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Abstract—High bandwidth memory (HBM) is a new emerging
technology that aims to improve the performance of bandwidth-
limited applications. Even though it provides high bandwidth, it
must be augmented with DRAM to meet the memory capac-
ity requirement of many applications. Due to this limitation,
objects in an application should be optimally placed on the
heterogeneous memory subsystems. In this study, we propose
an object placement algorithm that places program objects to
fast or slow memories in case the capacity of fast memory
is insufficient to hold all the objects to increase the overall
application performance. Our algorithm uses the reference counts
and type of references (read or write) to make an initial
placement of data. In addition, we perform various memory
bandwidth benchmarks to be used in our placement algorithm
on Intel Knights Landing (KNL) architecture. Not surprisingly
high bandwidth memory sustains higher read bandwidth than
write bandwidth, however, placing write-intensive data on HBM
results in better overall performance because write-intensive data
is punished by the DRAM speed more severely compared to read-
intensive data. Moreover, our benchmarks demonstrate that if
a basic block makes references to both types of memories, it
performs worse than if it makes references to only one type of
memory in some cases. We test our proposed placement algorithm
with 6 applications under various system configurations. By
allocating objects according to our placement scheme, we are
able to achieve a speedup of up to 2x.

Index Terms—high bandwidth memory, object placement,
MCDRAM, DRAM, KNL

I. INTRODUCTION

Memory bandwidth in multicore systems is not scaling fast

enough to feed data to increasing number of cores, making the

performance of many applications bound by memory band-

width [31], [23], [30]. In efforts to overcome the bandwidth

limitation of many systems, high bandwidth memory (HBM)

has been recently developed [14]. The high bandwidth memory

often needs a secondary high capacity memory (DDR) to meet

the memory requirements of an application. This memory

configuration is expected to continue until the cost of 3D

technology reduces to the same price level per bit of capacity

as the high capacity lower-bandwidth DDR memories [2].

In such a heterogeneous memory setting, the performance

of an application relies on how different memories are utilized

by the programmer because each memory differs in bandwidth

from one another. An optimal or near-optimal object placement

strategy can allow the application to scale efficiently on the

underlying system and reach the full potential of any system’s

performance capability. We propose an object placement tool

that suggests a placement policy to the programmer for each

object. The proposed algorithm finds a placement based on

the size of each object, its reference count and the space

availability in the fast memory. Our tool first performs profiling

of the application to obtain reference count of the objects in

an application. Due to its higher bandwidth, keeping highly

referenced objects in the fast memory would result in better

performance of the application and would likely increase its

sustained bandwidth. In cases where fitting the entire data

in fast memory is not possible due to its space limitation

our tool only suggests those objects that maximize memory

accesses from fast memory based on the individual read-write

bandwidths of both fast and slow memories.

To test our tool, we use Intel Knights Landing (KNL)

processor and its MCDRAM as the fast memory, while DDR

being the slow memory and refer to them likewise in the

rest of the paper. In order to quantify the read and write

bandwidths of HBM in KNL, we perform the STREAM

benchmark [19] under various scenarios. The copy and triad

kernels of STREAM provide us with a better understanding of

the capabilities of both the fast and slow memories. The results

from KNL benchmarks suggest that reads are faster than writes

on both memory types. We devise a modified triad benchmark

to assess the effect of mixed accesses, that is, the effect of

accessing objects from different memories while executing a

single program statement. We observe that in some cases the

observed bandwidth of referencing to two types of memories

in a basic block is worse than the bandwidth of referencing to

a single type of memory. In summary, we make the following

contributions in this work.

• We devise a set of benchmarks derived from well-known

STREAM benchmark to conduct in-depth analysis of

MCDRAM on Intel KNL architecture. These benchmarks

allow us to measure how the fast and slow memories on

KNL perform under various conditions.

• We propose a placement algorithm that suggests possible

placements for objects in a program on the fast or slow

memories. The algorithm works for any heterogeneous

memory architecture, however, in this paper, we test our
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algorithm on Intel KNL only.

• To evaluate the performance of the placement algorithm,

we use a diverse set of applications and we observe a

speedup of up to 2x.

The remainder of the paper is organized as follows.

