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Abstract—Heterogeneous memory systems are equipped with
two or more types of memories, which work in tandem to
complement the capabilities of each other. The multiple memories
can vary in latency, bandwidth and capacity characteristics
across systems and they come in various configurations that
can be managed by the programmer. This introduces an added
programming complexity for the programmer. In this paper,
we present a dynamic phase-based data placement scheme to
assist the programmer in making decisions about program object
allocations. We devise a cost model to assess the benefit of having
an object in one type of memory over the other and apply the
cost model at every application phase to capture the dynamic
behaviour of an application. Our cost model takes into account
the reference counts of objects and incurred transfer overhead
when making a suggestion. In addition, objects can be transferred
across memories asynchronously between phases to mask some of
the transfer overhead. We test our cost model with a diverse set
of applications from NAS Parallel and Rodinia benchmarks and
perform experiments on Intel KNL, which is equipped with a high
bandwidth memory (MCDRAM) and a high capacity memory
(DDR). Our dynamic phase-based data placement performs
better than initial placement and achieves comparable or better
performance than cache mode of MCDRAM.

Index Terms—high bandwidth memory, object placement,
MCDRAM, DRAM, KNL

I. INTRODUCTION

In recent years, we have observed a rise in the number
of systems with diverse types of memories to counter the
engineering limits of DDR memory technologies [1]. For
instance, a typical DDR4 can only transfer data at a rate
of 88GB/s to the CPU [12] and at this rate a compute
unit cannot be utilized at its full capacity, leading to wasted
clock cycles and low flops rate. As a result, heterogeneous
memory systems equipped with multiple memory types each
with distinct characteristics have emerged to overcome the
bandwidth limitations. Some of the high-bandwidth memory
(HBM) technologies are high bandwidth memory standard by
JEDEC [11], hybrid memory cube (HMC) by Micron [16],
or a technology like WidelO [10]. Intel Knights Landing
(KNL) chip comes with an HBM called Multi-Channel DRAM
(MCDRAM), which boasts 450GB/s memory bandwidth as
compared to its slower DRAM (88GB/s). The increase in
bandwidth, however, comes at the cost of higher access latency
and low capacity. To compensate for these shortcomings,
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HBMs are typically augmented with high capacity memories
which generally have a lower access latency.

Having multiple memories introduces the need for data
management. In this regard, programmers have the option to
explore various configurations. These configurations can be
broadly categorized as 1) hardware-managed, therefore trans-
parent to the programmer, or 2) software-managed through
OS or application code. In hardware-based strategies, HBM
is considered as a last level cache and hardware handles
the data admission and eviction. In software-based manage-
ment, heterogeneous memory systems allow programmers to
allocate application data on either memory depending on
application characteristics, potentially improving the overall
application performance. For HBM management through soft-
ware, previous work focuses on 1) OS-based approaches
and 2) Application-driven allocations. Even though OS-based
approaches do not require any modifications at the application
and free the programmer from concerns about object alloca-
tions, they require changes in the OS and operate on the page
granularity rather than data objects.

In application-driven allocations, objects are explicitly par-
titioned between high bandwidth memory and high capacity
memory by the programmer [3] or frameworks assisting the
programmer [13]. Placement of objects can be performed
statically at the beginning of the program, or dynamically as
the program executes based on the phases of the application.
In our prior work [13], we proposed an initial object placement
algorithm and observed a considerable improvement in execu-
tion time. Our placement algorithm is based on 0-1 Knapsack
and takes into account the object sizes and their memory
reference counts to suggest an initial allocation scheme for the
entire application. This approach, however, fails to capture the
object activity at any particular time as the program executes.
In addition, the decision of which objects to place where
depends on numerous factors. For example, HBM in Intel
KNL is favorable to bandwidth-bound applications and can
cause performance degradation to latency-bound applications
[12] [13]. Other factors such as whether application performs
strided accesses or has write-intensive workload require more
complex decision-making for applications with large memory
footprint. In this paper, we propose a new dynamic object
allocation scheme which performs on the fly object admission
and eviction, to and from the HBM.



