardware memory compression can effectively double

the existing translation misses by adding a new CTE cache

miss beyond the old TLB miss.

To optimize virtual memory translation for large and irregu-

lar workloads, modern OS and CPU support huge (e.g., 2MB)

pages. In our real-system evaluation of large and irregular

workloads commonly studied in recent address translation

works, using 2MB huge pages provides 1.75x the average

program-level speedup over using standard 4KB pages.

No huge-page-like translation, however, exists in the new

layer of address translation required by hardware memory

compression. Consider a recent prior work [27], which uses

a 64-bit translation per 4KB page and a 64KB CTE cache;

even after doubling its CTE cache to 128KB, the CTE cache

can still only provide a small translation reach of 64MB.

Compared to a typical TLB that can provide >2GB reach

when the running program uses 2MB huge pages [15], [47],

a 64MB translation reach represents a 2GB/64MB=32x lower

translation reach.

A naive approach to enable huge-page-like translation reach

is to compress and migrate data at 2MB granularity; this allows

a single CTE to perform address translation for 2MB worth

of data. However, always moving 2MB of data together can

consume significant memory bandwidth and severely degrade

memory performance.

We note that to fully utilize all the compression-freed

spaces, prior works on hardware memory compression deploy

fully-associative and non-aligned data placement; but such

a highly fluid data placement requires long (e.g., 64-bit)

translations. Long translations consume significant space in

the CTE cache; this causes the CTE cache to hold relatively

few translations and, thus, provide low translation reach.

We observe just like how a mixture of rigid (i.e., harder-

to-move) pebbles and fluid water can fill a jar equally well

as purely water, using a mixture of fluid data placement and

rigid (i.e. lowly-associative and aligned) data placement can

also completely fill all space in memory. While a rigid data

placement only supports a few (e.g., three) possible DRAM

locations per unit of data, this limited choice of DRAM

locations only needs short (e.g., 2-bit) translations to encode;

1129

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00085

Figure 1: (a) Long translations provide full freedom of data placement to fully
utilize all irregularly-sized compression-freed spaces. (b) Short translations
restrict data placement and waste space. In this example, a short translation
can only store an OS page p at the start of DRAM page d = p%3 or DRAM
page d = (p+ 1)%3 where 3 is the total number of DRAM pages. Dashed
line indicates placement conflicts for OS page 3. (c) DyLeCT uses both short
translations and long translations. Short translations are more cache friendly
and long translations eliminate any wasted space.

a CTE cache can hold many times more short translations

(e.g., 64b/2b=32x) than long translations and close the gap in

translation reach with a TLB that serves huge pages.

While only some pages can benefit from short translations,

we note translation caches generally favor hot pages as they

cache the translations of recently-accessed pages. As such, we

propose dynamically switching hot pages to short translations

and switching cold pages to long translations; this enables

the CTE cache to mostly cache short translations and provide

high translation reach. We call our idea Dynamic Length
Compressed-Memory Translations (DyLeCT1). DyLeCT dy-

namically migrates hot pages to the limited DRAM locations

whose addresses short translations can encode, by displacing

cold pages to DRAM locations whose addresses only long

translations can encode (see Figure 1c). While designing

DyLeCT, we address a key challenge of how to minimize

data movement overheads and also redesign the CTE table and

cache organizations to tailor to dynamic-length translations.

Our evaluation shows that DyLeCT improve the perfor-

mance of translation-intensive workloads by 10.25% over the

prior art. Table 1 compares DyLeCT to prior works.

We make the following contributions in this paper:

1) We explore how to enable huge-page-like translation

performance in the new address translation layer intro-

duced by hardware-compressed memory.

2) We propose Dynamic Length Compressed-Memory

Translations (DyLeCT) to dynamically switch between

short and long translations on a per-page basis to achieve

the best of both worlds – high translation hit rate and

high memory density/capacity.

1It is pronounced as Dialect, as the two types of translations are different
ways or dialects of communicating the same DRAM address.

3) We address the unique design challenges of how to

effectively use both types of translations together.

4) Our evaluations show DyLeCT improves average per-

formance by 10.25% over a recent prior work –TMCC–

without sacrificing memory compression ratio. DyLeCT

is also a simple design that only modifies a single

hardware component – the memory controller.

Prior Work Comp.
Ratio Perf. Improvement Modifications vs.

Current Systems
RMC [7] 1.30x N/A MC
LCP [33] 1.69x +6% vs RMC MC, TLBs
Compresso [6] 1.85x +6% vs LCP MC

TMCC [27] 3.40x
+14% vs Compresso
@ 1.85x Comp. Ratio.

MC, L2$

This Work 3.40x
+10.25%vs TMCC
(under huge pages)

MC

Table 1: Contrasting DyLeCT with prior works.

II. RELATED WORKS ON HARDWARE MEMORY

COMPRESSION

Many prior works propose enhancing the memory controller

(MC) to dynamically compress data in DRAM; they propose

adding decompressor and compressor hardware to the MC to

read and write compressed data in an OS-transparent manner.

These prior works broadly fall under two categories.

One category uses compression to save memory bandwidth

[13], [16], [17], [48], [49]. They compress data and store them

in or near their original locations and, therefore, leave many

unused compression-freed spaces scattered across DRAM; as

such, they do not improve effective memory density/capacity.

The second category uses compression to increase the

effective memory capacity exposed to the OS [6], [7], [27],

[33], [37], [43], [52]. These works migrate compressed data

closely together to improve effective memory density/capacity.

As such, they can enable the OS to use several times (e.g., 4x)

more OS physical memory than the amount of DRAM in the

system. This can help avoid swapping out data when memory

pressure is high2. Minimizing swapping out in turn also helps

to preserve huge pages; before swapping out, today’s OS first

breaks down huge pages into standard pages because directly

swapping huge pages can be prohibitively expensive.

This paper focuses on using hardware memory compression

to improve effective memory capacity.

A. Background on Memory Address Translation for Hardware
Memory Compression

Hardware memory compression transparently migrates com-

pressed data to pack it densely in DRAM. Prior works track

this data movement by adding a new layer of hardware-

managed translation that consists of a linear array of

compressed-memory translation entries (CTEs). Instead of

storing a tuple of col:row:bank:channel IDs, each CTE records

2Even when memory pressure is low, freeing up memory via hardware
memory compression could still be useful as free memory can be used to
opportunistically boost memory performance [28], [32], [51].

1130

the location of data in DRAM as a scalar address called

the machine-physical address [6], [31]. The machine-physical

address is then translated into col:row:bank:channel IDs using

the same static address mapping function that today’s systems

use to calculate the final DRAM location given a conventional

physical memory address [34].

The CTEs are stored in a statically reserved memory region

called the CTE table. The CTE table contains CTEs for the

entire OS-visible memory. Each chunk of OS-visible memory

has its own dedicated CTE. We call the size of this chunk

of OS-visible memory the translation reach of the CTE. The

CTE table is a simple flat table; the nth entry in the CTE

table corresponds to the nth regular sized chunk of OS-visible

memory. We refer to each 4KB range of OS-visible memory

an OS page regardless of whether it is being used standalone

as a standard page or is currently a part of a huge page.

B. Prior Works on Optimizing the New Address Translation

On a last-level cache (LLC) miss, accessing the CTE to

determine the location of the requested data increases the

critical path of the LLC miss. To speed up the translation,

all prior works add a small cache to the MC to cache CTEs

(see Figure 2).

Figure 2: In hardware memory compression, CTEs form an additional
address translation layer beyond the conventional virtual memory translation
layer. Every memory access goes through one extra layer of indirection that
translates physical address to a DRAM location with the help of a CTE.