Section II discusses related work. Section III presents the

STREAM benchmark results and motivates our work. In Sec-

tion IV we describe our placement algorithms and Section V

presents the methodology. Results are presented in Section VI

and conclusions are in Section VII.

II. RELATED WORK

Heterogeneous memory systems that combine different

types of memories have been proposed as a solution to mitigate

the scalability problems of memory bandwidth-limited appli-

cations [20], [5]. However such systems expose programming

complexities because the programmer has to decide placement

of objects on different types of memories for best performance.

There have been various works which propose solutions to

make programming such systems easier for the programmer.

Some of these techniques are operating system (OS)-based

[34], [17] or hardware-based [22], [21], [33], where place-

ment decision relies on pages rather than objects. Managing

placement through the aforementioned approaches relieves

the programmer of any additional changes to the program.

However because the granularity of placement is based on

pages, multiple objects that reside on the same page can

be placed on the same type of memory even though these

objects have very different reference traces. Our tool provides

a placement policy based on individual objects, enabling a

finer-grained management of placement.

Hassan et al. [12] shows that the software-based object

placement approach for NVRAM systems is better than current

state-of-the-art hardware or OS approaches. They argue that

placement at the granularity of objects is better than placement

at the granularity of pages. Their work also concludes that such

an approach is more energy efficient than placement managed

by hardware or OS. We adopt the object-based approach and

apply it to the KNL architecture to improve the observed

bandwidth by the application. Another work that uses object-

based placement but for NVRAM and DRAM system is from

Dulloor et al. [11]. The authors propose a tool, X-Mem, which

provides an API that works on top of the default malloc

function. Initially, the programmer has to explicitly tag data

structures that will increase the application performance if kept

in the fast memory. After tagging all such data structures, the

program does profiling using Intel Pin [18]. Access counts

are then used in a function, which calculates the benefit of

keeping each data structure in the fast memory. Then the X-

Mem allocator API uses jemalloc to allocate objects.

Similarly, in [29], authors propose an access pattern-aware

solution for object placement for hybrid DRAM and NVRAM

memories, which uses a static code analysis tool, ExaSAT[30],

to gather application information at compile time. In that

work, dynamic and static energy consumption of NVRAM

plays an important role in making decisions about object

placement. While our approach uses runtime information,

sustained bandwidth of an application is the main objective

for placement.

Some of the early work for data placement for heteroge-

neous memory systems use simulators rather than real archi-

tectures [8], [16], [32]. Steinke et al. [28] performs placement

of programs on a scratchpad memory in embedded devices.

In their approach, they place a method and its variables in

a program on the fast memory, based on the number of

instructions executed by each member function or variable

access. The authors associate the instruction counts with

their corresponding energy consumption and use Knapsack

algorithm [24] to statically place objects on fast memory.

Closest work to ours is from Shen et al. [25], which

studies the impact of heterogeneous systems on KeyStone II

architecture. They develop a profiling tool called DataPlacer

built on top of the Intel’s Pin tool [18] that provides insights

to programmers while porting code to systems with multiple

types of memories. DataPlacer and their benchmark suite are

designed for heterogeneous processor systems where there

are two types of processors, each having its independent

memory resource. Whereas our work focuses on systems with

heterogeneous memories managed and accessed by a single

type of compute resource.

III. MEMORY BANDWIDTH BENCHMARKS

To construct the placement algorithm for heterogeneous

memory systems, we first study the capabilities of a system

equipped with an HBM augmented with DDR. One of the

variants of HBM recently introduced by Intel is MCDRAM, or

Multi-Channel DRAM in the KNL processor [27]. MCDRAM

is a configurable memory module, which can be set to either

of the three modes on boot. These modes represent their

accessibility by the programmer and their ease of use. The

modes also define the granularity level at which an application

can be configured to leverage maximum advantage from it.

These modes are 1) Cache Mode, 2) Flat Mode, and 3) Hybrid
Mode. In cache mode, MCDRAM acts as the last level cache

to DRAM. The memory management in this mode is done

by the hardware requiring no changes in the software. The

downside of this mode is its added latency on cache misses.

The second configurable mode is the flat mode, in which

MCDRAM acts as a separately addressable memory module.

