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Abstract—Heterogeneous memory systems are equipped with
two or more types of memories, which work in tandem to
complement the capabilities of each other. The multiple memories
can vary in latency, bandwidth and capacity characteristics
across systems and they come in various configurations that
can be managed by the programmer. This introduces an added
programming complexity for the programmer. In this paper,
we present a dynamic phase-based data placement scheme to
assist the programmer in making decisions about program object
allocations. We devise a cost model to assess the benefit of having
an object in one type of memory over the other and apply the
cost model at every application phase to capture the dynamic
behaviour of an application. Our cost model takes into account
the reference counts of objects and incurred transfer overhead
when making a suggestion. In addition, objects can be transferred
across memories asynchronously between phases to mask some of
the transfer overhead. We test our cost model with a diverse set
of applications from NAS Parallel and Rodinia benchmarks and
perform experiments on Intel KNL, which is equipped with a high
bandwidth memory (MCDRAM) and a high capacity memory
(DDR). Our dynamic phase-based data placement performs
better than initial placement and achieves comparable or better
performance than cache mode of MCDRAM.

Index Terms—high bandwidth memory, object placement,
MCDRAM, DRAM, KNL

I. INTRODUCTION

In recent years, we have observed a rise in the number

of systems with diverse types of memories to counter the

engineering limits of DDR memory technologies [1]. For

instance, a typical DDR4 can only transfer data at a rate

of 88GB/s to the CPU [12] and at this rate a compute

unit cannot be utilized at its full capacity, leading to wasted

clock cycles and low flops rate. As a result, heterogeneous

memory systems equipped with multiple memory types each

with distinct characteristics have emerged to overcome the

bandwidth limitations. Some of the high-bandwidth memory

(HBM) technologies are high bandwidth memory standard by

JEDEC [11], hybrid memory cube (HMC) by Micron [16],

or a technology like WideIO [10]. Intel Knights Landing

(KNL) chip comes with an HBM called Multi-Channel DRAM

(MCDRAM), which boasts 450GB/s memory bandwidth as

compared to its slower DRAM (88GB/s). The increase in

bandwidth, however, comes at the cost of higher access latency

and low capacity. To compensate for these shortcomings,

HBMs are typically augmented with high capacity memories

which generally have a lower access latency.

Having multiple memories introduces the need for data

management. In this regard, programmers have the option to

explore various configurations. These configurations can be

broadly categorized as 1) hardware-managed, therefore trans-

parent to the programmer, or 2) software-managed through

OS or application code. In hardware-based strategies, HBM

is considered as a last level cache and hardware handles

the data admission and eviction. In software-based manage-

ment, heterogeneous memory systems allow programmers to

allocate application data on either memory depending on

application characteristics, potentially improving the overall

application performance. For HBM management through soft-

ware, previous work focuses on 1) OS-based approaches
and 2) Application-driven allocations. Even though OS-based

approaches do not require any modifications at the application

and free the programmer from concerns about object alloca-

tions, they require changes in the OS and operate on the page

granularity rather than data objects.

In application-driven allocations, objects are explicitly par-

titioned between high bandwidth memory and high capacity

memory by the programmer [3] or frameworks assisting the

programmer [13]. Placement of objects can be performed

statically at the beginning of the program, or dynamically as

the program executes based on the phases of the application.

In our prior work [13], we proposed an initial object placement

algorithm and observed a considerable improvement in execu-

tion time. Our placement algorithm is based on 0-1 Knapsack

and takes into account the object sizes and their memory

reference counts to suggest an initial allocation scheme for the

entire application. This approach, however, fails to capture the

object activity at any particular time as the program executes.