Large applications that can benefit the most from com-

pression, however, suffer from high CTE cache miss rates,

especially when they also have irregular access patterns. These

large and irregular applications are also known to suffer fre-

quent TLB misses. Further exacerbating the address translation

problem, many prior works [6], [7], [33], [52] compress and

move individual memory blocks, which requires fine-grained

tracking and address translation. In general, finer translation

granularity increases translation miss rate. For example, Com-

presso [6], which compresses individual memory blocks, uses

a 64B CTE per 4KB page, instead of 8B like a page table

entry (PTE); bigger CTEs are more likely to overwhelm the

small CTE cache in the MC.

To keep frequently-accessed CTEs small, TMCC keeps hot

pages uncompressed so that they can use coarse-grained page-

level translation. TMCC divides memory into a two-level

exclusive hierarchy. Memory Level 1 (ML1) stores hot pages

in uncompressed form to keep the CTEs small; Memory Level

2 (ML2) stores cold pages in compressed form to increase

effective memory capacity. Memory Level 2 compresses data

at 4KB page, instead of 64B block, granularity so that the

CTE entry managing a page can serve the page regardless

of whether the page is uncompressed or compressed; page-

granularity compression also enables higher (e.g., 2x) com-

pression ratio. For every LLC miss or writeback request that

accesses a page in ML2, TMCC decompresses the page and

stores it in uncompressed format as part of ML1; this page

promotion is called a page expansion.

While increasing translation granularity to the page-level

reduces CTE cache miss rate, the miss rate is still high for

large and irregular workloads. As such, TMCC also proposes

to compress page table blocks (PTBs)3 in the cache hierarchy

to embed CTEs within PTBs. Embedding CTEs within PTBs

enables a normal page walker access to also obtain from the

accessed PTB the CTE that the data access after the walk will

need; this CTE obtained from the accessed PTB can then be

forwarded to the MC along with the cache miss request for

the data. The MC can then use the CTE to satisfy the miss

request, without incurring any translation latency overhead.

Because TMCC is the most recent work on optimizing

address translation for hardware memory compression, we

build upon aspects of TMCC in this paper. Below, we describe

aspects of TMCC that we will also preserve in this work.

CTE Table: TMCC stores CTEs in an unified CTE table

where each CTE translates for a 4KB OS page. This is a flat

table, where the nth CTE corresponds to the nth OS page. As

each CTE in TMCC is 8B long, a 64B memory block of the

CTE table stores 8 CTEs. At the time of a CTE cache miss,

the MC fetches one 64B memory block from the CTE table;

to be concise, we call this block a CTE block.

Managing Free Space: To track free memory, TMCC

maintains a linked list of free 4KB DRAM pages called the

Free List. TMCC also has many other free lists that track

irregular-sized free spaces of <4KB; each list tracks free

spaces of a specific size (e.g., 1.5KB).

Managing In-use Space: Memory that is not part of any of

the free lists is in-use. When a memory request accesses the

data in an ML2 page (i.e., a compressed page), TMCC expands

the page into a free 4KB DRAM page from the Free List (see

Figure 7a). When compressing an uncompressed page in ML1,

TMCC stores the newly compressed page into a tightly-fitting

irregular free space tracked by one of the free lists.

Compressing Least-Recently-Used ML1 Page: To select

a victim for compression, TMCC maintains a Recency List

tracking all uncompressed pages. Once every 100 memory

requests, TMCC updates the list’s head to point to this most-

recently accessed page; this naturally causes less-recently

accessed pages to drop down in the list so that the list’s tail

points to the least-recently accessed page.

Demand-adaptive Compression: TMCC adaptively com-

presses data in response to memory pressure to maintain 16MB

of free DRAM pages in the Free List. When free memory is

<16MB, the MC compresses pages asynchronously (i.e., in the

background) by repeatedly compressing pages from the tail of

Recency List and then using the freed-up space to replenishes

the Free List.

3A page table block is a 64B memory block containing 8 PTEs.

1131

III. MOTIVATION

Contemporary workloads such as databases, graph analytics,

and machine learning have large memory sizes of many tens

of gigabytes [8], [11], [12], [23], [45]. Many large workloads

also have irregular memory access patterns that lead to high

TLB miss rates. Owing to the popularity of these workloads,

many prior works actively explore how to minimize virtual

memory translation overheads for these workloads [1], [23],

[29], [30], [35], [41].

To handle irregular workloads, current systems support 2MB

huge pages [9], [19], [26], [53], [54] and deploy them in large

(e.g., Google, Amazon, Meta) datacenters [14], [25], [38],

[44]. Recent Linux distributions also turn on transparent huge

pages by default to help minimize TLB miss rates for irregular

applications [22], [39]. On a real x86 machine, we find 2MB

huge pages can provide 1.75x average speedup for large and

irregular applications (see Figure 3).

Figure 3: Speedup when running large irregular workloads under 2MB huge
pages vs 4KB standard pages on a real system with Intel W-3175X CPU.
The high speedup of 2MB huge pages comes from both improved address
translation performance and faster page allocation. The evaluated benchmarks
are used by recent prior works on hardware memory compression and by prior
works on address translation for current systems without memory compression
[23], [27], [30]; they come from GraphBIG [24], SPEC CPU2017 [42], and
PARSEC 3.0 [3] benchmark suites.

A. No Prior Work on Hardware Memory Compression Effec-
tively Optimizes Address Translations under Huge Pages

TMCC’s primary translation optimization – embedding

truncated CTEs within PTBs (see Section II-B) – only works

during page walks. But page walks are rare under huge pages;

2MB huge pages reduce TLB miss rates by 20x, on average,

in our real-system experiments in Figure 3. Furthermore, each

64B PTB for 2MB huge pages has 8 PTEs and, therefore,

covers eight 2MB pages or 16MB of memory; the many

CTEs of the many constituent 4KB pages within the 16MB of

memory are too numerous to fit in a single 64B PTB.

Without the above optimization, TMCC’s only translation

optimization is to reduce the size of each CTE to 8B, down

from 64B or more under earlier prior works; however, 8B

per 4KB page still incurs high translation miss rate, just like

how standard pages incur high TLB miss rates in today’s

systems for large and irregular workloads. To quantify per-

formance under huge pages, we implement TMCC in Gem5

(see methodology in Section V) and run the workloads under

2MB huge pages. Compared to a bigger conventional memory

system without any compression, TMCC suffers 14% and

18% average performance loss at low and high compression,

respectively (see Figure 4).

Figure 4: TMCC’s performance normalized to a bigger memory with
no compression. Since TMCC compresses memory adaptively according to
the current memory demand, it can be evaluated under different degrees of
compression. The ‘Low Compression’ and ‘High Compression’ settings are
taken from the TMCC paper [27]. Table 2 shows each benchmark’s original
memory footprint and the DRAM size used to evaluate them under each
setting. The CTE cache size is 128KB.

Benchmark Memory
Footprint

DRAM @
Low Comp.

DRAM @
High Comp.

GraphBig Suite 106GB 81.5GB 35GB
mcf 15GB 13.7GB 6GB
omnetpp 1GB 0.63GB 0.4GB
canneal 1.1GB 0.96GB 0.73GB

Table 2: Evaluated benchmarks and DRAM size for simulations.

Much of the performance loss is due to the poor transla-

tion cache hit rate. A 128KB cache only provides a small

translation reach of (128KB/8B)*4KB=64MB. Such a small

translation reach leads to a high average miss rate of 28%

for GraphBig (see Figure 5). As sensitivity analysis, we also

sweep other CTE cache sizes – 64KB, 256KB, and 512KB.