This allows the programmer to control object placement to the

level of granularity that they deem fit in order to maximize

the application performance. Lastly, the hybrid mode is a

combination of the two aforementioned modes, where part

of the MCDRAM acts as the cache and the rest acts as a

separately addressable memory. In this work, we are interested

in the flat mode of MCDRAM since it allows the programmer

to decide which objects to place on what kind of memory

explicitly.

In this section we conduct bandwidth benchmarks to verify

the capability of HBM in particular to what extent can it

benefit an application. The STREAM benchmark is the de
facto standard for performing bandwidth analysis of memory
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Fig. 1: Stream Triad Benchmark results for MCDRAM and

DDR with KMP AFFINITY = Scatter.

modules [19]. We have modified the STREAM benchmark to

mimic various scenarios. The modified benchmarks and their

results are discussed in detail in the following sections.

A. Experiment Setup

We perform our experiments on KNL processor equipped

with 68 cores. MCDRAM in KNL acts as a fast memory and

DRAM acts as a high capacity slow memory for our experi-

ments. The system is configured to Sub-NUMA 4 clustering

(SNC-4) mode with MCDRAM set to flat mode. Cores are dis-

tributed in tiles. Each tile consists of 2 cores, a shared L2 cache

of 1MB and 4 Vector Processing Units, 2 for each core. In

SNC-4, two of the clusters have 16 cores each while the other

two have 18 cores each. Each cluster in SNC-4 mode stores

data associated with its cores on the nearest MCDRAM non-

uniform memory access (NUMA) node. This results in a lower

latency for memory accesses. Flat mode allows us to manage

the MCDRAM through the Memkind library [6]. Unless stated

otherwise we set the affinity of threads to scatter instead of

compact by using the flag KMP_AFFINITY=scatter. This

allows the application to fully utilize the multiple channels

accessing the memory modules removing any chances of

congestion when fewer number of threads than cores are

running. We use the qopt-streaming-stores flag and

set it to always to bypass the cache since there is no data

reuse in the stream benchmark. The Memkind library [6]

developed by Intel provides an interface to allocate objects

manually to available memory types. We use interleaved
memory allocation provided by the library such that memory

addresses are allocated to all memory banks in turn.

B. STREAM Benchmark

In this section we describe the results obtained from unmod-

ified STREAM benchmark on KNL. We focus on the triad and

copy kernels of STREAM:

1) COPY : A[i] = B[i]
2) TRIAD : A[i] = alpha ∗B[i] + C[i]

In our experiments, data was explicitly allocated to the desired

type of memory using the Memkind library. With explicit

73

138

161 165 164

128

77 83
65 58

32
14

0

20

40

60

80

100

120

140

160

180

8 16 32 64 128 256

Ba
nd

w
id

th
 (G

B/
s)

Number of Threads

Copy to MCDRAM from DDR Copy to DDR from MCDRAM

Fig. 2: Copy operation to and from the two memory types.

allocation we assert that the data is only placed on the memory

of our choice and this allows us to verify the bandwidth

difference between on-package MCDRAM and the DDR.

Figure 1 shows the triad bandwidth achieved using the un-

modified STREAM benchmark. MCDRAM observes around

450 GB/s, which matches the published figures by Intel [15].

In Sub-NUMA cluster mode by varying the number of threads,

we experience that the peak bandwidth is achieved earlier,

starting from only 64 threads and onwards, if the thread affinity

is set to scatter. This means that the threads are distributed

evenly across the tiles on all four clusters on the chip, which

translates to better usage of the eight access channels of

MCDRAM.

C. Copy Bandwidth Between Two Memories

Next we measure the sustained bandwidth of copying data

from one memory to another. We modified the stream bench-

mark to copy objects from MCDRAM to DDR and vice versa

by allocating source array to one memory and destination

array to another. Similarly, these objects are allocated in an

interleaved fashion. Figure 2 demonstrates the results of the

copy operation. The experiments show that the copy bandwidth

from MCDRAM to DDR is lower than the copy bandwidth

from DDR to MCDRAM, which made us investigate the

read and write bandwidths separately for the two types of

memories. Figure 2 also shows that as the number of threads

increase, the copy bandwidth to DDR decreases dramatically

to only 14 GB/s using all the available threads.