In addition, the decision of which objects to place where

depends on numerous factors. For example, HBM in Intel

KNL is favorable to bandwidth-bound applications and can

cause performance degradation to latency-bound applications

[12] [13]. Other factors such as whether application performs

strided accesses or has write-intensive workload require more

complex decision-making for applications with large memory

footprint. In this paper, we propose a new dynamic object

allocation scheme which performs on the fly object admission

and eviction, to and from the HBM.
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We identify the attributes which can affect the choice

for objects being in a particular memory during program

execution. These attributes can be hardware-related features

such as bandwidth of each memory type, transfer bandwidth

between memories, or software-related such as memory access

pattern, object reference count, object size etc. We incorporate

these attributes into a cost model, which estimates the benefit

of having an object in one memory over the other. Using this

cost model for each application phase, we apply Knapsack

algorithm and transparently move the objects between two

memories, dynamically adapting the application behavior. We

demonstrate our framework on high bandwidth memory avail-

able in Intel KNL architecture with several applications.

The remainder of the paper is organized as follows. Section

II discusses the architecture of heterogeneous memory sys-

tems. Section III describes the cost model we devise. Section

IV presents the working of our tool. Section V evaluates the

cost model and tool on several applications. Section VI and

VII discuss the related work and concludes the paper.

II. SYSTEM ARCHITECTURE

We assume that a heterogeneous memory system is

equipped with multiple memories which are controlled by the

same processing unit. These distinct memories differ from one

another in their characteristics and together they complement

one another. An HBM can act as a cache for the high capacity

memory (HCM). Whereas the high capacity memory, typically

larger in size, can act as a data bank for HBM. In our

work we aim to capture all systems which are set in the

aforementioned memory configuration. It is important to note

that the HBM is not always advantageous; can lead to higher

power consumption or longer memory latencies.

Figure 1 shows the possible configurations in which a

typical heterogeneous memory system can operate. HBM can

either a) be set as a separately addressable memory or b)
act as a hardware-managed last level cache. In addition to

these two settings, HBM c) can be configured as a hybrid

of both such that part of it acts as a cache while the rest

of it can be explicitly managed through software. One of

the such heterogeneous systems available today is Intel KNL

chip, which will be used in our benchmarks and experiments.

Another example can be non-volatile memory-based hetero-

geneous memory system, where DRAM is used as a software

or hardware-managed cache for NVRAM [26], [14], [24].

III. COST MODEL

We devise a cost model, which captures the attributes of

a system and takes into account the application level details

to produce a score for each object to be placed on a desired

memory. This cost model forms the objective function of the

0-1 Knapsack algorithm which produces an allocation scheme

for an application being run on an heterogeneous memory

system. The knapsack is considered as HBM and is associated

with a maximum weight that is the total capacity of HBM. The

data objects are considered to be the individual items, which

can be carried by the knapsack. Each item has a weight and

(a) Flat Mode (b) Cache Mode (c) Hybrid Mode

Fig. 1: Memory modes of a heterogeneous system. a) HBM

and HCM are two separately addressable memories b) HBM

is managed by hardware. Automatic caching is performed. c)

HBM is partially available as a separately addressable memory

and partly as a hardware managed last level cache (LLC).

a value, which in our case are the size of the object and its

score, assigned by the cost model. The objective is to place

the most valuable objects in HBM without overloading it.

A. Cost Model for Initial Placement

The initial placement approach allocates the objects at the

start of an application and the placement does not change

throughout the execution. Objects are accessed from the re-

spective memories they are allocated to. Since this scheme is

static, the cost model does not consider the lifecycle of an

object. This trade off is compensated by the zero overhead of

object transfers across memories, yielding in a performance

benefit for certain application workloads.

The initial placement variant of the cost model only con-

siders the overall load and store accesses to memory of an

object. A memory can prioritize writes over reads or vice versa

and this feature could vary from one memory architecture

to another. Therefore we add α and β coefficients for the

writes and reads, respectively for a setup where loads or

stores are to be favored over the other. For example, on

Intel KNL write-sensitive objects should be prioritized to be

placed on MCDRAM [13]. The following equation calculates

a score for each object m which forms the basis of our cost

model’s objective function in initial placement. The Knapsack

algorithm suggests a candidate object list to the programmer

based on these scores.