Octupling the CTE cache size from 64KB to 512KB only

reduces CTE cache miss rate from 34% to 24%. Making the

CTE cache even bigger would make it slower to access and,

in turn, slow down all read requests from the LLC, including

those that hit in the CTE cache.

Figure 5: CTE cache miss rate for large workloads under 2MB OS huge
pages. Octupling the translation reach by octupling the CTE$ size only reduces
the average miss rate by 10%.

B. Hardware-managed Large Pages can be Harmful

A plausible solution to increase translation reach is to

increase compression granularity from 4KB to 2MB, so that

1132

each CTE can translate for 2MB of data. This increases each

CTE to the same translation reach as a 2MB huge page

PTE. However, compressing and decompressing 2MB each

time can incur an exorbitant bandwidth overhead. Irregular

workloads have a skew in accesses within a huge page [20]

(i.e., only some of the 4KB pages within each huge page

are frequently accessed); as such, always moving everything

belonging to a 2MB page together as a single unit via a

single CTE can waste significant bandwidth. Furthermore,

2MB compression also increases decompression latency to

100μs (i.e., 512*decompression latency of 4KB DEFLATE

ASIC decompressor [27] = 512*280ns = 143.36μs).

An alternate solution is to use a compression granularity

less than 2MB, but still coarser than 4KB (e.g., 64KB). This

also increases the translation reach of CTEs. However, the

bandwidth overhead in this case is an order of magnitude lower

than 2MB compression granularity.

To quantify the performance of coarse-granularity compres-

sion, we also evaluate TMCC at three coarse granularities:

16KB, 64KB, and 128KB. Under low compression, 16KB,

64KB, and 128KB compression reduce the average slowdown

from the earlier 14% down to 9.5%, 7%, and 6%, respectively

(see Figure 6). This is because having a coarser compression

granularity increases the translation reach of the CTE cache;

for example, 64KB compression granularity improves the

translation reach of CTE cache by 64KB/4KB=16x.

Figure 6: TMCC at 4KB, 16KB, 64KB and 128KB compression granularities.
Performance normalized to a system with no compression.

Under high compression, however, performance decreases

as compression granularity increases; the slowdown are 18%,

23%, 34%, and 46% when compressing at 4KB, 16KB,

64KB and 128KB, respectively (see Figure 6). Under high

compression, decompression and compression become more

frequent; the high bandwidth overhead of decompressing and

compressing at coarse granularity outweighs the benefit of

increased translation reach. If the compression granularity

were 2MB, the slowdown would be even worse. As such,

the severe performance degradation at high compression ratio

rules out coarser compression as a practical design point.

IV. DYNAMIC LENGTH COMPRESSED-MEMORY

TRANSLATIONS (DYLECT)

In this paper, we explore how to achieve a huge-page-like

translation performance in the new layer of address translation

required by hardware memory compression, without increas-

ing the granularity of compression (i.e., keep it at 4KB).

We note that all prior works on hardware memory com-

pression use fully-associative and non-aligned data place-

ment; such fluid data placement can store data in arbitrary

compression-freed spaces and, therefore, help maximize the

logical density in memory. In comparison, CPU caches use a

set-associative data placement, which stores a given memory

block or page at few possible locations; while more rigid, set-

associative placement requires fewer bits per translation (e.g.,

2 bits if 3 ways) and, thus, can greatly shrink the size of each

CTE (e.g., by 8B/2b=32x) and greatly increase translation

reach (e.g., by 32x, as a cache can fit 32x as many CTEs if each

CTE is 32x smaller). However, a rigid placement cannot utilize

most of the compressed-freed spaces and wastes memory,

which defeats the purpose of hardware memory compression.

As such, no prior works use set-associative data placement.

To achieve the best of both worlds, we observe just like

how a mixture of fluid water and a mixture of rigid (i.e.,

harder-to-move pebbles) can fill a jar equally well as purely

water, using a mixture of fluid data placement and rigid data

placement can also completely utilize all space in memory.

As such, we propose using a combination of long translations,

which support fluid data placement to preserve the same effec-

tive memory capacity as prior works, and short translations,

which support set-associative data placement to improve the

translation reach of the CTE cache. Furthermore, since only a

portion of the data in memory can use long translations, we

propose dynamically and transparently switching translation

length for individual OS-visible pages depending on how

frequently they are accessed. We call our proposal Dynamic
Length Compressed-Memory Translations (DyLeCT).

A. Challenges of Dynamically Switching the Length of CTEs

Noting that the recent prior work on optimizing address

translation for hardware memory compression (i.e., TMCC)

keeps hot pages uncompressed, a basic DyLeCT design is

to use short translations on uncompressed pages (i.e., the

Memory Level 1 under TMCC, see Section II-B), as they

are hot; meanwhile, use long translations on compressed

pages (i.e., Memory Level 2, see Section II-B) to utilize all

compression-freed spaces in memory.

While dynamically switching CTE lengths may seem rather

simple, it faces several design challenges.

1) Bandwidth Challenge: Dynamically switching between

CTE length can incur a costly bandwidth overhead. When

using long CTEs for all pages (i.e., both ML1 and ML2), after

a compressed (i.e., ML2) page becomes hot again due to an

access, the page can expand directly to any free DRAM page

(see Figure 7a) that is being tracked by the Free List. When

each uncompressed page uses the short CTE, however, every
one of the few possible locations that the page’s short CTE

1133

can address/encode is very likely already in use, especially

in a highly-occupied memory system that needs compression;

as such, expanding an ML2 page to ML1 would require first

moving one of the pages currently occupying one of these

DRAM pages to a free DRAM location somewhere else and

then expand the accessed page into the freed-up DRAM page

(see Figure 7b).

Having to move two pages per page expansion can double

the bandwidth overhead of page expansions over always using

long CTEs. How to mitigate this costly 2x bandwidth overhead
for page expansions is a challenge.

(a) Page expansion when all pages use long CTEs

(b) Page expansion when uncompressed pages use short CTEs

Figure 7: (a) Page expansion when all pages use long CTEs. The page
can directly expand to a free DRAM page tracked by the Free List. (b) Page
expansion when all compressed pages use long CTEs, but all uncompressed
pages use short CTEs.

2) Cacheability Challenge: Prior translation table designs

both in hardware memory compression and conventional sys-

tems adopt a unified design that uses a single CTE table for

both uncompressed and compressed pages and uses a single

multi-level table for both standard and huge pages. Reusing

such a unified table design for DyLeCT would still yield poor

CTE cache hit rate. This is because under a unified CTE table

design, many of the bits in a table entry are unused when

the entry stores a short CTE; caching a CTE block containing

many unused bits wastes precious space in the CTE cache and,

thus, reduces the CTE cache hit rate.

Figure 8 shows a 64B block for the unified CTE table

where each of the 8B entries in the block serves a 4KB OS-

visible page. Each 8B entry holds either a long translation or a

short translation. Using 8B to record a short translation wastes

significant space. If the unified block is cached naively (i.e.,

cache the block with all of its unused bits), the cache will store

no more translations than using long entries for all pages.

To reduce waste in the CTE cache, a potential solution is to

have separate caches for short and long CTEs. After accessing

Figure 8: An example of a 64B block under the unified CTE table
organization. Each block contains 8 8B entries; when an entry records a short
CTE the most significant 62 bits in the entry are wasted.

a 64B unified CTE block, the memory controller (i) inserts

an 8B long CTE into the dedicated long CTE cache if the

CTE is used and (ii) gathers all short CTEs closer together

before inserting them into the dedicated short CTE cache.

However, having two distinct caches for short and long CTEs

is inefficient as the long CTEs are used less often.

