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ABSTRACT

Memory bandwidth has long been the limiting scaling factor for high-performance

applications. To overcome this limitation, various heterogeneous memory systems

have emerged. A heterogeneous memory system is equipped with multiple memories

each with distinct characteristics. Among other characteristics, one common charac-

teristic across these systems includes a memory with a significantly higher bandwidth

than the others. This particular memory is known as the high bandwidth memory in

general. Some of such high bandwidth memory (HBM) technologies include the hybrid

memory cube (HMC) by Micron and high bandwidth memory standard by JEDEC.

Intel’s latest Xeon Phi processor, namely Intel Knights Landing (KNL), is equipped

with an HBM known as the multi-channel DRAM, or MCDRAM, along with a DDR.

The MCDRAM boasts up to 450 GB/s memory bandwidth as compared to its slower

counterpart DDR which boasts only up to 88 GB/s. Unfortunately, as the bandwidth

increases, the access latency for MCDRAM increases. Due to technology limitations

and the high price per byte rate, HBM is offered in a small capacity as compared

to traditional DDR in heterogeneous memory systems. Therefore, to overcome the

smaller capacity of HBM, a heterogeneous memory system is also equipped with a

higher capacity DDR. In such systems, the programmer is offered a choice to perform

explicit allocations to each memory or let hardware handle data caching to the HBM.

An intelligent object allocation scheme can yield a performance boost of the appli-

cation. On the contrary, if an allocation is made without considering memory and

application characteristics the overall performance of an application can drastically

degrade. The object allocation choice coupled with the choice of deciding a system

configuration can overburden the programmer resulting in increased programming

effort and time consumption.
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This thesis presents an object allocation scheme which is based on a system and

application-specific cost model, a combinatorics optimization algorithm commonly

known as the 0/1 Knapsack and a tool which combines these two components in

practice. The cost model considers various characteristics of application data such as

the object sizes, memory access counts, type of access, etc. In addition to applica-

tion characteristics, the cost model also considers memory bandwidth under various

conditions, including data streaming bandwidth and data copy bandwidth. These

characteristics make our cost model rich allowing it to suggest an intelligent object

allocation scheme. Using the aforementioned characteristics, the cost model deter-

mines a score for each object. These scores are used as values for each object in the

0/1 Knapsack algorithm to determine objects to be allocated on HBM where Knap-

sack size is HBM size. The tool uses the cost model to make an intelligent decision

for object placement. The tool comes in two flavors: 1) static placement where ob-

ject placement is decided at the beginning of application execution and 2) dynamic

placement where objects are evicted and admitted to high bandwidth memory on

the run based on application phases thus incurring the object movement cost. In the

latter variant, the cost model considers the movement cost of objects from one mem-

ory to another while deciding on objects to be placed on the HBM. The tool is also

capable of conducting object transfers asynchronously. The asynchronous transfers

allow the tool to hide the transfer cost between phases.

We evaluate our allocation scheme using a diverse set of applications from NAS

Parallel and Rodinia benchmark suites. The included applications have varying work-

loads and memory access patterns which exhibit the characteristics of real world ap-

plications. During the evaluation, Intels Knights Landing and its high bandwidth

memory, namely MCDRAM, was used. The object placement suggested by the tool

yields a speedup of up to 2.5x. We observe that latency-sensitive applications fail to

benefit from high bandwidth memory allocation. This is because of the higher access

latency of HBM. We also compared the results with the automatic hardware caching



of Intel KNL. In hardware mode, the application is executed on the system without

any changes and the caching is done by hardware automatically. We observe that our

allocation scheme yields result better than that of hardware caching majority of the

time.