Scorem = α ∗Writesm + β ∗ Readsm (1)

B. Cost Model for Phase-Based Placement

Phase-based cost model improves the initial placement by

taking the lifecycle of an object into account during the

program execution. Applications can have objects which are

heavily accessed in a particular phase of their runtime. Having

such objects in HBM throughout the program execution cannot

yield full potential of heterogeneous memory systems. Since

the different memories can be controlled through software

by the programmer, it is more advantageous to evict unused

objects and allocate objects which are going to be used in the

next phases. There are several ways to identify the application

phases. One of the easiest way is to divide the application into

phases based on loops. Since a loop accesses the same objects
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in a repeating fashion, the benefit of bringing those objects

into HBM can compensate the transfer overhead.

We also identify if certain objects in a phase tend to be

latency-bound or bandwidth-bound by analyzing whether ac-

cesses are indirect or streaming. The former being a candidate

for latency-bound object while the latter can be categorized

as a bandwidth-bound object. We use this information in

our cost model to better decide which object would yield a

higher performance benefit in a particular kind of memory.

For instance, having a latency-bound object in MCDRAM

of Intel KNL can yield a degraded application performance.

Phase-based cost model uses the following attributes about the

application and the underlying machine: a) Remaining load

and store count of an object, b) Transfer overhead caused by

data movement, c) Read and write bandwidths of different

memories, d) Strided access behavior and latency-boundness.

Firstly, the phase-based cost model discards the memory

access information of objects from the previous phases for the

current phase. This helps the cost model to decide whether

an object is losing its advantage over its lifetime during

execution. If the number of accesses for a particular object

decreases, it becomes less advantageous to keep that object

in HBM. Secondly, the eviction and admission of objects

from and to HBM introduces an overhead. This overhead is

due to synchronous transfer of objects between memories. To

overlap the transfers with execution of the previous phase, we

spare some threads for the transfer mechanism. Note that this

means slightly reduced thread count for the phase computation.

The third attribute relates to the different read and write

bandwidth performance of different types of memories. The

fourth attribute considers indirect or strided access behavior of

an application. Our cost model prioritizes the objects which

are accessed in a contiguous fashion to be placed on HBM in

Intel KNL. Note that this behavior can vary between systems.

In such cases, our cost model can make decisions accordingly.

The four attributes discussed above are translated into a final

cost model, which is used as the objective function in the 0-1

Knapsack algorithm. An object can be accessed from either

HBM or HCM in a particular phase. Based on the cost model,

we transfer objects to the appropriate memory. An object is

favorable to reside on one type of memory if its access time

is reduced when it is placed in that memory. We calculate the

access time of an object based on its score, element type and

the stream bandwidth of the particular memory its going to

be accessed from. We compute the access time metric only

to estimate the benefit of having the object on one particular

memory. By no means, this metric is the time required to load

or store that object. For an object m, the access time is:

AccessT imem =
Scorem ∗ ElementTypem

Bandwidthstream

(2)

We calculate the score in the same fashion as for the initial

placement strategy. However, there is one notable change in

score calculation. For initial placement we use the global read

and write references to calculate the score. In phase-based

placement, we use the remaining reads and writes for that

object in the application. This ensures that the score of the

object decreases if the object has fewer memory accesses in

the later part of the application. The score function for phase-

based placement translates to:

Scorem = α ∗ RemainingWritesm + β ∗ RemainingReadsm (3)

We observe in our experiments that memory access band-

width is reduced in the presence of strided or indirect accesses

as expected. This access pattern can change the access time

of an object and in turn can influence the decision of placing

an object in HBM. To incorporate this behavior, we use the

Bandwidthstrided instead of Bandwidthstream.