Furthermore, the short CTE cache can still waste significant

space. One option for designing the short CTE cache is to

gather all short CTEs that are part of the fetched unified block

into a small cacheline in the short CTE cache; for 2-bit short

CTEs, this means gathering eight 2-bit short CTEs into a 2B

cacheline. The problem is that each tag in such a short CTE

cache can be much bigger than the data in each cacheline

(e.g., a 4B tag versus 2B cacheline data), which can waste

significant (e.g., 66% of) the cache area (see Figure 9 ‘Option

A’). Another option is to organize the short CTE cache as

a sector cache [2], [40] that uses 64B cachelines instead of

2B cachelines to amortize the tag overhead. The downside

of this approach is requiring a long time to warm up each

64B cacheline and, therefore, wasting most of the bits in the

common case (see Figure 9 ‘Option B’).

Figure 9: Basic approaches to address the cacheability challenge; they still
waste significant space in CTE caches.

3) Quantifying the Two Challenges: Using Gem5 (see

methodology in Section V), we simulate the basic design that

1134

dynamically switches between long and short CTEs within a

unified CTE table. It switches between 2-bit short CTEs for

uncompressed pages and 8B long CTEs for compressed pages.

It models movement of two pages per expansion (see Section

IV-A1). It has two 64KB CTE caches that store short and

long CTEs, respectively. When the memory controller reads

a CTE block, it gathers up to 8 short CTEs from the block

into a single 2B cacheline in short CTE cache and inserts the

block’s long CTE(s) into 8B cacheline(s) in long CTE cache.

We evaluate the benchmarks in Section V at high compres-

sion setting (see Table 2) and find the average CTE cache hit

rate is 76% – only marginally better than the 67% hit rate

under TMCC; this improvement is small due to inefficient use

of space in the CTE caches. Furthermore, the bandwidth over-

head due to double page movement per expansion degrades

performance and masks any potential performance benefit

from slightly improving CTE cache hit rate. Consequently,

instead of improving performance, this naive design actually

reduces performance by 5% on average.

B. Addressing the Bandwidth Challenge via a Three-level
Memory Hierarchy

To address the bandwidth overhead challenge of dou-

ble page movement per page expansion (see Section II-B),

DyLeCT uses both short and long CTEs for uncompressed

pages. When first expanding a compressed page to uncom-

pressed form, DyLeCT uses a long CTE to store the page in

any free DRAM page that is currently being tracked by the

Free List. DyLeCT only selectively switches the hottest un-

compressed pages to using short CTEs. Dynamically switching

between short and long CTEs for uncompressed pages essen-

tially extends the two-level memory hierarchy into a three-

level exclusive hierarchy, where the hottest uncompressed

pages form Memory Level 0, while less hot uncompressed

pages form Memory Level 1 (see Figure 10).

Figure 10: Three-level exclusive memory hierarchy in DyLeCT. Memory
Level 0 stores hottest OS pages in uncompressed form. DyLeCT accesses
data in this level through cache-friendly short CTEs. Memory Level 1 also
stores OS pages in uncompressed form but uses long CTEs. Memory Level
2 stores compressed data and also uses long CTEs. For clarity, the figure
shows the different memory levels occupying contiguous memory; however,
they can be non-contiguous and arbitrarily interleaved.

Memory Level 0 (ML0): ML0 stores uncompressed pages

and addresses them using short CTEs. A short CTE of an OS

page p can only place p among a small set of possible DRAM

pages (e.g., a 2-bit short CTE of p can only place p in one out

of 3 possible DRAM pages); we refer to this set of DRAM

Figure 11: Short CTE: Our mapping function for short CTEs. In the small
example memory system, OS page 7 in ML0 is stored at DRAM page(7)
= hash(7)+ShortCTE = 2+0 = 2. Long CTE: The long CTEs are not
accompanied by any calculations; each long CTE directly records the current
machine-physical address of an ML1 or ML2 page.

pages as p’s DRAM page group. The DRAM pages within a

DRAM page group are adjacent to each other. Two distinct OS

pages can either share the DRAM page group or use distinct

DRAM page groups that do not overlap.

DyLeCT uses a static hashing function to identify the first

DRAM page in the DRAM page group of an OS page p. The

hash function hash(p) takes as input p’s page ID, the total

number of DRAM pages in the system (M), and the number

of DRAM pages per DRAM page group (G). The full hash

function is given in Figure 11 hash(p); the multiplication by

G ensures two adjacent OS pages map to two distinct DRAM

page groups.

The short CTE of page p then specifies which one out of the

G DRAM pages in the DRAM group is currently storing p.

Therefore, the complete mapping function used by short CTEs

is DRAM Page(p) = hash(p) + p′s Short CTE. Figure

11 illustrates how to use short CTEs to locate ML0 pages in

an example system with 12 OS pages and 6 DRAM pages.

Memory Level 0 is dynamic in size; it may scale up to the

entire memory system when everything is uncompressed (e.g.,

when the memory pressure is low). This is because the output

range of the hashing function for short CTEs is the entire

DRAM; hash(p) = G∗(p%(M/G)) approximately simplifies

to p%M , where M is the entire DRAM size. As such, any

DRAM page can be part of ML0; in other words, any DRAM

page can store an uncompressed page that is currently using

a short CTE.

Memory Level 1 (ML1): ML1 is the next level of memory

that also stores uncompressed pages. However, unlike ML0,

ML1 pages uses long CTEs so that they can be stored

anywhere in memory. Long CTEs are 8B each so that they

can encode arbitrary DRAM addresses.

Memory Level 2 (ML2): ML2 stores compressed pages

and uses long CTEs to address them.

1135

ML2→ML1 Promotion (1 in Figure 10): A potential

promotion policy for DyLeCT’s three-level hierarchy is the

conventional promotion policy used in CPU caches: expand

a page from ML2 directly to ML0 similar to how the CPU

promotes a cacheline from L3$ directly to L1$. However,

such a policy continues to incur double page movement

per page expansions (see Section IV-A1). Heuristically, a

recently expanded page is unlikely to be very hot (e.g., it

was compressed initially because it was cold) and may receive

very few accesses before it is compressed again. We confirm

this for all irregular workloads in Section III and find that on

average across all benchmarks, a decompressed page receives

16 accesses before it is compressed.

DyLeCT adopts a gradual promotion policy that first ex-

pands a compressed page in ML2 to ML1, and then selectively

promotes ML1 pages to ML0 (see ML1→ML0 Promotion).

The expansion of compressed pages to ML1 uses free pages
addressable by long CTEs to avoid double page movement.

ML1→ML0 Promotion (Long CTE→Short CTE Switch;
2 in Figure 10): DyLeCT selectively promotes the most

frequently accessed pages from ML1 to ML0. We note how to

select the hottest pages to place into a limited set of page-sized

locations is quite similar to prior works on DRAM caching

at the page granularity. As such, we adapt the promotion

algorithm from a prior work on page-level DRAM caching

(specifically, ‘Algorithm 1’ from [50], with 5% sampling rate)

by maintaining a probabilistic access counter for every OS

page. The hot ML1 pages to promote are identified as the

ones with access counts that are higher by a threshold than

other ML1 pages that map to the same DRAM page group.

When DyLeCT promotes a hot ML1 page p, some of the

DRAM pages in p’s DRAM page group may contain ML1 or

ML2 pages; DyLeCT uses the long CTEs of these ML1 or

ML2 pages to migrate them elsewhere to free up a DRAM

page to store p. Page p is now in ML0.

ML0→ML1/ML2 Demotion (Short CTE→Long CTE
Switch): When DyLeCT promotes a page p, if all of the

DRAM pages in p’s DRAM page group currently contain ML0

pages, DyLeCT demotes one of these ML0 pages to ML1 (i.e.,

switches its short CTE to long CTE to migrate it to a free

DRAM page tracked by the Free List); DyLeCT compares

the access counters of these ML0 pages to select the coldest

ML0 page to demote.