ÖZETÇE

Bellek bant genilii, yksek performansl uygulamalar iin performans artrmada snr-

layc bir faktr olmutur. Bu snrlamann stesinden gelmek iin eitli heterojen bellek

sistemleri ortaya kmtr. Heterojen bir bellek sistemi her biri farkl zelliklere sahip

olan birden fazla bellekten oluur. Bu bellek sistemleri eitlilik gsterseler de ortak bir

zellie sahiptirler. Bu zellik sistemdeki dier belleklere kyasla daha yksek bant genili-

ine sahip bir bellein ierilmesidir. Bu zel bellek ise genelde yksek bant genilii bellei

(HBM) olarak bilinir. HBM teknolojilerinden bazlar, Micron’un hibrid bellek kpn

(HMC) ve JEDEC’in yksek bant genilii bellek standardn ierir. Intel’in en yeni Xeon

Phi ilemcisi Intel Knights Landing (KNL), DDR ile birlikte ok kanall DRAM veya

MCDRAM olarak da bilinen bir HBM ile donatlmtr. DDRde bant genilii 88 GB/s

iken, MCDRAMde bu rakam 450 GB/sdir. Ancak, bant genilii arttka, MCDRAM iin

gecikme sresi artar. Buna ek olarak, teknolojik kstlardan ve bayt bana yksek fiyattan

dolay HBM, heterojen bellek sistemlerinde geleneksel DDR’ye kyasla kk bir kapasit-

ede sunulmaktadr. HBM’nin bu kapasite kstnn stesinden gelmek iin, heterojen bellek

sistemleri daha yksek kapasiteli bir DDR ile donatlmtr. Bu tr sistemlerde, programc

her bellee zel ayrma yapabilir veya donanm HBM’yi nbellek olarak kullanabilir. Akll

bir nesne yerletirme emas, uygulamalarda performans art salayabilir. Bunun aksine,

bellek ve uygulamalarn zelliklerini dikkate almadan yerletirme yaplrsa, uygulamalarn

genel performans byk lde debilir. Nesne yerletirme seimi ve buna ek olarak sistem

konfigrasyonuna karar verme seimi, programlayc iin fazladan sorumluluk oluturur.

Bu sorumluluk da artan programlama abas ve zaman tketimine neden olur.

Bu tez, sistem ve uygulamaya zel maliyet modeline dayanan bir nesne yerletirme

emasn, genellikle 0/1 Knapsack olarak bilinen bir kombinatorik optimizasyon algo-

ritmasn ve bu ikisini pratikte birletiren bir arac sunmaktadr. Maliyet modeli nesne
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boyutlar, bellek eriim saylar, eriim tr, ve bunun gibi eitli uygulama zelliklerini gz

nnde bulundurmaktadr. Uygulama karakteristiine ek olarak, maliyet modeli, veri ak

bant genilii ve veri kopyalama bant genilii de dahil olmak zere eitli alardan bellek

bant geniliini de dikkate almaktadr. Bu zellikler, akll bir nesne yerletirme emas

nermeye yarayan maliyet modelimizin ieriini zenginletirmektedir. Belirtilen zellikleri

kullanarak, maliyet modeli her nesne iin bir skor belirler. Bu skorlar, her bir nesnenin

Knapsack algoritmasndaki boyutunu ifade eder. Knapsack boyutu olarak ise HBMnin

boyutu kullanlr. Ara, nesne yerletirmede akll bir karar vermek iin maliyet modelini

kullanr ve iki farkl yerletirme yapabilir: 1) nesnelerin yerleiminin en bata yapld

statik yerletirme ve 2) nesnelerin transferine neden olan, uygulamann fazlarna

dayal olarak HBMye aktarma veya HBMden karma yaplan dinamik yerletirme. Di-

namik yerletirmede, maliyet modeli, HBM’ye yerletirilecek nesnelere karar verirken,

nesnelerin bir bellekten dier bellee olan transferinin maliyetini gz nnde bulundurur.

Ayrca ara, nesneleri ezamansz transfer etme yeteneine sahiptir. Ezamansz transferler,

aracn transfer maliyetini uygulamann fazlar arasnda gizlemesine olanak salar.