Through Access T imem, the algorithm decides whether the

object is used fairly enough to be kept in HBM. Since objects

are moved between phases, it introduces the added overhead

of transfer between memories. In worst case, every phase can

have a different working set, resulting in too much transfer

overhead. To take this overhead into account, we calculate the

transfer cost incurred by moving an object. Following equation

shows the transfer cost calculation performed to determine

the overhead of transferring an object from one memory to

another. The copy bandwidth for each memory type can vary.

The transfer cost takes into account this differing feature of

the memory as well.

TransferCostm =
ObjectSizem

Bandwidthcopy

(4)

We use access time and transfer cost of an object m to build

our objective function (ObjFunc), which is in turn used in 0-1

Knapsack algorithm to decide which objects should reside on

HBM. We add the eviction cost of object n in case an object

needs to be evicted from HBM to HCM to open up space for

object m. This overhead is very similar to transfer cost except

that it uses the copy bandwidth from HBM to HCM, which

can be different than the one from HCM to HBM [13].

ObjFuncm = AccessT imem − TransferCostm − EvictionCostn (5)

The 0-1 Knapsack algorithm uses this objective function

for the phase objects at each phase and tries to maximize the

function. As an output, the algorithm lists the objects that are

the best candidates to reside on HBM for a particular phase.

IV. IMPLEMENTATION

We present our work in the form of a tool which performs

object allocation and asynchronous transfers of data between

different types of memories. The working of our tool is two-

tiered. In the first tier, we profile the application using two

different sampling based profilers. In the next tier, we insert

API calls to the tool in the application so that the tool can

run the object selection algorithm and perform object transfers

between the memories. In the following sections we explain

these steps.

A. First Tier: Profiling

Our cost model requires object-level information to be

collected on the application to devise an allocation strategy.

In particular, it requires the a) program-level load and store
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Profiling Object Placement: Admission and Eviction 

Calculated for phase p+1 during 
execution of phase p 

Fig. 2: Interaction of ADAMANT and Cachegrind with our

tool. ADAMANT provides the object reference counts whereas

Cachegrind determines code blocks used as phases.

counts, b) phase-level load and store counts, and c) the size

of each object. We assess various tools which use static

code analysis or binary instrumentation techniques to intercept

object level events [4] [8] [22]. Collecting object-level infor-

mation through static code analysis [23] is very fast and incurs

minimal overhead but it has limited capabilities as it cannot

capture indirect memory accesses or conditional executions.

Binary instrumentation techniques are known to be accurate

but slow, incurring large overheads. To strike a balance be-

tween accuracy and speed, we leverage ADAMANT [7] and

Cachegrind [15] to gather object-level information along with

the phase information.

1) ADAMANT: is a sampling based address tracing tool

that provides object-level load and store information at the

program level without any significant overhead. ADAMANT

can intercept with memory allocation calls and distinguish

between statically and dynamically allocated objects. In order

to store the object access information, our tool maintains

a hashmap of objects and their load and store counts. For

static objects, the mechanism of recording loads and store

is straightforward – by matching the object names in the

application code. For dynamic allocations, we compare the

memory start addresses given by ADAMANT to the memory

addresses we obtain from the application code. This allows

us to keep track of each object and its remaining memory

accesses throughout the execution.

2) Cachegrind: is one of the tools in the Valgrind in-

strumentation framework [15], which we use for extracting

phase information from an application. Cachegrind simulates

the application behavior with the memory and caches in a

computer. It provides us with last level cache misses and can

distinguish misses as load or store misses. We interpret LLC

misses as accesses to memory and combine these statistics

with those found by ADAMANT for a better estimate of an

object’s memory traffic. In addition, Cachegrind allows us to

virtually divide the application into phases. The phases form

the boundaries at which we run our object placement algorithm

to select objects for the upcoming phase. Cachegrind gives

memory access information at the granularity of a statement

from the program. We sum the memory accesses made by the

statements inside a code block and determine if that particular

code block qualifies as a phase, incurring significant amount

of memory traffic. Since a phase contains multiple objects, our

algorithm can make a selection of objects to be kept on HBM.