We identify the attributes which can affect the choice
for objects being in a particular memory during program
execution. These attributes can be hardware-related features
such as bandwidth of each memory type, transfer bandwidth
between memories, or software-related such as memory access
pattern, object reference count, object size etc. We incorporate
these attributes into a cost model, which estimates the benefit
of having an object in one memory over the other. Using this
cost model for each application phase, we apply Knapsack
algorithm and transparently move the objects between two
memories, dynamically adapting the application behavior. We
demonstrate our framework on high bandwidth memory avail-
able in Intel KNL architecture with several applications.

The remainder of the paper is organized as follows. Section
II discusses the architecture of heterogeneous memory sys-
tems. Section III describes the cost model we devise. Section
IV presents the working of our tool. Section V evaluates the
cost model and tool on several applications. Section VI and
VII discuss the related work and concludes the paper.

II. SYSTEM ARCHITECTURE

We assume that a heterogeneous memory system is
equipped with multiple memories which are controlled by the
same processing unit. These distinct memories differ from one
another in their characteristics and together they complement
one another. An HBM can act as a cache for the high capacity
memory (HCM). Whereas the high capacity memory, typically
larger in size, can act as a data bank for HBM. In our
work we aim to capture all systems which are set in the
aforementioned memory configuration. It is important to note
that the HBM is not always advantageous; can lead to higher
power consumption or longer memory latencies.

Figure 1 shows the possible configurations in which a
typical heterogeneous memory system can operate. HBM can
either a) be set as a separately addressable memory or b)
act as a hardware-managed last level cache. In addition to
these two settings, HBM ¢) can be configured as a hybrid
of both such that part of it acts as a cache while the rest
of it can be explicitly managed through software. One of
the such heterogeneous systems available today is Intel KNL
chip, which will be used in our benchmarks and experiments.
Another example can be non-volatile memory-based hetero-
geneous memory system, where DRAM is used as a software
or hardware-managed cache for NVRAM [26], [14], [24].

III. CoST MODEL

We devise a cost model, which captures the attributes of
a system and takes into account the application level details
to produce a score for each object to be placed on a desired
memory. This cost model forms the objective function of the
0-1 Knapsack algorithm which produces an allocation scheme
for an application being run on an heterogeneous memory
system. The knapsack is considered as HBM and is associated
with a maximum weight that is the total capacity of HBM. The
data objects are considered to be the individual items, which
can be carried by the knapsack. Each item has a weight and

190

HBM

HBM
b HC™M UBM
e as LLC as| LLC HCM

(a) Flat Mode (b) Cache Mode (c) Hybrid Mode

Fig. 1: Memory modes of a heterogeneous system. a) HBM
and HCM are two separately addressable memories b) HBM
is managed by hardware. Automatic caching is performed. c)
HBM is partially available as a separately addressable memory
and partly as a hardware managed last level cache (LLC).

a value, which in our case are the size of the object and its
score, assigned by the cost model. The objective is to place
the most valuable objects in HBM without overloading it.

A. Cost Model for Initial Placement

The initial placement approach allocates the objects at the
start of an application and the placement does not change
throughout the execution. Objects are accessed from the re-
spective memories they are allocated to. Since this scheme is
static, the cost model does not consider the lifecycle of an
object. This trade off is compensated by the zero overhead of
object transfers across memories, yielding in a performance
benefit for certain application workloads.

The initial placement variant of the cost model only con-
siders the overall load and store accesses to memory of an
object. A memory can prioritize writes over reads or vice versa
and this feature could vary from one memory architecture
to another. Therefore we add o and [ coefficients for the
writes and reads, respectively for a setup where loads or
stores are to be favored over the other. For example, on
Intel KNL write-sensitive objects should be prioritized to be
placed on MCDRAM [13]. The following equation calculates
a score for each object m which forms the basis of our cost
model’s objective function in initial placement. The Knapsack
algorithm suggests a candidate object list to the programmer
based on these scores.