Yerletirme emamz, NAS Paralel ve Rodinia karlatrmal deerlendirme paketlerinden

alnan bir dizi uygulama zerinde test ettik. Kullanlan uygulamalar, pratikte kullanlan

uygulamalarnn zelliklerini sergileyen, deiken i yklerine ve bellek eriim modellerine

sahiptirler. Deerlendirme iin Intel’in Knights Landing ilemcisini ve yksek bant genilii

bellei olan MCDRAMyi kullanldk. Gelitirdiimiz ara tarafndan nerilen nesne emas,

2,5 kata kadar bir hzlanma salad. Gecikme sresine duyarl uygulamalarn yksek bant

geniliine sahip bellek yerleiminden yararlanamadklarn da gzlemledik. Bunun nedeni,

HBM’nin daha yksek gecikme sresine neden olmasdr. Ayrca, sonular Intel KNL’nin

otomatik donanm nbellei ile de karlatrdk. Donanm modunda, uygulama, herhangi

bir deiiklik yaplmadan yrtld ve donanm tarafndan otomatik olarak nbellee alma ilemi

yapld. Yerletirme emamzn, ou zaman otomatik donanm nbelleinden daha iyi sonu

verdiini gzlemledik.
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Chapter 1

INTRODUCTION

1.1 Motivation

In recent years, we have observed a rise in the number of systems with diverse types of

memories to counter the engineering limits of DDR memory technologies [Ang et al.,

2014]. For instance, a typical DDR4 can only transfer data at a rate of 88GB/s to

the CPU [Jeffers et al., 2016a] and at this rate a compute unit cannot be utilized

at its full capacity, leading to wasted clock cycles and low flops rate. As a result,

heterogeneous memory systems equipped with multiple memory types each with dis-

tinct characteristics have emerged to overcome the bandwidth limitations. Some of

the high-bandwidth memory (HBM) technologies are high bandwidth memory stan-

dard by JEDEC [JEDEC, 2013], hybrid memory cube (HMC) by Micron [Pawlowski,

2011], or a technology like WideIO [JEDEC, 2011]. Intel Knights Landing (KNL)

chip comes with an HBM called Multi-Channel DRAM (MCDRAM), which boasts

450GB/s memory bandwidth as compared to its slower DRAM (88GB/s). The in-

crease in bandwidth, however, comes at the cost of higher access latency and low

capacity. To compensate for these shortcomings, HBMs are typically augmented with

high capacity memories which generally have a lower access latency.

1.2 Heterogeneous Memory Systems

The computational capacity of a system is not completely utilized due to lacking

bandwidth performance of the memory system. This results in lower than expected

performance figures for various applications. This shortcoming can result in dras-
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tically degraded performance for applications with a large memory footprint. To

overcome this, Heterogeneous Memory (HM) systems introduce multiple memories in

a single system. HM systems try to overcome the shortcoming by providing a higher

bandwidth memory which acts as a cache for the slower memory. HM systems can

have a high bandwidth but lower capacity memory module acting as a cache for the

traditional DDR. It can also have a much higher capacity memory module for which

DDR can act as a cache. These modules can form a variety of memory configura-

tions which are often presented to the programmer to choose from. The augmented

memory can be used as 1) a separately addressable memory module, 2) a hardware

managed memory module, or 3) a combination of the two modes described above.

1.3 Hardware and Software Approaches

Having multiple memories introduces the need for data management. In this regard,

programmers have the option to explore various configurations. These configurations

can be broadly categorized as 1) hardware-managed, therefore transparent to the pro-

grammer, or 2) software-managed through OS or application code. In hardware-based

strategies, HBM is considered as a last level cache and hardware handles the data

admission and eviction. In software-based management, heterogeneous memory sys-

tems allow programmers to allocate application data on either memory depending on

application characteristics, potentially improving the overall application performance.

For HBM management through software, previous work focuses on 1) OS-based ap-

proaches and 2) Application-driven allocations. Even though OS-based approaches

do not require any modifications at the application and free the programmer from

concerns about object allocations, they require changes in the OS and operate on the

page granularity rather than data objects.