If the compression using Recency List (see Section II-B)

selects an ML0 page as victim, the page is compressed and

demoted to ML2 (i.e., switches from short CTE to long CTE).

Figure 12 summarizes promotion and demotion between

memory levels as a flowchart.

C. Addressing the Cacheablity Challenge of Short CTEs via
a Pre-gathered Table of Short CTEs

To minimize waste in the CTE cache and improve hit rate,

DyLeCT gathers copies of short CTEs densely together into a

second CTE table that is optimized for short CTEs. Each 64B

block in this second table densely packs 64B/2bit=256 short

CTEs back-to-back, without wasting any space. As such, each

Figure 12: Page management in Three-Level Memory Hierarchy.

block provides a translation reach of 256*4KB = 1MB, similar

to a huge page. Unlike the naive short CTE cache designs in

Section IV-A2, which gathers the short CTEs from an unified

CTE block into a short CTE cacheline after fetching the CTE

block on a CTE miss, DyLeCT proactively gathers/copies the

short CTE of a page from the unified CTE table to this second

table when promoting the page to ML0. As such, we call this

second CTE table the Pre-gathered Table.

Figure 13 shows the internal organization of the Pre-

gathered Table. Pre-gathered Table is statically sized to contain

a 2-bit entry for every 4KB OS page in the system. For OS

pages that use long CTEs (i.e., OS pages in ML1 or ML2),

the short CTE in Pre-gathered table records an INVALID
flag value; the flag value is the maximum encodable number

(e.g., ‘3’ for 2-bit short CTEs). As such, 2-bit short CTEs

only support three DRAM pages per DRAM page group.

DyLeCT updates the short CTE in the Pre-gathered Table

whenever it updates the unified CTE table (i.e., when it

promotes/demotes a page between memory levels).

To maximize CTE cache hit rate and store as many short

CTEs as possible, DyLeCT features a single CTE cache that
stores both pre-gathered and unified blocks. A single CTE

cache inherently allows dynamic partitioning as per workload

execution. Unlike the TLB, which is physically split across

different dedicated TLBs for 2MB and 4KB PTEs to provide

Figure 13: The figure shows Pre-gathered Table and Unified CTE Table in
DRAM. Pre-gathered Table stores tightly-packed short CTEs; it is 2b/8B=32x
smaller than Unified CTE Table. A 64B block of the Pre-gathered Table
enables DyLeCT to fetch up to 256 short CTEs (i.e., a pre-gathered block
covers up to 1MB of OS-visible memory). n is the total number of 4KB OS
pages in the system. Each 64B Unified Block also contains a dedicated bit
per constituent CTE to mark the CTE as long or short.

1136

Figure 14: Accessing Pre-gathered and Unified CTE tables during a CTE$ miss.

high bandwidth as TLBs are accessed for every instruction, a

unified CTE cache is feasible at the memory controller level,

where the access rate is much lower.
As a single CTE cache stores blocks from two distinct CTE

tables in DyLeCT, its behavior during hit and miss deviates

from prior works, which have only one type of CTE blocks.
1) CTE Cache Hit: We define a CTE cache hit as when

a memory access can be fulfilled by a cached CTE block,

regardless of whether it is a pre-gathered block or an unified

block. For a memory access to page p, DyLeCT first calculates

the address of p’s pre-gathered block (see 2 in Figure 14)

and then looks up the CTE cache for the pre-gathered block.

If the pre-gathered block hits in the cache, DyLeCT checks

whether the short CTE is valid. If it is, DyLeCT uses the

hashing function and short CTE to compute the DRAM page

address of the requested data. Else, DyLeCT looks for the

unified block in the cache; if cache hit, DyLeCT uses the

long CTE to access data. Figure 15 summarizes how DyLeCT

looks up the CTE cache to obtain short CTEs and long CTEs

to serve memory requests.

Figure 15: How the memory controller accesses data in memory. The common
case (in green) is when short CTE is valid (i.e., OS Page p is in ML0).

2) CTE Cache Miss: We define a CTE cache miss as

when the DRAM address for a memory request cannot be

determined by the CTE cache. As such, for a request to an

ML0 page, a cache miss occurs when both the pre-gathered

block and unified block are missing; for a request to an ML1

or ML2 page, however, a cache miss occurs when the unified

block misses in the cache.

At the time of each CTE miss, DyLeCT does not know

which memory level the requested page belongs to. The naive

option is to first assume the page is in ML0 and fetch the

pre-gathered block; if the assumption turns out wrong, then

sequentially fetch the unified block. However, this can double

the CTE access time. As such, DyLeCT fetches both blocks

in parallel; this can preserve the same CTE cache miss latency

as prior works (see Figure 16). Although this increases band-

width overhead per CTE cache miss, the aggregate bandwidth
overhead due to CTE cache misses is small (see Figure 23
in Section VI) because DyLeCT significantly reduces overall
CTE cache miss rate.

Figure 16: Comparing the timeline of a CTE cache miss in DyLeCT to prior
works. DyLeCT fetches both CTE blocks in parallel to avoid increasing the
latency of CTE misses. If the memory request is to an ML0 page, as soon as
either one of the two CTE block arrives, the ensuing data access can begin;
otherwise, the ensuing data access begins only after the unified block arrives.

As DyLeCT always fetches both CTE blocks per CTE

miss, it is presented with an option to selectively cache one

of the two blocks or to cache both. DyLeCT always caches

the pre-gathered block, which provides high translation reach;

DyLeCT also caches the unified block only if the memory

request suffering from the CTE miss is to an ML1 or ML2

page.

D. Overheads

Memory: Each short CTE needs a 2 bits per 4KB OS

page; therefore, the overhead of Pre-gathered Table is an

additional 0.006% of DRAM. The ML1→ML0 promotion

policy requires keeping a 5-bit access counter for every 4KB

OS page [50]. The overhead of these counters is 0.015% of

DRAM.

1137

Logic: Compared to the recent prior work TMCC, DyLeCT

is simpler due to only modifying the memory controller, with-

out touching the page walker and caches. However, compared

to TMCC, DyLeCT requires adding logic for: (i) DRAM

page calculation through a static hash function that uses OS

page address and its 2-bit Short CTE, and (ii) ML1→ML0

promotion policy which requires fetching a memory block

of access counters for comparison to identify cold victims.

These components can be implemented via basic shifters

and comparators, similar to a standard cache replacement

policy. DyLeCT also adds simple management logic for Pre-

gathered Table to update short CTE in Pre-Gathered Table

when DyLeCT moves a page between memory levels; this

update requires only one extra memory access.

Systems with multiple memory controllers: Like all prior

works, DyLeCT is a module within the memory controller

(MC). On a system with multiple MCs, each MC has its

own DyLeCT module that only compresses the data within its

locally-attached DRAM. As such, each MC manages its own

hardware data structures (e.g., the CTE tables) and has no need

for coherence across MCs. As each DyLeCT module is local to

one MC, each page can only be interleaved across the many

channels within one MC, instead of all channels across all
MCs. Prior work [27] reports such a slightly restricted memory

interleaving has minimal impact on performance.

V. METHODOLOGY

We use Gem5 [4] interfaced with Ramulator [18] as the

simulation platform to evaluate DyLeCT’s performance. We

use DRAMPower [5] for modeling memory subsystem power.

We evaluate large and irregular workloads used by recent

works on hardware memory compression and address trans-

lation [23], [27], [30]. Specifically, we evaluate the same

workloads as TMCC - nine benchmarks from GraphBig [24],

two benchmarks (mcf, omnetpp) from SPEC CPU2017 [42],

and one benchmark (canneal) from PARSEC 3.0 [3]. For

GraphBig and canneal, we evaluate multi-threaded execution.