Score,, = a * Writes,, + B x Reads,

(e))
B. Cost Model for Phase-Based Placement

Phase-based cost model improves the initial placement by
taking the lifecycle of an object into account during the
program execution. Applications can have objects which are
heavily accessed in a particular phase of their runtime. Having
such objects in HBM throughout the program execution cannot
yield full potential of heterogeneous memory systems. Since
the different memories can be controlled through software
by the programmer, it is more advantageous to evict unused
objects and allocate objects which are going to be used in the
next phases. There are several ways to identify the application
phases. One of the easiest way is to divide the application into
phases based on loops. Since a loop accesses the same objects



in a repeating fashion, the benefit of bringing those objects
into HBM can compensate the transfer overhead.

We also identify if certain objects in a phase tend to be
latency-bound or bandwidth-bound by analyzing whether ac-
cesses are indirect or streaming. The former being a candidate
for latency-bound object while the latter can be categorized
as a bandwidth-bound object. We use this information in
our cost model to better decide which object would yield a
higher performance benefit in a particular kind of memory.
For instance, having a latency-bound object in MCDRAM
of Intel KNL can yield a degraded application performance.
Phase-based cost model uses the following attributes about the
application and the underlying machine: a) Remaining load
and store count of an object, b) Transfer overhead caused by
data movement, ¢) Read and write bandwidths of different
memories, d) Strided access behavior and latency-boundness.

Firstly, the phase-based cost model discards the memory
access information of objects from the previous phases for the
current phase. This helps the cost model to decide whether
an object is losing its advantage over its lifetime during
execution. If the number of accesses for a particular object
decreases, it becomes less advantageous to keep that object
in HBM. Secondly, the eviction and admission of objects
from and to HBM introduces an overhead. This overhead is
due to synchronous transfer of objects between memories. To
overlap the transfers with execution of the previous phase, we
spare some threads for the transfer mechanism. Note that this
means slightly reduced thread count for the phase computation.
The third attribute relates to the different read and write
bandwidth performance of different types of memories. The
fourth attribute considers indirect or strided access behavior of
an application. Our cost model prioritizes the objects which
are accessed in a contiguous fashion to be placed on HBM in
Intel KNL. Note that this behavior can vary between systems.
In such cases, our cost model can make decisions accordingly.

The four attributes discussed above are translated into a final
cost model, which is used as the objective function in the 0-1
Knapsack algorithm. An object can be accessed from either
HBM or HCM in a particular phase. Based on the cost model,
we transfer objects to the appropriate memory. An object is
favorable to reside on one type of memory if its access time
is reduced when it is placed in that memory. We calculate the
access time of an object based on its score, element type and
the stream bandwidth of the particular memory its going to
be accessed from. We compute the access time metric only
to estimate the benefit of having the object on one particular
memory. By no means, this metric is the time required to load
or store that object. For an object m, the access time is:

Score,, * ElementTypenm

AccessTime,,

2

Bandwidthstream

We calculate the score in the same fashion as for the initial
placement strategy. However, there is one notable change in
score calculation. For initial placement we use the global read
and write references to calculate the score. In phase-based
placement, we use the remaining reads and writes for that
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object in the application. This ensures that the score of the
object decreases if the object has fewer memory accesses in
the later part of the application. The score function for phase-
based placement translates to:

Score,, = a * RemainingWrites,, + B * RemainingReads,, (3)

We observe in our experiments that memory access band-
width is reduced in the presence of strided or indirect accesses
as expected. This access pattern can change the access time
of an object and in turn can influence the decision of placing
an object in HBM. To incorporate this behavior, we use the
Bandwidthgi,igeq instead of Bandwidthgiyeam.