ADAMANT and Cachegrind are two separate tools, there-

fore they require separate profiling runs to gather application

information at a target platform. However, once the informa-

tion is collected, there is no need to perform profiling again.

B. Second Tier: Object Placement

After we have gathered object-level statistics and phase

information of an application, we insert API calls to our

tool into the application. Our API can perform allocation and

deallocation of objects seamlessly as the programmer would

not need to evict and admit objects during the runtime. At

every phase our tool takes care of all object level asynchronous

migrations from one memory to another if our object selection

algorithm decides to do so.

1) Initialization: At the beginning of the target application,

we initialize our tool with the previously profiled data. This

includes the output from ADAMANT and Cachegrind, namely

the object level statistics and the phase information. After

initialization, our tool stores all the objects-level information,

which includes each object’s size and reference count to

memory. To reduce the cost of allocation and deallocation for

every object to be placed in HBM, we divide the HBM into

buffers. Each buffer is configured such that it can host the

biggest object in the application. However, if one of the objects

is significantly larger than the rest, we allocate a separate

buffer exclusively for that object. Along with configurable

buffer size, during initialization, we can also tune the number

of buffers allocated. For each buffer, we maintain a modified

bit to keep track whether the object stored in the buffer is

modified or not. When the object selected for eviction to

accommodate another object is not modified, it can simply

be overwritten, incurring no eviction cost.

2) Object Selection: We currently require the programmer

to add an API call before every phase of the application which

is determined using Cachegrind. The purpose of this API call

is to run the object placement algorithm at each of these

calls, which is equipped with the objective function discussed

in the cost model. Since our tool has acquired the phase-

level information previously, it knows which objects are being

accessed in a particular phase. Based on this information, and

the output from the placement algorithm, our tool transparently

transfers objects to and from the HBM. As mentioned earlier,

the task of moving objects from one memory to another comes

with an overhead. Our placement algorithm, with the help of

cost model, does not move objects which have a movement

cost greater than the benefit gained from keeping objects in

HBM. Lastly, during the execution of the last phase, the tool

does not perform any transfers.

3) Object Eviction: After our placement algorithm suggests

objects to be placed on HBM, the tool checks for the object

currently residing on HBM. If either of the buffers in HBM

contain objects from the selection, our tool does not modify

those buffers. For the remaining buffers which does not contain

matching objects, we need to evict these objects and add

new objects to HBM, or we can simply overwrite the objects

currently residing on HBM. The modified bit for each buffer

192



determines whether the object requires transfer or not. If so,

the tool transfers the content from that buffer back to HCM

prior to transferring the new object in that particular buffer.
4) Asynchronous Transfers: We make use of parallelism

during the transfer and object placement selection process.

The runtime uses two threads to run the object placement

algorithm and perform required transfers to and from both

memory types. This job is carried asynchronously during

application execution. Therefore, by the time the program

reaches the next phase, the objects used in that particular phase

are in the appropriate memories. The asynchronous transfers

minimize the execution of the application as compared to the

scenario when these calculations and transfers are conducted

synchronously. Asynchrony is not achieved in all cases. If the

application is executing phase p, our tool will calculate the

placement strategy for phase p + 1. However, in some cases,

our tool will suggest objects to be removed from HBM for

phase p + 1 which are currently being used in phase p from

HBM. In such cases the tool will wait for phase p to complete

its execution and then proceed with the transfer of object to

or from HBM.

V. EVALUATION

In this section, we evaluate the performance of our phase-

based object placement tool against various placement policies

on Intel Knights Landing (KNL). The Intel KNL machine is

equipped with a high bandwidth memory which is known as

Multi-Channel DRAM, or MCDRAM for short. Intel KNL

has three memory modes. A Flat Mode where the HBM can

be accessed as a separately addressable memory, a Cache
Mode where the HBM acts as a hardware managed last level

cache and a Hybrid Mode in which the HBM can act as a

combination of the two aforementioned modes. We compare

our tool under various memory configurations supported in

KNL with 64 cores. Table I summarizes these configurations

and the labeling convention that we will use in results.