In application-driven allocations, objects are explicitly partitioned between high

bandwidth memory and high capacity memory by the programmer [Cantalupo et al.,

] or frameworks assisting the programmer [Laghari and Unat, 2017]. Placement of

objects can be performed statically at the beginning of the program, or dynami-
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cally as the program executes based on the phases of the application. In our prior

work [Laghari and Unat, 2017], we proposed an initial object placement algorithm

and observed a considerable improvement in execution time of an application. Our

placement algorithm is based on 0-1 Knapsack and takes into account the object sizes

and their memory reference counts to suggest an initial allocation scheme for the en-

tire application. This approach, however, fails to capture the object activity at any

particular time as the program executes. In addition, the decision of which objects

to place where depends on numerous factors. For example, HBM in Intel KNL is

favorable to bandwidth-bound applications and can cause performance degradation

to latency-bound applications [Jeffers et al., 2016a] [Laghari and Unat, 2017]. Other

factors such as whether application performs strided accesses or has write-intensive

workload require more complex decision-making for applications with large memory

footprint. This thesis proposes a new dynamic object allocation scheme which per-

forms on the fly object admission and eviction, to and from the HBM.

We identify the attributes which can affect the choice for objects being in a par-

ticular memory during program execution. These attributes can be hardware-related

features such as bandwidth of each memory type, transfer bandwidth between memo-

ries, or software-related such as memory access pattern, object reference count, object

size etc. We incorporate these attributes into a cost model, which estimates the ben-

efit of having an object in one memory over the other. Using this cost model for each

application phase, we apply Knapsack algorithm and transparently move the objects

between two memories, dynamically adapting the application behavior. We demon-

strate our framework on high bandwidth memory available in Intel KNL architecture

with several applications.

1.4 Initial Placement and Dynamic Placement

The tool described in this thesis offers two variants of object placement. The two

variants mainly differ from one another by the amount of object and application level

information they take while deciding which object should reside in a particular mem-
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ory. 1) Initial Placement: where objects are allocated to a particular memory

before the application execution has begun. The allocations are based on the overall

object activity during the entire run of the application. Since the objects are not

moved during application execution from the memory they are allocated to in the

beginning, this strategy does not incur any object movement cost. 2) Dynamic

Placement: where objects have the freedom of moving across memories. The ap-

plication is divided into phases. Phases can be identified in a variety of ways. The

reason to divide an application into phases is to keep those objects which are accessed

together in a repeating fashion. One easy way to determine phases in an is to divide

the application on loops. These loops can be for or while loops. Since the objects in

these phases will be accessed together, the benefit of keeping them together in HBM

can compensate for the object movement across memories. The tool is capable of

performing these transfers asynchronously. When a phase X is under execution, the

tool can calculate the object placement strategy for phase X + 1 and perform the

necessary object transfers before the phase X + 1 starts its execution.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a background about

the underlying system architecture. It talks about the high bandwidth memory tech-

nologies and gives a brief introduction of the Intel’s Knights Landing processor and

its Multi-Channel DRAM. Chapter 3 talks about the related work in the domain of

systems consisting of multiple memories. Chapter 4 describes the benchmarks con-

ducted on one of the HM system, namely Intel KNL. Chapter 5 and 6 describe the

initial and dynamic placement algorithms and their working, respectively. They also

contain the evaluation and findings of both the placement strategies. Lastly, chapter

7 states the conclusion.



Chapter 2

BACKGROUND

2.1 High Bandwidth Memory Technologies

High bandwidth memory (HBM), as the name suggests, is a type of memory which

is capable of providing a higher bandwidth to the system. Unlike traditional mem-

ory technologies, this technology allows the memory module to generate a greater

sustained memory bandwidth increasing the throughput of the application being exe-

cuted resulting in higher performance. The actual bandwidth can vary across partic-

ular technologies and the architecture of the memory module. The HBM equipped in

Intel Knights Landing processor can yield up to 450 GB/s. Whereas its counterpart,

the DDR4 is only limited to 88 GB/s. A high bandwidth memory is capable of achiev-

ing such high bandwidth figures because of its architectural design. A HBM module

consists of DRAM dies stacked on top of each other. These dies are stacked atop each

other and are connected with each other using a special material commonly known as

“through-silicon-vias”, or TSVs, and microbumps. Due to their vertical architecture,

the HBM memory module does not occupy a large area therefore it is easily placed

on-package. The memory module is connected to the CPU or GPU using a special

interconnect, known as the interposer.