Through Access Time,y,, the algorithm decides whether the
object is used fairly enough to be kept in HBM. Since objects
are moved between phases, it introduces the added overhead
of transfer between memories. In worst case, every phase can
have a different working set, resulting in too much transfer
overhead. To take this overhead into account, we calculate the
transfer cost incurred by moving an object. Following equation
shows the transfer cost calculation performed to determine
the overhead of transferring an object from one memory to
another. The copy bandwidth for each memory type can vary.
The transfer cost takes into account this differing feature of
the memory as well.

ObjectSizem

TransferCosty, = —————
Bandwidthcopy

(C))

We use access time and transfer cost of an object m to build
our objective function (Obj F'unc), which is in turn used in 0-1
Knapsack algorithm to decide which objects should reside on
HBM. We add the eviction cost of object n in case an object
needs to be evicted from HBM to HCM to open up space for
object m. This overhead is very similar to transfer cost except
that it uses the copy bandwidth from HBM to HCM, which
can be different than the one from HCM to HBM [13].

ObjFunc,, = AccessTime,, — TransferCost,, — EvictionCost, (5)

The 0-1 Knapsack algorithm uses this objective function
for the phase objects at each phase and tries to maximize the
function. As an output, the algorithm lists the objects that are
the best candidates to reside on HBM for a particular phase.

IV. IMPLEMENTATION

We present our work in the form of a tool which performs
object allocation and asynchronous transfers of data between
different types of memories. The working of our tool is two-
tiered. In the first tier, we profile the application using two
different sampling based profilers. In the next tier, we insert
API calls to the tool in the application so that the tool can
run the object selection algorithm and perform object transfers
between the memories. In the following sections we explain
these steps.

A. First Tier: Profiling

Our cost model requires object-level information to be
collected on the application to devise an allocation strategy.
In particular, it requires the a) program-level load and store
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Fig. 2: Interaction of ADAMANT and Cachegrind with our
tool. ADAMANT provides the object reference counts whereas
Cachegrind determines code blocks used as phases.

counts, b) phase-level load and store counts, and c¢) the size
of each object. We assess various tools which use static
code analysis or binary instrumentation techniques to intercept
object level events [4] [8] [22]. Collecting object-level infor-
mation through static code analysis [23] is very fast and incurs
minimal overhead but it has limited capabilities as it cannot
capture indirect memory accesses or conditional executions.
Binary instrumentation techniques are known to be accurate
but slow, incurring large overheads. To strike a balance be-
tween accuracy and speed, we leverage ADAMANT [7] and
Cachegrind [15] to gather object-level information along with
the phase information.

1) ADAMANT: is a sampling based address tracing tool
that provides object-level load and store information at the
program level without any significant overhead. ADAMANT
can intercept with memory allocation calls and distinguish
between statically and dynamically allocated objects. In order
to store the object access information, our tool maintains
a hashmap of objects and their load and store counts. For
static objects, the mechanism of recording loads and store
is straightforward — by matching the object names in the
application code. For dynamic allocations, we compare the
memory start addresses given by ADAMANT to the memory
addresses we obtain from the application code. This allows
us to keep track of each object and its remaining memory
accesses throughout the execution.

2) Cachegrind: is one of the tools in the Valgrind in-
strumentation framework [15], which we use for extracting
phase information from an application. Cachegrind simulates
the application behavior with the memory and caches in a
computer. It provides us with last level cache misses and can
distinguish misses as load or store misses. We interpret LLC
misses as accesses to memory and combine these statistics
with those found by ADAMANT for a better estimate of an
object’s memory traffic. In addition, Cachegrind allows us to
virtually divide the application into phases. The phases form
the boundaries at which we run our object placement algorithm
to select objects for the upcoming phase. Cachegrind gives
memory access information at the granularity of a statement
from the program. We sum the memory accesses made by the
statements inside a code block and determine if that particular
code block qualifies as a phase, incurring significant amount
of memory traffic. Since a phase contains multiple objects, our
algorithm can make a selection of objects to be kept on HBM.
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ADAMANT and Cachegrind are two separate tools, there-
fore they require separate profiling runs to gather application
information at a target platform. However, once the informa-
tion is collected, there is no need to perform profiling again.