1) All-DDR: All objects are allocated in DDR. MCDRAM

is not used.

2) All-MCDRAM: All objects are allocated in MCDRAM.

DDR is not used.

3) Hardware Cache: We make all allocations to DDR and

let the hardware cache objects into MCDRAM.

4) Initial Placement w/o Cache: Only initial placement is

performed based on the program-level object references.

HBM is set to 4GB in the algorithm. No hardware

caching is enabled.

5) Dynamic Placement w/o Cache: uses phase-based

object placement and its cost model, and performs

asynchronous transfers between HBM and HCM. HBM

is set to 4GB. No hardware caching is enabled.

6) Dynamic Placement w/ Cache: Similar to the previ-

ous configuration, however we augment the allocatable

HBM with last level cache by setting aside 4GB of

MCDRAM for hardware caching.

Table II shows the applications from Rodinia and NAS

Parallel benchmark suites we used for evaluation. The table

TABLE I: Intel KNL configurations used to evaluate our tool

Label HBM DDR Cache
(L3)

Boot
Mode

All-DDR — 96GB — Flat

All-MCDRAM 16GB — — Flat

Hardware Cache — 96GB 16GB Cache

Initial Placement
(w/o Cache)

4GB 96GB — Flat

Dynamic Placement
(w/o Cache)

4GB 96GB — Flat

Dynamic Placement
(w/ Cache)

4GB 96GB 4GB Hybrid

Fig. 3: Speedup achieved by the object placement conducted

by our tool against All-DDR mode. Red line shows the

baseline. All values below 1 indicate degraded performance.

also shows the memory footprint of each application and

the phases which were identified. All our experiments are

conducted with 64 OpenMP threads. Thread affinity is set to

scatter for all application execution. To rule out any anomalies

with the gathered results, we take an average of 5 runs for

each experiment. We decided to report speedups instead of

execution times because the scale of running time for each

application is drastically different. Dynamic placement results

use asynchronous transfers if possible unless stated otherwise.

A. Comparison against All-DDR and All-MCDRAM

Figure 3 shows the speedup achieved when the program is

executed with the placement strategy suggested by our tool

against the default placement setting i.e. when all the data

is housed in the DDR memory, referred as ALL-DDR. In

this figure, we also compare our performance against when

all the data is allocated in the fast MCDRAM , referred

as ALL-MCDRAM. We observe and confirm our hypothesis

that dynamic placement consistently performs better than the

initial placement. This is mainly due to the object eviction

and admission protocol conducted by our tool. In most of the

cases we observe that our tool performs nearly as good as the

best case scenario i.e. when all the objects are allocated in the

MCDRAM .
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TABLE II: Evaluated Applications

Applications Description # of Objects Footprint (GB) # of Phases

CG [2] Conjugate Gradient solves unstructured sparse linear systems 13 5.23 17

BT [2] Block tri-diagonal solver 11 4.49 31

FT [2] Performs discrete fast Fourier Transform 5 4.50 28

LU [2] Lower-Upper Gauss-Seidel solver 14 4.53 30

SP [2] Scalar Penta-diagonal solver 10 7.76 28

SRAD [5] Diffusion method for ultrasonic and radar imaging applications 7 5.55 4

HotSpot [5] Thermal simulation tool used for processor temperature estimation 3 6.44 11

BFS [5] Breadth First Search graph traversal algorithm 6 9.75 5

B. Comparison against Hardware Cache

MCDRAM in Intel KNL can be set as a last level cache.

In this mode, the hardware performs caching from DDR

to all levels of cache. The application is executed without

any changes made to it, which is the easiest mode for the

programmer. However, this might not always result in the best

performance. Figure 4 shows the speedup achieved by the

placement conducted by our tool against hardware caching.