Several companies have pioneered in HBM technology and are offering their own

flavor of high bandwidth memory integrated in their products. The HBM revolu-

tion started from AMD and SK Hynix. One of the first device using HBM tech-

nology was AMD’s Fiji GPUs. Later JEDEC adopted HBM as the industry stan-

dard. Intel introduced Knights Landing processor which is equipped with Intel’s

proprietary HBM technology, namely Multi-Channel DRAM, or MCDRAM. Hybrid

Memory Cube (HMC), developed by Micron Technologies, is a competitor of HBM
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Figure 2.1: Model of a HBM technology developed by AMD. Image taken from

https://www.amd.com/en/technologies/hbm

technology. Similar to HBM, HMC is uses a stacked DRAM die structure connecting

them through TSVs. However, unlike the standard dies used in HBM, HMC uses

DRAM dies with a higher number of memory banks. Both memories, however, aim

to achieve a higher overall bandwidth.

Figure 2.1 shows AMD’s HBM technology. The figure clearly shows the individual

components of HBM technology. The memory module is placed on-package alongside

the CPU of GPU.

2.2 Intel Knights Landing

In June 2016, Intel launched its latest Xeon Phi proessor, codenamed Intel Knights

Landing (KNL). Unlike the older versions, this processor is self-bootable and binary

compatible. Intel KNL is equipped with 72 cores arranged within a 2-dimensional

mesh networks using 36 tiles. Each tile consists of 2 cores and 2 VPUs for each core.

Each tile also contains a shared L2 cache of 1 MB. On the same package lie the 8



Chapter 2: Background 7

Figure 2.2: Tile arrangement and placement of MCDRAM modules on-package on an

Intel KNL chip

modules of MCDRAM of size 2 GB each. Intel Knights Landing comes which an

on-package HBM with a capacity of 16 GB which is capable of boasting 450 GB/s

of memory bandwidth along with an off-package DDR that acts as a high capacity

memory. Figure 2.2 shows the 2-dimensional mesh network of tiles in an Intel KNL

chip. The chip also contains 6 channels to DDR, 3 on each side. Figure 2.3 shows the

structure of a tile. Intel KNL mesh network can be configured to a variety of cluster

modes. 1) All-to-All clustering mode is the most general mode. There is no affinity

between the tiles and memory in this mode. 2) Quadrant clustering mode divides
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Figure 2.3: Intel KNL tile consisting of 2 cores and a shared L2 cache.

the chip into 4 virtual quadrant. In this mode the memory addresses are hashed to

the directory which is in the same quadrant as the memory. The last mode is 3)

Sub-NUMA clustering (SNC) mode where each quadrant is exposed as a separate

NUMA domain to the OS. SNC can be configured to either 2 or 4 quadrants. This

mode introduces affinity between tile, directory and memory and incurs the lowest

latency of all the modes.

2.2.1 Multi-Channel DRAM

As discussed previously, Intel KNL contains a high bandwidth memory, namely Multi-

Channel DRAM or the MCDRAM. It comes with a capacity of 16 GB and can reach

upto 450 GB/s. The MCDRAM modules are placed atop the chip. It is divided into 8

modules of 2 GB each. MCDRAM can be configured into 3 different memory modes.

1) Flat Mode: MCDRAM acts as a separately addressable memory. In this mode,

the memory allocations are to be managed by the software giving full control to the

programmer. However, this mode introduces the effort of making manual allocation

to MCDRAM. 1) Cache Mode: MCDRAM acts as a hardware managed cache. No

software changes are required by the programmer. Hardware handles all the caching.

This mode is easier to manage as the programmer does not need to change application

data allocation. Lastly 1) Hybrid Mode: MCDRAM can be configured to act both

separately addressable memory and hardware-managed cache.