B. Second Tier: Object Placement

After we have gathered object-level statistics and phase
information of an application, we insert API calls to our
tool into the application. Our API can perform allocation and
deallocation of objects seamlessly as the programmer would
not need to evict and admit objects during the runtime. At
every phase our tool takes care of all object level asynchronous
migrations from one memory to another if our object selection
algorithm decides to do so.

1) Initialization: At the beginning of the target application,
we initialize our tool with the previously profiled data. This
includes the output from ADAMANT and Cachegrind, namely
the object level statistics and the phase information. After
initialization, our tool stores all the objects-level information,
which includes each object’s size and reference count to
memory. To reduce the cost of allocation and deallocation for
every object to be placed in HBM, we divide the HBM into
buffers. Each buffer is configured such that it can host the
biggest object in the application. However, if one of the objects
is significantly larger than the rest, we allocate a separate
buffer exclusively for that object. Along with configurable
buffer size, during initialization, we can also tune the number
of buffers allocated. For each buffer, we maintain a modified
bit to keep track whether the object stored in the buffer is
modified or not. When the object selected for eviction to
accommodate another object is not modified, it can simply
be overwritten, incurring no eviction cost.

2) Object Selection: We currently require the programmer
to add an API call before every phase of the application which
is determined using Cachegrind. The purpose of this API call
is to run the object placement algorithm at each of these
calls, which is equipped with the objective function discussed
in the cost model. Since our tool has acquired the phase-
level information previously, it knows which objects are being
accessed in a particular phase. Based on this information, and
the output from the placement algorithm, our tool transparently
transfers objects to and from the HBM. As mentioned earlier,
the task of moving objects from one memory to another comes
with an overhead. Our placement algorithm, with the help of
cost model, does not move objects which have a movement
cost greater than the benefit gained from keeping objects in
HBM. Lastly, during the execution of the last phase, the tool
does not perform any transfers.

3) Object Eviction: After our placement algorithm suggests
objects to be placed on HBM, the tool checks for the object
currently residing on HBM. If either of the buffers in HBM
contain objects from the selection, our tool does not modify
those buffers. For the remaining buffers which does not contain
matching objects, we need to evict these objects and add
new objects to HBM, or we can simply overwrite the objects
currently residing on HBM. The modified bit for each buffer



determines whether the object requires transfer or not. If so,
the tool transfers the content from that buffer back to HCM
prior to transferring the new object in that particular buffer.

4) Asynchronous Transfers: We make use of parallelism
during the transfer and object placement selection process.
The runtime uses two threads to run the object placement
algorithm and perform required transfers to and from both
memory types. This job is carried asynchronously during
application execution. Therefore, by the time the program
reaches the next phase, the objects used in that particular phase
are in the appropriate memories. The asynchronous transfers
minimize the execution of the application as compared to the
scenario when these calculations and transfers are conducted
synchronously. Asynchrony is not achieved in all cases. If the
application is executing phase p, our tool will calculate the
placement strategy for phase p + 1. However, in some cases,
our tool will suggest objects to be removed from HBM for
phase p + 1 which are currently being used in phase p from
HBM. In such cases the tool will wait for phase p to complete
its execution and then proceed with the transfer of object to
or from HBM.

V. EVALUATION

In this section, we evaluate the performance of our phase-
based object placement tool against various placement policies
on Intel Knights Landing (KNL). The Inte]l KNL machine is
equipped with a high bandwidth memory which is known as
Multi-Channel DRAM, or MCDRAM for short. Intel KNL
has three memory modes. A Flat Mode where the HBM can
be accessed as a separately addressable memory, a Cache
Mode where the HBM acts as a hardware managed last level
cache and a Hybrid Mode in which the HBM can act as a
combination of the two aforementioned modes. We compare
our tool under various memory configurations supported in
KNL with 64 cores. Table I summarizes these configurations
and the labeling convention that we will use in results.