D. Read vs Write Bandwidths

In this section we investigate the read and write bandwidths

of MCDRAM and DDR. The experiments show MCDRAM

bandwidth of 350 GB/s and 270 GB/s for read and write,

respectively. It seems that up to 32 cores, the benchmark

is not bandwidth-limited on MCDRAM. In general write

operations have slightly less overhead than reads in terms

of data movement. The higher cost of write at the memory

controller or in the memory shows up only when the ap-

plication becomes bandwidth-limited. We see this trend on

MCDRAM up to 32 cores, when the write performance is
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Fig. 3: Read-Write bandwidth comparison between DDR and

MCDRAM.

0

50

100

150

200

250

300

350

400

450

500

8 16 32 64 128 256

Ba
nd

w
id

th
 (G

B/
s)

Number of Threads

A[i] = B[i] + α*C[i]All-DDR

All-MCDRAM

DDR(A,B) , MCDRAM(C)

DDR(B,C) , MCDRAM(A)

DDR(C) , MCDRAM(A,B)

DDR(A) , MCDRAM(B,C)

Fig. 4: Triad bandwidth comparison of objects placed in
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better than read. Bandwidth on DDR is more stable with

varying number of threads, 88 GB/s and 50 GB/s for reads

and writes, respectively.

E. Mixed Triad Benchmark

In this benchmark, we measure the sustained bandwidth

when an operation makes references to both types of memories

to either load or store its operands. Measuring the bandwidth

for different configurations is important because in an appli-

cation objects referenced in a loop or basic block may come

from different memory types thus observed bandwidth can be

lowered than that of if all objects are referenced from a single

type of memory. The triad operation uses three data objects

A,B and C and a scalar quantity α. We modify the stream

triad and place the objects as follows:

1) A and B in MCDRAM, C in DDR

2) A in MCDRAM, B and C in DDR

3) B and C in MCDRAM, A in DDR

4) C in MCDRAM, A and B in DDR

Figure 4 shows very interesting results. We observe that

the best performance is achieved in the first configuration

where the MCDRAM contains two of the objects and one

of them is the object associated with the write operation.

This is because the MCDRAM can handle both reads and

writes at a higher bandwidth than DDR. Among these four

configurations, the lowest bandwidth is observed in the third

case, where MCDRAM has both of the read-intensive objects,

while DDR has the write-intensive object. This shows that

the write operation to DDR becomes the bottleneck causing

the entire operation to be limited to only approximately 80

GB/s at 64 threads, in which use of MCDRAM provides

no performance benefit. We compare these four cases with

two additional cases where all the data is either kept in

the MCDRAM or DDR. As expected the best bandwidth is

achieved when all the objects are in MCDRAM. However, the

performance of all objects in DDR is better than configurations

3) and 4) when more than 64 threads are used.

F. Discussion of Memory Benchmarks
We propose the following placement scheme for Intel KNL

architecture. If the size of data is less than the remaining

space in MCDRAM, we suggest allocating all objects to the

MCDRAM. If the size of data exceeds that of the remaining

space in MCDRAM (fast memory), then we suggest allocating

write intensive data to MCDRAM while the read intensive data

to DDR (slow memory). The read bandwidth of MCDRAM

is higher than its write bandwidth, same is the case for DDR.

However, if we perform object placement according to higher

bandwidth criteria, the write bandwidth of DDR would lead

to the overall bandwidth of the system to become a bottleneck

causing the overall sustained bandwidth to be lower than the

case when write intensive data is allocated in MCDRAM.

A higher bandwidth policy might heavily penalize the ap-

plication. This finding constitutes the basis of our placement

algorithm, which will be discussed in the next section.

IV. PLACEMENT ALGORITHM

This section discusses the proposed object placement algo-

rithm. We discuss the naive placement algorithm and present

an optimized version of it. Then we improve that algorithm by

differentiating read references from write references for each

object.

A. Naive Algorithm
The naive version of the algorithm picks objects greedily

according to their frequency of accesses along with their sizes.

It takes three inputs 1) the sizes of each object, 2) the reference

count of each object, and 3) the fast memory size. First,

it computes all the possible sets of objects in a program.

Then by iterating over all the sets generated in the previous

step, it calculates the total size requirement and the total

reference count for each subset. In the meantime the algorithm

checks if the total object size of the subset exceeds the fast

memory capacity, if so, it excludes that particular subset from

consideration of potential placement on the fast memory. It

repeats this procedure until all the subsets are consumed and

returns the subset with the highest overall reference count

while having enough size to be accommodated in fast memory.