For mcf and omnetpp, we run four single-threaded instances

for the evaluation.

We run applications under huge pages with Linux’s lib-

hugetlbfs library [21] to avoid randomness and reproducibil-

ity problems under transparent huge pages. We use Gem5’s

CPU 4 cores, 2.8GHz, 4-wide OoO, TLBs: 1024, RoB size: 224
Caches 32KB L1D$, 32KB L1I$, 256KB L2$, 1KB per core

walker cache [23], 2MB L3$ per core (8MB total)
Cache Latency L1$ Hit: 3 clk, L2$ Hit: 14 clk, L3$ Hit: 67 clk (Latencies

measured from CPU core; Latencies are accumulative of
higher level lookups)

Prefetchers Next-line with automatic enable/disable: L1$, L2$
Stride: L1$ (degree 2), L2$ (degree 4)

Memory DDR4-3200, 1 Channel, 8 Ranks, FR-FCFS policy with
bank fairness and row buffer hit cap,
tCL: 13.75ns, tRCD: 13.75ns, tRP: 13.75ns

CTE Cache DyLeCT: 128KB, 1MB reach per 64B Pre-gathered Block,
32KB reach per 64B Unified Block
TMCC: 128KB, 32KB reach per 64B CTE block
Hit Latency: 2 memory clk [6]

Table 3: Simulated microarchitecture parameters.

Figure 17: Bandwidth utilization of the evaluated benchmarks during the
simulated time window, assuming a conventional system without compression.

KVM mode to fast-forward every benchmark into its region

of interest. Next, we fetch all of the benchmark’s memory

values to place, compress, and pack them into the available

DRAM. We then simulate 5 seconds (>20 billion instructions)

under Gem5’s atomic mode to warm up DyLeCT’s memory

levels. Finally, we use Gem5’s cycle-accurate simulation to

warm up prefetchers and branch predictors for 10ms and then

use Gem5’s cycle-accurate simulation for 40ms to evaluate

performance. We use the total number of committed store
instructions per cycle as the metric of performance. Fig-

ure 17 characterizes the memory behavior of the evaluated

benchmarks during the simulated time window; the memory

bandwidth characterization assumes a conventional system

without memory compression.

Modeling the Baseline (TMCC): Since TMCC adaptively

compresses memory according to memory demand, we eval-

uate multiple compression settings; we evaluate the same low

and high compression setting as in the TMCC paper. Table 2

describes the two settings in more detail. The low compression

setting corresponds to an average compression ratio of 1.3x,

while the high compression setting corresponds to an average

compression ratio of 2.8x. Note that the TMCC optimization

of embedding CTEs within PTBs is not applicable in our

evaluation using huge pages.

Modeling DyLeCT: We evaluate 2-bit CTEs, which support

three DRAM pages per DRAM page group. We evaluate

DyLeCT under the same compression settings as the baseline

and use the same compression algorithm and, thus, compres-

sion/decompression latencies as the baseline.

Modeling a bigger system without memory compression:
We also model a bigger memory system with no compression.

This system does not suffer from any compression-related

performance overhead because it can fit everything in memory

without compression. As such, it incurs no compression-

related overheads (i.e., no translation overhead, no decompres-

sion latency, no bandwidth overhead).

VI. RESULTS

Figure 18 shows the performance of DyLeCT normalized

to TMCC at two different compression settings described in

Section V. On average across all benchmarks, the performance

benefit of DyLeCT is 10.25%. At low and high compression,

the benefits are 11% and 9.5%, respectively. Figure 18 also

shows the hypothetical upper-bound performance if CTEs

were hypothetically to always hit in the CTE cache. We

1138

see that DyLeCT’s performance is close to the upper bound

performance at both compression settings.

At low compression, canneal gets the highest benefit of

17%. canneal has a highly irregular access pattern; in our

real-system experiments earlier in Figure 3, we find that

canneal has the highest TLB misses per LLC miss when

the benchmarks use standard 4KB pages. However, canneal
also suffers the largest drop in performance going from low

compression to high compression; its performance benefit

drops to 10% at high compression. This is because under high

compression, canneal’s CTE cache hit rate reduces from 93%

to 74% (see Figure 19); under high compression, fewer pages

can be uncompressed and, therefore, fewer pages are in ML0.

For all other benchmarks, however, performance benefit at

high compression is very close to benefit at low compression.

Figure 18: Performance improvement over TMCC.

CTE Cache Hit Rate: The performance improvement

comes from improving CTE cache hit rate. Figure 19 shows

CTE cache hit rates. At low compression, DyLeCT increases

the overall average hit rate from 70% to 96%. At high

compression, DyLeCT improves the average CTE cache hit

rate from 67% to 91%. At high compression, DyLeCT’s hit

rate reduces compared to low compression; this is due to

relatively fewer pages in ML0 as more pages are compressed

into ML2 under high compression (see Figure 20).

Figure 19 also shows the split between pre-gathered block

hit and unified block hit for DyLeCT. We note that pre-

gathered blocks contribute the vast majority of CTE cache

hits in DyLeCT owing to their high 1MB reach. At high

compression, the hit rate of pre-gathered blocks is 77% on

average. The remaining 14% hits are due to unified blocks.

Latency: DyLeCT’s high CTE cache hit rate helps reduce

the average L3 miss latency compared to TMCC. Figure 21

shows how much TMCC and DyLeCT increases L3 miss

latency compared to a system with no compression. At low

and high compression, the average increase under DyLeCT is

2.9ns and 5.8ns. This is substantially lower than TMCC, which

increases L3 latency by 9.5ns and 12.8ns at low and high

compression, respectively.

Traffic: Figure 22 shows total memory traffic per instruction

for DyLeCT normalized to TMCC; it is 93%, on average.

Figure 19: CTE cache hit rate for DyLeCT at (a) low and (b) high
compression. Pre-gathered blocks in DyLeCT serve the majority of CTE cache
hits. At high compression, CTE cache hit rate is 91% (i.e., the CTE cache
serves translations for 91% of memory requests). Pre-gathered blocks serve
77% of memory requests; unified blocks serve the remaining 14%.

Figure 20: DRAM breakdown of ML0, ML1 and ML2 at high and low
compression. Under low compression, the size of ML0 scales up gracefully.

Figure 21: How much DyLeCT and TMCC increases L3 miss latency over a
system with No Compression. The latency overhead is shown in nanoseconds.

The total traffic includes all memory accesses – workload’s

memory accesses, page migration traffic, and memory accesses

to CTE blocks due to CTE cache misses.

Even though DyLeCT accesses two CTE blocks per CTE

cache miss (i.e., access both the pre-gathered block and unified

block), DyLeCT reduces CTE access traffic compared to

1139

Figure 22: Memory traffic per instruction normalized to TMCC.

TMCC (see Figure 23). This is because DyLeCT significantly

reduces CTE miss rate compared to TMCC.

Figure 23 also shows the total memory traffic normalized

to TMCC. DyLeCT’s total memory traffic is 4.5% higher

than TMCC. This increase in total memory traffic is due to

increased performance (i.e., more number of committed in-

structions), which leads to more memory accesses per second.

Figure 23: Memory traffic normalized to TMCC. Total memory traffic
accounts for all memory accesses (i.e., it includes each workload’s memory
requests, page migration traffic, and CTE cache misses).

DRAM Energy per instruction: By packing data more

densely in memory, hardware memory compression can help

reduce the carbon footprint of server memory by reducing

how many physical DRAM chips the system requires, which

reduces idle (e.g., refresh, standby) memory power; because

server memory are typically large, idle memory power tend to

dominate overall server memory power.