1) All-DDR: All objects are allocated in DDR. MCDRAM
is not used.

All-MCDRAM: All objects are allocated in MCDRAM.
DDR is not used.

Hardware Cache: We make all allocations to DDR and
let the hardware cache objects into MCDRAM.

Initial Placement w/o Cache: Only initial placement is
performed based on the program-level object references.
HBM is set to 4GB in the algorithm. No hardware
caching is enabled.

Dynamic Placement w/o Cache: uses phase-based
object placement and its cost model, and performs
asynchronous transfers between HBM and HCM. HBM
is set to 4GB. No hardware caching is enabled.
Dynamic Placement w/ Cache: Similar to the previ-
ous configuration, however we augment the allocatable
HBM with last level cache by setting aside 4GB of
MCDRAM for hardware caching.

Table II shows the applications from Rodinia and NAS
Parallel benchmark suites we used for evaluation. The table

2)

3)

4)

)

6)
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TABLE I: Intel KNL configurations used to evaluate our tool

Label HBM DDR Cache Boot
(L3) Mode
All-DDR — 96GB — Flat
All-MCDRAM 16GB — — Flat
Hardware Cache — 96GB 16GB Cache
Initial Placement 4GB 96GB — Flat
(w/o Cache)
Dynamic Placement 4GB 96GB — Flat
(w/o Cache)
Dynamic Placement 4GB 96GB 4GB Hybrid
(w/ Cache)

Speedup over All-DDR
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Fig. 3: Speedup achieved by the object placement conducted
by our tool against All-DDR mode. Red line shows the
baseline. All values below 1 indicate degraded performance.

also shows the memory footprint of each application and
the phases which were identified. All our experiments are
conducted with 64 OpenMP threads. Thread affinity is set to
scatter for all application execution. To rule out any anomalies
with the gathered results, we take an average of 5 runs for
each experiment. We decided to report speedups instead of
execution times because the scale of running time for each
application is drastically different. Dynamic placement results
use asynchronous transfers if possible unless stated otherwise.

A. Comparison against All-DDR and All-MCDRAM

Figure 3 shows the speedup achieved when the program is
executed with the placement strategy suggested by our tool
against the default placement setting i.e. when all the data
is housed in the DDR memory, referred as ALL-DDR. In
this figure, we also compare our performance against when
all the data is allocated in the fast MCDRAM, referred
as ALL-MCDRAM. We observe and confirm our hypothesis
that dynamic placement consistently performs better than the
initial placement. This is mainly due to the object eviction
and admission protocol conducted by our tool. In most of the
cases we observe that our tool performs nearly as good as the
best case scenario i.e. when all the objects are allocated in the
MCDRAM.



TABLE II: Evaluated Applications

Applications ‘ Description ‘ # of Objects Footprint (GB) ‘ # of Phases
CG [2] Conjugate Gradient solves unstructured sparse linear systems 13 5.23 17
BT [2] Block tri-diagonal solver 11 4.49 31
FT [2] Performs discrete fast Fourier Transform 5 4.50 28
LU [2] Lower-Upper Gauss-Seidel solver 14 4.53 30
SP [2] Scalar Penta-diagonal solver 10 7.76 28
SRAD [5] Diffusion method for ultrasonic and radar imaging applications 7 5.55 4
HotSpot [5] Thermal simulation tool used for processor temperature estimation 3 6.44 11
BFS [5] Breadth First Search graph traversal algorithm 6 9.75 5

B. Comparison against Hardware Cache

MCDRAM in Intel KNL can be set as a last level cache.
In this mode, the hardware performs caching from DDR
to all levels of cache. The application is executed without
any changes made to it, which is the easiest mode for the
programmer. However, this might not always result in the best
performance. Figure 4 shows the speedup achieved by the
placement conducted by our tool against hardware caching.
We observe that majority of the applications perform well
over hardware caching. In all the cases, dynamic placement
achieves better performance than automatic hardware caching.
For CG, FT and SRAD, the initial placement fails to perform
better than hardware caching. This is mainly because the initial
placement only suggests object allocation based on the global
load and store counts and does not dynamically adapt the
application behavior. Whereas dynamic placement considers
the loads and stores for each phase separately and performs
object movement across memories when necessary.