The runtime complexity of this algorithm grows exponentially

therefore we improve this algorithm, which will be discussed

next.

132



B. Improved Placement Algorithm

To improve the time complexity of the naive placement

algorithm, we resort to a dynamic programming scheme,

which is largely known as the Knapsack algorithm [24].

This algorithm brings down the complexity of our approach

from exponential to pseudo-exponential time, allowing us to

generate mappings for a relatively large input. In the placement

problem, the knapsack is considered as the fast memory. It is

associated with a maximum weight that it can carry, which

in our case is the total capacity of the fast memory. The data

objects to be placed on fast memory are represented as the

individual items, which can be carried by the knapsack. These

individual items have the properties of weight and a value,

which in our case are the sizes of each object and its reference

count, respectively. High reference count refers to a high value.

The objective is to maximize the most valuable objects in fast

memory without overloading it. Unlike the naive algorithm,

this algorithm does not generate all the possible combinations

of the input. Instead it computes the best possible solution

(object mapping on fast memory) for each value of the size

from one to maximum fast memory size recursively.

We present two flavors of the improved placement algorithm

based on Knapsack. The first one takes into account the total

number of references made by an object. In this case, an

object’s fate is decided only by its overall reference count

without differentiating references as read or write. We refer

to this flavor as write-agnostic placement. As discussed in

Section III the read and write bandwidths differ for both fast

and slow memories. Therefore, for a program with objects

having widely varying read and write counts, we propose the

second flavour of the improved algorithm. We refer to this

variant as write sensitive placement.

1) Write-Agnostic Placement: Algorithm 1 shows the

pseudo code of this algorithm based on the dynamic pro-

gramming implementation of Knapsack. First, the algorithm

initializes four data structures, namely M, inFast, access, and

size. M is the grid in which we evaluate whether to include an

object, inFast is a boolean auxiliary grid where we store the

decision of inclusion of each object, access stores the reference

counts of each object and S stores the size in kilobytes of each

object. The variables n indicates the number of objects and W
is the capacity of fast memory. In line 8, the algorithm iterates

over the objects considering each sub-solution at a time. At

each iteration of the first for loop, the algorithm considers the

object if its size is less than or equal to the current size being

considered on the fast memory. If the object can fit inside

the fast memory, the algorithm checks (line:12-15) if keeping

the object in fast memory is better than the current objects in

fast memory. If the object qualifies to be in the fast memory, a

value of true is set for that object in the boolean grid. When all

the objects in the list are considered, the algorithm terminates.

After this, another loop iterates over the boolean grid to select

the selected items. These items are finally suggested to the

programmer to place on the fast memory.

Algorithm 1 Object Placement

1: procedure PLACEOBJECTS(Objects, M, inFast, Access,

S, α)

2: M[0:n-1][0:W-1] ← 0

3: inFast[0:n-1][0:W-1] ← false

4: Access[0:n-1] ← Access counts for objects

5: Reads[0:n-1] ← getReadAccesses(Access)

6: Writes[0:n-1] ← getWriteAccesses(Access)

7: S[0:n-1] ← Object Sizes

8: Candidates ← {}
9: for i = 1...n do

10: for j = 0...W do
11: Mi,j ← Mi−1,j

12: if Si−1 ≤ j then
13: Mi,j ← max(Mi−1,j , Readsi−1 + α∗

Writesi−1 +Mi−1,j−Si−1)
14: if Mi,j > Mi−1,j then
15: inFasti,j ← true

16: end if
17: end if
18: end for
19: end for
20: while n > 0 do
21: if inFastn,W ==true then
22: Candidates.push(Objectsn−1.getName())

23: W = W − Sn

24: end if
25: n = n− 1
26: end while
27: return Candidates

28: end procedure

2) Write-Sensitive Placement: To address both reads and

writes separately, we allocate two separate data structures, one

for each type of reference counts for all objects, namely Reads
and Writes in Algorithm 1. The working of the algorithm is

the same as described in the previous section. However, for

this case, when an object is being considered to be placed

in the fast memory, its write access count is multiplied by a

coefficient, α to weight writes more than reads. The value of

α can vary between different heterogeneous memory systems.