Figure 24 shows DRAM energy per instruction of

DyLeCT normalized to a bigger conventional mmemory

system without hardware memory compression. We evaluate

the bigger conventional system by using 2x as many DRAM

chips as DyLeCT (i.e., evaluate 16 ranks versus 8 ranks). On

average across all benchmarks, DRAM energy per instruction

is only 60% of a system without memory compression.

Beyond saving on memory energy per instruction, reducing

the number of physical DRAM chips can also reduces the

embedded carbon footprint of memory (e.g., by 2x when

reducing the number of DRAM chips by half).

Sensitivity Analysis - DRAM page group size: We vary

the DRAM page group size (i.e., # of pages addressable

Figure 24: DRAM energy per instruction normalized to No Compression.

by a short CTE) to observe the change in the fraction of

uncompressed pages in ML0 (see Figure 25). As DRAM page

group size increases, the fraction of uncompressed pages in

ML0 also increases. Figure 25 also shows that the fraction of

uncompressed pages in ML0 does not differ much between

DRAM page group size of 3 (i.e., 2-bit short CTEs) and 7

(i.e., 3-bit short CTEs). Without an increase in fraction of

uncompressed pages in ML0, using 3-bit short CTEs would

reduce CTE cache’s translation reach and slightly degrade

performance. Therefore, using 2-bit short CTEs is the sweet

spot for DyLeCT. With DRAM page group size of 3, 66% of

uncompressed pages are in ML0.

Figure 25: Fraction of Uncompressed Pages in ML0 when varying DRAM
page group size (i.e., # of pages addressable by a Short CTE). Fraction of
Uncompressed Pages in ML0 = # ML0 Pages/Total # Uncompressed Pages).
The results in the figure correspond to high memory compression.

VII. DISCUSSION AND OTHER RELATED WORK

DyLeCT is fully compatible with virtualization similar to

all prior works on hardware memory compression. Virtu-

alization adds a guest pseudo-physical address before the

host physical address whereas hardware memory compression

adds a translation (i.e., CTE) after the host physical address.

Moreover, as CTEs form a layer beyond the host physical

address, all hardware memory compression works including

DyLeCT function correctly for all OS page sizes (e.g., 1GB).

Therefore, DyLeCT is agnostic of the page size(s) the OS uses.

Near-memory Address Translation [36] and Mosaic Pages

[10] propose using shorter translations to speed up address

translation in the context of conventional OS-managed virtual-

to-physical address translation. Unlike DyLeCT, which dy-

namically switches the MC-managed translations (i.e., CTEs)

1140

of individual pages between long and short translations,

these works propose entirely replacing the conventional long

translations with short translations. Unlike the new address

translation layer (i.e., CTE layer) required by hardware mem-

ory compression, the conventional virtual-to-physical address

translation layer is managed by the OS; this makes dynami-

cally updating address translation several orders of magnitude

more costly than switching the length of translations under

DyLeCT. To use short translations on every page while keep-

ing the memory loss small, these prior works also use many

times longer short translations than DyLeCT (e.g., 7 bits per

translation, instead of 2 bits). Lastly, using short translations

on every page also simply won’t work for hardware memory

compression.

VIII. CONCLUSION

This paper proposes Dynamic Length Compressed-Memory

Translations (DyLeCT) to achieve huge-page-like translation

performance in the new layer of address translation required

by hardware memory compression. DyLeCT dynamically

switches between short translation and long translation for

each page individually. DyLeCT uses cache-friendly short

translations on the hottest pages to improve overall translation

performance and uses long translations on the colder pages

to preserve high effective memory capacity. For large and

irregular applications that use huge pages, DyLeCT signif-

icantly increases CTE cache hit rate and, thus, provides

10.25% performance improvement over the prior art, while

maintaining the same compression ratio. DyLeCT is also a

simple design that modifies only the memory controller.

ACKNOWLEDGMENT

We thank the National Science Foundation (NSF) for gener-

ously supporting this work through grants 1942590, 1919113,

and 2312785. We also thank Advanced Research Computing

(ARC) at Virginia Tech for providing computational resources.

REFERENCES

[1] S. Ainsworth and T. M. Jones, “Compendia: Reducing virtual-memory
costs via selective densification,” in Proceedings of the 2021 ACM
SIGPLAN International Symposium on Memory Management, ser.
ISMM 2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 52–65. [Online]. Available: https://doi.org/10.1145/
3459898.3463902

[2] J.-L. Baer, “Sectored (or subblock) caches.” [Online]. Avail-
able: https://courses.cs.washington.edu/courses/csep548/00sp/lectures/
class5/sld058.htm

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 72–81. [Online].
Available: https://doi.org/10.1145/1454115.1454128

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[5] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “Drampower: Open-
source dram power & energy estimation tool.” [Online]. Available:
http://www.drampower.info

[6] E. Choukse, M. Erez, and A. R. Alameldeen, “Compresso: Pragmatic
main memory compression,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
51. IEEE Press, 2018, p. 546–558. [Online]. Available: https:
//doi.org/10.1109/MICRO.2018.00051

[7] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in Proceedings of the 32nd Annual International Symposium
on Computer Architecture, ser. ISCA ’05. USA: IEEE Computer
Society, 2005, p. 74–85. [Online]. Available: https://doi.org/10.1109/
ISCA.2005.6

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVII. New York, NY, USA:
Association for Computing Machinery, 2012, p. 37–48. [Online].
Available: https://doi.org/10.1145/2150976.2150982

[9] M. Gorman and P. Healy, “Performance characteristics of explicit
superpage support,” in Proceedings of the 2010 International Conference
on Computer Architecture, ser. ISCA’10. Berlin, Heidelberg: Springer-
Verlag, 2010, p. 293–310. [Online]. Available: https://doi.org/10.1007/
978-3-642-24322-6 24

[10] K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek, N. Mukherjee,
K. Sriram, G. Tagliavini, E. West, M. A. Bender, A. Bhattacharjee,
A. Conway, M. Farach-Colton, J. Gandhi, R. Johnson, S. Kannan,
and D. E. Porter, “Mosaic pages: Big tlb reach with small pages,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 433–448. [Online].
Available: https://doi.org/10.1145/3582016.3582021

[11] H. Hadian, M. Farrokh, M. Sharifi, and A. Jafari, “An elastic and traffic-
aware scheduler for distributed data stream processing in heterogeneous
clusters,” The Journal of Supercomputing, vol. 79, no. 1, pp. 461–
498, Jan 2023. [Online]. Available: https://doi.org/10.1007/s11227-022-
04669-z

[12] H. Hadian and M. Sharifi, “Gt-scheduler: a hybrid graph-partitioning
and tabu-search based task scheduler for distributed data stream
processing systems,” Cluster Computing, Feb 2024. [Online]. Available:
https://doi.org/10.1007/s10586-023-04260-y

[13] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K.-H. Kim, and
M. Healy, “Attaché: Towards ideal memory compression by mitigating
metadata bandwidth overheads,” in 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2018, pp. 326–338.

[14] A. Hunter, C. Kennelly, P. Turner, D. Gove, T. Moseley, and
P. Ranganathan, “Beyond malloc efficiency to fleet efficiency: a
hugepage-aware memory allocator,” in 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, Jul. 2021, pp. 257–273. [Online]. Available:
https://www.usenix.org/conference/osdi21/presentation/hunter

[15] Intel, “Intel xeon w-3175x processor,” Last
accessed on Jul 31, 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/189452/intel-
xeon-w3175x-processor-38-5m-cache-3-10-ghz/specifications.html

[16] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 329–340.