C. Analyzing Transfers between Phases

In this section, we study the benefit of asynchronous
transfers and analyze some statistics about object movement
between phases. Our tool hides the overhead of object se-
lection and object transfer for phase p + 1 by overlapping
this calculation and data movement while phase p is under
execution. Figure 5 shows the speedup achieved over the
placement when transfers are performed synchronously. We
perform the same experiments for each application by con-
ducting the object selection and movements synchronously
i.e. when object selection and object transfers are done in a
serial fashion without sparing any threads for these operations.
The speedup achieved confirms that asynchronous transfers
have a considerable advantage over synchronous transfers even
though we steal two threads from the main computation to
perform object selection and transfer asynchronously.

Table III shows the number of phases in which a transfer
occurs and the number of objects moved in total. It also shows
the percentage of phases that data movement is required.
For example, for CG, out of 17 phases, six phases require
data movement between two memories and a total of 13
objects are moved. Results prove the benefit of dynamic
placement since it adapts the application behavior as the
working set of application changes from phase to phase. In
our experiments, we also observe that a higher transfers/phase
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Fig. 4: Speedup achieved by our tool against MCDRAM acting
as LLC. Red line shows the baseline. All values below 1
indicate degraded performance.
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Fig. 5: Speedup achieved by asynchronous transfers over
synchronous transfers using dynamic placement strategy.

percentage value has a direct relation to increased performance
using asynchronous transfers. This might be because it gives
more opportunities to hide the transfer latency since object
selection algorithm runs at every phase regardless. For the
analysis of asynchronous transfers, we spared 2 threads which
yielded the best performance on Intel KNL. This number can
vary across different machines.

D. Latency-Sensitive Applications

While some applications benefit from the high bandwidth
characteristics of an HBM, others might get degraded perfor-



TABLE III: Some statistics about object movement

‘ Applications ‘ Phases ‘ Transfers ‘ Objs Moved ‘ Transfers/Phase ‘
CG 17 6 13 35.3%
BT 31 3 10 9.67%
LU 28 4 12 13.3%
Sp 30 3 8 11.1%
FT 28 10 12 35.7%
SRAD 4 1 3 25.0%
HotSpot 11 6 9 54.5%
BFS 5 3 5 60.0%
1000

~0-MCDRAM

-8-DDR

-
o
S

Bandwidth (GB/s)
5

12 14 16 18 20 22 24 26 28 30 32

Stride length

Fig. 6: Bandwidth degradation comparison of MCDRAM and
DDR in Intel KNL as the stride length is increased.

mance because of higher latency of HBM compared to DRAM.
Applications which include indirect or strided access can be
characterized as latency-sensitive applications. Figure 6 shows
the bandwidth degradation of MCDRAM and DDR in KNL.
As the stride size increases, the bandwidth of both memories
degrades drastically. Due to high access latency of HBM in
Intel KNL, MCDRAM loses its advantage over DDR for some
objects as in the BFS application.

Our cost model distinguishes between such objects by
changing their access bandwidths. As discussed previ-
ously, if an application contains objects which exhibit
indirect accesses, we change its access bandwidth to
Bandwidthsirigeq. For HBM, the Bandwidthgiyigeq 1S lower
than the Bandwidthgtyreqm. Changing bandwidths for objects
according to their access patterns can yield different and better
placement strategies. We changed the bandwidth for BFS
to monitor this effect. Three objects in two phases in BFS
strategy. For the remaining objects we used stream bandwidth.
Overall, we only observe 1% improvement but we expect the
benefit is higher for an application which has a lot more objects
with mixed access patterns. Future work will investigate this
further.