For KNL, we observe that read bandwidth is roughly 1.5 times

the write bandwidth, therefore we use the coefficient as 1.5 in

our experiments. The coefficient for another system could be

determined by measuring the ratio between its read and write

bandwidths. By using a coefficient, we penalize the reads.

V. METHODOLOGY

For characterizing the application behaviour, there are vari-

ous tools based on static code analysis, binary instrumentation

or profiling [7], [26], [1]. However many of these tools provide

overall behaviour of the application but do not offer detailed

object specific information. To gather object level information,

we leverage the ADAMANT tool [10] developed at the San

Diego Supercomputer Center. ADAMANT combines both
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hardware counters and simulations to collect performance data.

It captures the data objects that are statically, dynamically or

automatically allocated and maintains an object database and

their associated events. The tool distinguishes between stores

and loads which allows us to make decisions based on different

behavior of an object during its life cycle.

The placement tool that we have developed has two phases

of execution. In the first phase, we acquire the object-level

statistics using ADAMANT. These statistics include distin-

guished reads and writes reference along with the size of the

object, which are fed into the placement algorithm. The algo-

rithm then suggests which objects to be placed on fast memory.

Currently, we provide the candidate object information to the

programmer and it is programmer’s responsibility to allocate

these objects on the suggested memory module. Our future

work will focus on easing the allocation part of the placement

and will remove the need of programmer’s intervention.

VI. EVALUATION

To evaluate the proposed placement algorithm, we perform

experiments on the Intel KNL architecture using 64 threads

with thread affinity set to scatter. We compare the performance

of the placement algorithm against various system configura-

tions summarized in Table I.

1) All-DDR: All objects are allocated in the slow memory

(DDR).

2) All-MCDRAM: All objects are allocated in the fast

memory (MCDRAM).

3) 4GB Cache: We make all allocations to the DDR

in this mode and let the hardware cache objects into

MCDRAM. We also fix the size of MCDRAM acting

as last level cache to 4GB for a fair comparison with

our placement algorithm where there is no cache. In

this configuration, no explicit allocations are made to

the MCDRAM.

4) 8GB Cache: This configuration is the same as the

previous one except that the MCDRAM size acting as

last level cache is 8GB. This configuration allows us

to compare our placement algorithm, where we set the

cache size to 4GB and fast memory size to 4GB.

5) Our Placement w/o Cache: We allocate objects on the

fast memory based on the suggestions provided by our

placement algorithm. The fast memory size is set to 4GB

in the algorithm. No hardware caching is enabled.

6) Our Placement w/ Cache: This is similar to the previ-

ous configuration, however we augment the allocatable

fast memory used by our placement algorithm with last

level cache by setting aside 4GB of MCDRAM for

hardware caching.

We have two flavours of the placement algorithm as de-

scribed in Section IV. Write-Agnostic allocates objects on

the fast memory by considering load and store accesses

cumulatively. Write-Sensitive favors stores over loads during

calculating the suggested placement. For our experiments, we

have set the coefficient to 1.5 as discussed in Section IV-B2.

TABLE I: System configuration modes

Fast
Memory

Slow
Memory

Cache
(L3)

Boot
Mode

All-DDR — 384GB — Flat

All-MCDRAM 16GB — — Flat

4GB Cache — 384GB 4GB Hybrid

8GB Cache — 384GB 8GB Hybrid

Our Placement
(w/o Cache)

4GB 384GB — Flat

Our Placement
(w/ Cache)

4GB 384GB 4GB Hybrid

1.90

2.48

1.96

1.43

0.97
0.90

1.90

2.48

1.96

1.46

1.19

0.90

2.76

0.84

1.96

1.43

1.15

0.97

0
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3

Triad Matrix Transpose CG HotSpot Image
Segmentation

BFS

Our Placement (w/o Cache) Speedup over All-DDR

Write-Agnostic

Write-Sensitive

All-MCDRAM

Fig. 5: Speedup of our placement configuration achieved over

placing all objects in the slow memory

In the evaluations, we use 6 applications, whose descriptions

are provided in table II. We evaluate applications based on the

speedups achieved, which allows us to compare applications

with varying execution times in a single figure.