[17] S. Kim, S. Lee, T. Kim, and J. Huh, “Transparent dual memory
compression architecture,” in 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2017, pp.
206–218.

[18] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49, Jan.
2016. [Online]. Available: https://doi.org/10.1109/LCA.2015.2414456

[19] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Ingens:
Huge page support for the os and hypervisor,” SIGOPS Oper. Syst.
Rev., vol. 51, no. 1, p. 83–93, sep 2017. [Online]. Available:
https://doi.org/10.1145/3139645.3139659

[20] T. Lee, S. K. Monga, C. Min, and Y. I. Eom, “Memtis: Efficient
memory tiering with dynamic page classification and page size
determination,” in Proceedings of the 29th Symposium on Operating
Systems Principles, ser. SOSP ’23. New York, NY, USA: Association

1141

for Computing Machinery, 2023, p. 17–34. [Online]. Available:
https://doi.org/10.1145/3600006.3613167

[21] libhugetlbfs, “libhugetlbfs.” [Online]. Available: https://github.com/
libhugetlbfs/libhugetlbfs

[22] Linux Kernel Docs, “Transparent hugepage support,” Last accessed
on Jul 31, 2023. [Online]. Available: https://docs.kernel.org/admin-
guide/mm/transhuge.html

[23] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1023–1036. [Online]. Available: https://doi.org/10.1145/3352460.
3358294

[24] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
Understanding graph computing in the context of industrial solutions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2807591.2807626

[25] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient fine-
grained os support for huge pages,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 347–360.
[Online]. Available: https://doi.org/10.1145/3297858.3304064

[26] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” SIGPLAN Not., vol. 53, no. 2, p. 679–692, mar 2018. [Online].
Available: https://doi.org/10.1145/3296957.3173203

[27] G. Panwar, M. Laghari, D. Bears, Y. Liu, C. Jearls, E. Choukse, K. W.
Cameron, A. R. Butt, and X. Jian, “Translation-optimized memory com-
pression for capacity,” in 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022, pp. 992–1011.

[28] G. Panwar, D. Zhang, Y. Pang, M. Dahshan, N. DeBardeleben,
B. Ravindran, and X. Jian, “Quantifying memory underutilization in
hpc systems and using it to improve performance via architecture
support,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 821–835.
[Online]. Available: https://doi.org/10.1145/3352460.3358267

[29] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated page: Supporting fragmented memory allocation for large
pages,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 913–925.

[30] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, Every
Walk’s a Hit: Making Page Walks Single-Access Cache Hits. New
York, NY, USA: Association for Computing Machinery, 2022, p.
128–141. [Online]. Available: https://doi.org/10.1145/3503222.3507718

[31] S. Park, I. Kang, Y. Moon, J. H. Ahn, and G. E. Suh, “Bcd
deduplication: effective memory compression using partial cache-
line deduplication,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 52–64. [Online].
Available: https://doi.org/10.1145/3445814.3446722

[32] A. Patil, V. Nagarajan, R. Balasubramonian, and N. Oswald, “Dvé:
improving dram reliability and performance on-demand via coherent
replication,” in Proceedings of the 48th Annual International Symposium
on Computer Architecture, ser. ISCA ’21. IEEE Press, 2021, p.
526–539. [Online]. Available: https://doi.org/10.1109/ISCA52012.2021.
00048

[33] G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A low-
complexity, low-latency main memory compression framework,” in 2013
46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013, pp. 172–184.

[34] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in Proceedings
of USENIX Security’16, 2016.

[35] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Coa-
lesced large-reach tlbs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 258–269.

[36] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-memory address translation,”
in 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). Los Alamitos, CA, USA: IEEE

Computer Society, sep 2017, pp. 303–317. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PACT.2017.56

[37] C. Qian, L. Huang, Q. Yu, Z. Wang, and B. Childers, “Cmh:
Compression management for improving capacity in the hybrid
memory cube,” in Proceedings of the 15th ACM International
Conference on Computing Frontiers, ser. CF ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 121–128.
[Online]. Available: https://doi.org/10.1145/3203217.3203235

[38] V. S. S. Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources for all page sizes in x86 processors,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1106–1120. [Online]. Available:
https://doi.org/10.1145/3466752.3480062

[39] RedHat, “How to use, monitor, and disable transparent hugepages in
red hat enterprise linux 6 and 7?” Last accessed on Jul 31, 2023.
[Online]. Available: https://access.redhat.com/solutions/46111

[40] J. Rothman and A. Smith, “Sector cache design and performance,”
in Proceedings 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), 2000, pp. 124–133.

[41] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, Elastic Cuckoo
Page Tables: Rethinking Virtual Memory Translation for Parallelism.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1093–1108. [Online]. Available: https://doi.org/10.1145/3373376.
3378493

[42] Standard Performance Evaluation Corporation, “Spec cpu2017,”
https://www.spec.org/cpu2017/.

[43] R. Tremaine, T. Smith, M. Wazlowski, D. Har, K.-K. Mak, and S. Arram-
reddy, “Pinnacle: Ibm mxt in a memory controller chip,” IEEE Micro,
vol. 21, no. 2, pp. 56–68, 2001.

[44] VMWare, “Performance best practices for vmware cloud on aws,”
2021. [Online]. Available: https://docs.vmware.com/en/VMware-Cloud-
on-AWS/services/vmc-aws-performance.pdf

[45] J. Wang and M. Balazinska, “Elastic memory management for cloud data
analytics,” in Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC ’17. USA: USENIX
Association, 2017, p. 745–758.

[46] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet,
B. Sharma, T. Heo, M. Jain, C. Tang, and D. Skarlatos, “Tmo:
Transparent memory offloading in datacenters,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
609–621. [Online]. Available: https://doi.org/10.1145/3503222.3507731

[47] Wikichip, “Skylake (server) - microarchitectures - intel,” Last accessed
on Jul 31, 2023. [Online]. Available: https://en.wikichip.org/wiki/intel/
microarchitectures/skylake (server)

[48] V. Young, S. Kariyappa, and M. K. Qureshi, “CRAM: efficient
hardware-based memory compression for bandwidth enhancement,”
CoRR, vol. abs/1807.07685, 2018. [Online]. Available: http://arxiv.org/
abs/1807.07685

[49] V. Young, S. Kariyappa, and M. K. Qureshi, “Enabling transparent
memory-compression for commodity memory systems,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 570–581.

[50] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1–14. [Online].
Available: https://doi.org/10.1145/3123939.3124555

[51] D. Zhang, G. Panwar, J. B. Kotra, N. DeBardeleben, S. Blanchard,
and X. Jian, “Quantifying server memory frequency margin and
using it to improve performance in hpc systems,” in Proceedings of
the 48th Annual International Symposium on Computer Architecture,
ser. ISCA ’21. IEEE Press, 2021, p. 748–761. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00064

[52] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie, and
P. Faraboschi, “Buri: Scaling big-memory computing with hardware-
based memory expansion,” ACM Trans. Archit. Code Optim., vol. 12,
no. 3, oct 2015. [Online]. Available: https://doi.org/10.1145/2808233

[53] K. Zhao, K. Xue, Z. Wang, D. Schatzberg, L. Yang, A. Manousis,
J. Weiner, R. Van Riel, B. Sharma, C. Tang, and D. Skarlatos,

1142

“Contiguitas: The pursuit of physical memory contiguity in datacenters,”
in Proceedings of the 50th Annual International Symposium on
Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589079

[54] W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis
of superpage management mechanisms and policies,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, Jul. 2020, pp. 829–842. [Online]. Available: https:
//www.usenix.org/conference/atc20/presentation/zhu-weixi

1143