Figure 2.4 shows visualization of each memory mode of Intel KNL.
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Figure 2.4: Intel KNL memory modes.
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RELATED WORK

It is expected that in near future computers will have a combination of different

memory pools, each complementing the effect of the other [Ang et al., 2014]. In

such a case, the demand for seamless object placement is likely to increase. For a

programmer, it is ideal that these different memory pools are managed without any

extra effort. In lieu of this, several works have been proposed to minimize the effort

of the programmer for deciding object placement strategies.

Hardware centric approaches [Ramos et al., 2011] [Vega et al., 2011] [Qureshi

et al., 2009] [Islam et al., 2016] usually leverage the built-in hardware components

in a system. Performance counters and registers are a most widely used to extract

hardware-level statistics. Hardware centric approaches can either work at the granu-

larity of a whole application or at specific user-annotated points within the applica-

tion. As the granularity increases, the overhead of gathering information from these

components increases. To mitigate the overhead, sampling techniques are adapted.

Ramos et al. [Ramos et al., 2011] focus on monitoring the memory controller to an-

alyze the memory access pattern of the application. After querying this information,

they perform page migration from one memory to another. In [Chou et al., 2014], the

authors present a scheme in which line swaps are made between the two memories

through hardware. This approach is similar to a hardware cache that hosts recently

accessed data. Like a cache, the granularity is a cache line.

Software-based approaches implement transfer of object at the software stack.

These approaches are highly customizable and can cater to a variety of applications.

These strategies can be either 1) static or 2) dynamic. In the former, once an object

is allocated to a memory, it is not evicted from it. Whereas, in the latter, the runtime
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manages the locality of objects across different memory types, i.e. an object can

be transferred between memories during application execution as in our proposed

approach.

Servet et al. [Servat et al., 2017] use a two pass approach for object placement.

Their decision for a two pass approach is based on the tools they use to gather object-

level statistics. In their first pass they use Extrae [Servat et al., 2013] to gather the

application execution profile. After extracting useful information, they use an object

selection algorithm based on EVOP [Pea and Balaji, 2014]. Later they override the

malloc function call to allocate objects to the appropriate memory based on the

object placement strategy listed by their selection scheme. However, their work does

not consider the memory usage by an object during the application execution. Once

allocated, objects are not evicted and reside in the same memory where they are

allocated.

Laghari et al. [Laghari and Unat, 2017] proposes an initial placement approach in

which the objects are allocated to a particular memory based on their memory access

pattern. The basis function in their allocation scheme considers loads and stores of

a particular object, separately. In addition to this, their tool can prioritize the type

of memory access based on the system used. In their work, Intel KNL yields a better

application performance if write-intensive objects are allocated to the fast memory.

Therefore, they prioritize stores over loads. Their approach, however, only performs

initial placement.

Wu et al. [Wu et al., 2017] perform phase-based dynamic object allocation for

NVRAM-based main memory systems. Their tool, Unimem, divides the application

into phases where the phases are code blocks between two MPI calls. Based on the

objects residing in those code blocks and their access pattern, a cost model decides

which objects to place on the main memory. Their cost model keeps track of objects

usage, memory access type and the overhead incurred by the transfer of objects across

different memory types. Unlike HBM-based main memory systems, in their approach

it is assumed that placing objects on DRAM is always advantageous over NVRAM.
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BENCHMARKS