A. Comparison against All-DDR and All-MCDRAM

Figure 5 illustrates the speedup achieved by the proposed

placement without L3 cache over the All-DDR configuration,

i.e. when all the data of an application is placed on the slow

memory. The figure also shows the case when all the data is

allocated on the fast memory. Both versions of our placement

algorithm outperform the All-DDR for most of the applica-

tions. However, we observe a performance degradation in BFS.

This is mainly due to the nature of graph traversal applications.

Such applications are limited by memory latency [3]. The

memory latency of MCDRAM is higher than that of DDR.

Therefore, placing more data on MCDRAM coupled with

indirect access to objects increases the latency and degrades

the performance of application.

For Triad, Matrix Transpose and CG, both versions of our

placement algorithms suggest the same placement. This is

due to the access pattern of the application. Write-Sensitive

algorithm suggests a better placement over Write-Agnostic

for applications where there is a significant difference in read

and write references of the objects. The suggestions by Write-

Sensitive version of our proposed algorithm for HotSpot and

Image Segmentation yields higher performance because of the
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TABLE II: Evaluated Applications

Applications Description # of objects Footprint (GB)
Triad [19] Triad kernel of STREAM benchmark 3 6.00

Matrix Transpose Transpose of a matrix is stored in another matrix 2 6.00

CG [4] Conjugate Gradient solves unstructured sparse linear systems 13 5.23

HotSpot [13] Approximates processor temperature and power by solving PDEs 3 6.00

Image Segmentation Divides and recolors an image into segments to identify boundaries 7 5.55

BFS [9] Breath first search graph traversal algorithm 6 9.74
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Fig. 6: Speedup achieved over placing all objects in the slow

memory coupled with 4GB MCDRAM as a last level cache.
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Fig. 7: Speedup achieved over placing all objects in slow

memory using 8GB MCDRAM as a last level cache. Our

placement is coupled with a 4GB L3 MCDRAM cache, an

addressable 4GB of MCDRAM and DDR.

difference between the amount of loads and stores for majority

of their objects. The three objects in HotSpot have a difference

of more than 80% between its load and store counts. While

Image Segmentation has a difference of 70% between load and

store counts for more than half of its objects.

B. Comparison against MCDRAM as a last level cache

1) 4GB Cache: Figure 6 shows the speedup achieved

by our placement algorithm against the implicit placement

done by hardware caching. We evaluate the applications in

this mode because it performs hardware caching at runtime

without requiring any changes to the source code, therefore

no intervention from the programmer is required. We find that

all applications except BFS perform better with the placement

suggested by our algorithm. This shows that our placement

algorithm can beat the hardware caching and suggest a more

intelligent placement of objects. With Matrix Transpose, our

placement scheme suggests to place the object being written

in to on the fast memory. Depending on how the transpose

loop is written, this may lead to non-contiguous accesses to the

corresponding object in fast memory. Due to the higher latency

of MCDRAM, the array that is accessed non-contiguously

should not be placed in fast memory. Therefore, we imple-

mented the matrix transpose in a way that the elements of write

array are referenced contiguously for all cases. This allows us

to leverage the high bandwidth characteristic of MCDRAM

without getting penalized by its higher memory latency trait.

2) 8GB Cache: Figure 7 shows the speedup achieved by

our algorithm coupled with a 4GB of L3 MCDRAM cache

over a configuration with 8GB of L3 MCDRAM cache and

slow memory. According to our settings, with this configura-

tion all the data can be cached in the fast memory (acting as

L3 cache of 8GB). With this comparison, we show that our

placement coupled with a 4GB L3 cache can yield a better

performance.

VII. CONCLUSION

In this work we explore the benefits of heterogeneous

memory systems. Such systems are equipped with a fast

memory with higher bandwidth but lower capacity, and a slow

memory with lower bandwidth but higher capacity. Due to

their different characteristics, allocating objects in a particular

memory can largely affect the performance of an application.

To address this challenge, we propose a placement algorithm

that takes into account the knowledge about memory accesses

and sizes of objects in an application, and suggests a placement

scheme of objects in the fast memory. We tested our placement

algorithm on various applications on Intel KNL which is

equipped with a fast (MCDRAM) and a slow (DDR) memory,

and observe a speedup of up to 2x. We also observe that

both memories have different bandwidth rates for load and

store operations. We use this to suggest an informed placement

scheme to the programmer. Our future work will facilitate the

placement further by fully automating the process.
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