We observe that majority of the applications perform well

over hardware caching. In all the cases, dynamic placement

achieves better performance than automatic hardware caching.

For CG, FT and SRAD, the initial placement fails to perform

better than hardware caching. This is mainly because the initial

placement only suggests object allocation based on the global

load and store counts and does not dynamically adapt the

application behavior. Whereas dynamic placement considers

the loads and stores for each phase separately and performs

object movement across memories when necessary.

C. Analyzing Transfers between Phases

In this section, we study the benefit of asynchronous

transfers and analyze some statistics about object movement

between phases. Our tool hides the overhead of object se-

lection and object transfer for phase p + 1 by overlapping

this calculation and data movement while phase p is under

execution. Figure 5 shows the speedup achieved over the

placement when transfers are performed synchronously. We

perform the same experiments for each application by con-

ducting the object selection and movements synchronously

i.e. when object selection and object transfers are done in a

serial fashion without sparing any threads for these operations.

The speedup achieved confirms that asynchronous transfers

have a considerable advantage over synchronous transfers even

though we steal two threads from the main computation to

perform object selection and transfer asynchronously.

Table III shows the number of phases in which a transfer

occurs and the number of objects moved in total. It also shows

the percentage of phases that data movement is required.

For example, for CG, out of 17 phases, six phases require

data movement between two memories and a total of 13

objects are moved. Results prove the benefit of dynamic

placement since it adapts the application behavior as the

working set of application changes from phase to phase. In

our experiments, we also observe that a higher transfers/phase

Fig. 4: Speedup achieved by our tool against MCDRAM acting

as LLC. Red line shows the baseline. All values below 1

indicate degraded performance.

Fig. 5: Speedup achieved by asynchronous transfers over

synchronous transfers using dynamic placement strategy.

percentage value has a direct relation to increased performance

using asynchronous transfers. This might be because it gives

more opportunities to hide the transfer latency since object

selection algorithm runs at every phase regardless. For the

analysis of asynchronous transfers, we spared 2 threads which

yielded the best performance on Intel KNL. This number can

vary across different machines.

D. Latency-Sensitive Applications

While some applications benefit from the high bandwidth

characteristics of an HBM, others might get degraded perfor-
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TABLE III: Some statistics about object movement

Applications Phases Transfers Objs Moved Transfers/Phase

CG 17 6 13 35.3%

BT 31 3 10 9.67%

LU 28 4 12 13.3%

SP 30 3 8 11.1%

FT 28 10 12 35.7%

SRAD 4 1 3 25.0%

HotSpot 11 6 9 54.5%

BFS 5 3 5 60.0%

Fig. 6: Bandwidth degradation comparison of MCDRAM and

DDR in Intel KNL as the stride length is increased.

mance because of higher latency of HBM compared to DRAM.

Applications which include indirect or strided access can be

characterized as latency-sensitive applications. Figure 6 shows

the bandwidth degradation of MCDRAM and DDR in KNL.

As the stride size increases, the bandwidth of both memories

degrades drastically. Due to high access latency of HBM in

Intel KNL, MCDRAM loses its advantage over DDR for some

objects as in the BFS application.

Our cost model distinguishes between such objects by

changing their access bandwidths. As discussed previ-

ously, if an application contains objects which exhibit

indirect accesses, we change its access bandwidth to

Bandwidthstrided. For HBM, the Bandwidthstrided is lower

than the Bandwidthstream. Changing bandwidths for objects

according to their access patterns can yield different and better

placement strategies. We changed the bandwidth for BFS

to monitor this effect. Three objects in two phases in BFS

were allocated Bandwidthstrided for calculating placement

strategy. For the remaining objects we used stream bandwidth.

Overall, we only observe 1% improvement but we expect the

benefit is higher for an application which has a lot more objects

with mixed access patterns. Future work will investigate this

further.