VI. RELATED WORK

It is expected that in near future computers will have a
combination of different memory pools, each complementing
the effect of the other [1]. In such a case, the demand
for seamless object placement is likely to increase. For a
programmer, it is ideal that these different memory pools are
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managed without any extra effort. In lieu of this, several works
have been proposed to minimize the effort of the programmer
for deciding object placement strategies.

Hardware centric approaches [19][25][18][9] usually lever-
age the built-in hardware components in a system. Perfor-
mance counters and registers are a most widely used to
extract hardware-level statistics. Hardware centric approaches
can either work at the granularity of a whole application or at
specific user-annotated points within the application. As the
granularity increases, the overhead of gathering information
from these components increases. To mitigate the overhead,
sampling techniques are adapted. Ramos et al. [19] focus on
monitoring the memory controller to analyze the memory ac-
cess pattern of the application. After querying this information,
they perform page migration from one memory to another. In
[6], the authors present a scheme in which line swaps are made
between the two memories through hardware. This approach is
similar to a hardware cache that hosts recently accessed data.
Like a cache, the granularity is a cache line.

Software-based approaches implement transfer of object at
the software stack. These approaches are highly customizable
and can cater to a variety of applications. These strategies
can be either 1) static or 2) dynamic. In the former, once
an object is allocated to a memory, it is not evicted from it.
Whereas, in the latter, the runtime manages the locality of
objects across different memory types, i.e. an object can be
transferred between memories during application execution as
in our proposed approach.

Servet et al. [21] use a two pass approach for object
placement. Their decision for a two pass approach is based on
the tools they use to gather object-level statistics. In their first
pass they use Extrae [20] to gather the application execution
profile. After extracting useful information, they use an object
selection algorithm based on EVOP [17]. Later they override
the malloc function call to allocate objects to the appropriate
memory based on the object placement strategy listed by their
selection scheme. However, their work does not consider the
memory usage by an object during the application execution.
Once allocated, objects are not evicted and reside in the same
memory where they are allocated.

Laghari et al. [13] proposes an initial placement approach in
which the objects are allocated to a particular memory based
on their memory access pattern. The basis function in their
allocation scheme considers loads and stores of a particular
object, separately. In addition to this, their tool can prioritize
the type of memory access based on the system used. In
their work, Intel KNL yields a better application performance
if write-intensive objects are allocated to the fast memory.
Therefore, they prioritize stores over loads. Their approach,
however, only performs initial placement.

Wu et al. [26] perform phase-based dynamic object allo-
cation for NVRAM-based main memory systems. Their tool,
Unimem, divides the application into phases where the phases
are code blocks between two MPI calls. Based on the objects
residing in those code blocks and their access pattern, a cost
model decides which objects to place on the main memory.



Their cost model keeps track of objects usage, memory access
type and the overhead incurred by the transfer of objects across
different memory types. Unlike HBM-based main memory
systems, in their approach it is assumed that placing objects
on DRAM is always advantageous over NVRAM. Our cost
model is flexible and more general, which can be applied to
other heterogeneous memory systems. Unimem’s evaluation is
purely simulation based, while our work is conducted on real
hardware, Intel KNL.

VII. CONCLUSION

Heterogeneous memory systems, which are equipped with
multiple memories each with different characteristics, allow
programmers to perform object placement explicitly on differ-
ent memories. Such systems, however, introduce the burden of
deciding which objects to place on which kind of memory. To
assist the programmer, we present a phase-based dynamic data
placement scheme which takes into account the object’s life
cycle and its activity in an application to suggest a placement
strategy. We develop a runtime tool which can distinguish
between the different characteristics of each memory and can
perform object allocation in a way which will maximize over-
all application performance. Our tool divides the application
into phases and performs asynchronous object eviction and
admission into different memories. We tested our placement
algorithm on various applications on Intel KNL which is
equipped with MCDRAM and DDR memory, and observe
a speedup of up to 2x. Our future work will facilitate the
placement further by fully automating the entire process.
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