VI. RELATED WORK

It is expected that in near future computers will have a

combination of different memory pools, each complementing

the effect of the other [1]. In such a case, the demand

for seamless object placement is likely to increase. For a

programmer, it is ideal that these different memory pools are

managed without any extra effort. In lieu of this, several works

have been proposed to minimize the effort of the programmer

for deciding object placement strategies.

Hardware centric approaches [19][25][18][9] usually lever-

age the built-in hardware components in a system. Perfor-

mance counters and registers are a most widely used to

extract hardware-level statistics. Hardware centric approaches

can either work at the granularity of a whole application or at

specific user-annotated points within the application. As the

granularity increases, the overhead of gathering information

from these components increases. To mitigate the overhead,

sampling techniques are adapted. Ramos et al. [19] focus on

monitoring the memory controller to analyze the memory ac-

cess pattern of the application. After querying this information,

they perform page migration from one memory to another. In

[6], the authors present a scheme in which line swaps are made

between the two memories through hardware. This approach is

similar to a hardware cache that hosts recently accessed data.

Like a cache, the granularity is a cache line.

Software-based approaches implement transfer of object at

the software stack. These approaches are highly customizable

and can cater to a variety of applications. These strategies

can be either 1) static or 2) dynamic. In the former, once

an object is allocated to a memory, it is not evicted from it.

Whereas, in the latter, the runtime manages the locality of

objects across different memory types, i.e. an object can be

transferred between memories during application execution as

in our proposed approach.

Servet et al. [21] use a two pass approach for object

placement. Their decision for a two pass approach is based on

the tools they use to gather object-level statistics. In their first

pass they use Extrae [20] to gather the application execution

profile. After extracting useful information, they use an object

selection algorithm based on EVOP [17]. Later they override

the malloc function call to allocate objects to the appropriate

memory based on the object placement strategy listed by their

selection scheme. However, their work does not consider the

memory usage by an object during the application execution.

Once allocated, objects are not evicted and reside in the same

memory where they are allocated.

Laghari et al. [13] proposes an initial placement approach in

which the objects are allocated to a particular memory based

on their memory access pattern. The basis function in their

allocation scheme considers loads and stores of a particular

object, separately. In addition to this, their tool can prioritize

the type of memory access based on the system used. In

their work, Intel KNL yields a better application performance

if write-intensive objects are allocated to the fast memory.

Therefore, they prioritize stores over loads. Their approach,

however, only performs initial placement.

Wu et al. [26] perform phase-based dynamic object allo-

cation for NVRAM-based main memory systems. Their tool,

Unimem, divides the application into phases where the phases

are code blocks between two MPI calls. Based on the objects

residing in those code blocks and their access pattern, a cost

model decides which objects to place on the main memory.

195



Their cost model keeps track of objects usage, memory access

type and the overhead incurred by the transfer of objects across

different memory types. Unlike HBM-based main memory

systems, in their approach it is assumed that placing objects

on DRAM is always advantageous over NVRAM. Our cost

model is flexible and more general, which can be applied to

other heterogeneous memory systems. Unimem’s evaluation is

purely simulation based, while our work is conducted on real

hardware, Intel KNL.

VII. CONCLUSION

Heterogeneous memory systems, which are equipped with

multiple memories each with different characteristics, allow

programmers to perform object placement explicitly on differ-

ent memories. Such systems, however, introduce the burden of

deciding which objects to place on which kind of memory. To

assist the programmer, we present a phase-based dynamic data

placement scheme which takes into account the object’s life

cycle and its activity in an application to suggest a placement

strategy. We develop a runtime tool which can distinguish

between the different characteristics of each memory and can

perform object allocation in a way which will maximize over-

all application performance. Our tool divides the application

into phases and performs asynchronous object eviction and

admission into different memories. We tested our placement

algorithm on various applications on Intel KNL which is

equipped with MCDRAM and DDR memory, and observe

a speedup of up to 2x. Our future work will facilitate the

placement further by fully automating the entire process.
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