To construct the placement algorithm for heterogeneous memory systems, we first

study the capabilities of a system equipped with an HBM augmented with DDR. One

of the variants of HBM recently introduced by Intel is MCDRAM, or Multi-Channel

DRAM in the KNL processor [Sodani et al., 2016]. MCDRAM is a configurable

memory module, which can be set to either of the three modes on boot. These

modes represent their accessibility by the programmer and their ease of use. The

modes also define the granularity level at which an application can be configured

to leverage maximum advantage from it. These modes are 1) Cache Mode, 2) Flat

Mode, and 3) Hybrid Mode. In cache mode, MCDRAM acts as the last level cache

to DRAM. The memory management in this mode is done by the hardware requiring

no changes in the software. The downside of this mode is its added latency on cache

misses. The second configurable mode is the flat mode, in which MCDRAM acts as

a separately addressable memory module. This allows the programmer to control

object placement to the level of granularity that they deem fit in order to maximize

the application performance. Lastly, the hybrid mode is a combination of the two

aforementioned modes, where part of the MCDRAM acts as the cache and the rest

acts as a separately addressable memory. In this work, we are interested in the flat

mode of MCDRAM since it allows the programmer to decide which objects to place

on what kind of memory explicitly.

In this section we conduct bandwidth benchmarks to verify the capability of HBM

in particular to what extent can it benefit an application. The STREAM benchmark

is the de facto standard for performing bandwidth analysis of memory modules [Mc-

Calpin, 1995]. We have modified the STREAM benchmark to mimic various scenar-
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ios. The modified benchmarks and their results are discussed in detail in the following

sections.

4.1 Experiment Setup

We perform our experiments on KNL processor equipped with 68 cores. MCDRAM

in KNL acts as a fast memory and DRAM acts as a high capacity slow memory

for our experiments. The system is configured to Sub-NUMA 4 clustering (SNC-4)

mode with MCDRAM set to flat mode. Cores are distributed in tiles. Each tile

consists of 2 cores, a shared L2 cache of 1MB and 4 Vector Processing Units, 2 for

each core. In SNC-4, two of the clusters have 16 cores each while the other two

have 18 cores each. Each cluster in SNC-4 mode stores data associated with its

cores on the nearest MCDRAM non-uniform memory access (NUMA) node. This

results in a lower latency for memory accesses. Flat mode allows us to manage

the MCDRAM through the Memkind library [Cantalupo et al., ]. Unless stated

otherwise we set the affinity of threads to scatter instead of compact by using the

flag KMP AFFINITY=scatter. This allows the application to fully utilize the multiple

channels accessing the memory modules removing any chances of congestion when

fewer number of threads than cores are running. We use the qopt-streaming-stores

flag and set it to always to bypass the cache since there is no data reuse in the

stream benchmark. The Memkind library [Cantalupo et al., ] developed by Intel

provides an interface to allocate objects manually to available memory types. We use

interleaved memory allocation provided by the library such that memory addresses

are allocated to all memory banks in turn.

4.2 STREAM Benchmark

In this section we describe the results obtained from unmodified STREAM benchmark

on KNL. We focus on the triad and copy kernels of STREAM:

1. COPY : A[i] = B[i]
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Figure 4.1: Stream Triad Benchmark results for MCDRAM and DDR with

KMP AFFINITY = Scatter.

2. TRIAD : A[i] = alpha ∗B[i] + C[i]

In our experiments, data was explicitly allocated to the desired type of memory using

the Memkind library. With explicit allocation we assert that the data is only placed

on the memory of our choice and this allows us to verify the bandwidth difference

between on-package MCDRAM and the DDR.

Figure 4.1 shows the triad bandwidth achieved using the unmodified STREAM

benchmark. MCDRAM observes around 450 GB/s, which matches the published

figures by Intel [Jeffers et al., 2016b]. In Sub-NUMA cluster mode by varying the

number of threads, we experience that the peak bandwidth is achieved earlier, starting

from only 64 threads and onwards, if the thread affinity is set to scatter. This means

that the threads are distributed evenly across the tiles on all four clusters on the chip,

which translates to better usage of the eight access channels of MCDRAM.

4.3 Copy Bandwidth Between Two Memories

Next we measure the sustained bandwidth of copying data from one memory to

another. We modified the stream benchmark to copy objects from MCDRAM to
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Figure 4.2: Copy operation to and from the two memory types.

DDR and vice versa by allocating source array to one memory and destination array

to another. Similarly, these objects are allocated in an interleaved fashion. Figure 4.2

demonstrates the results of the copy operation. The experiments show that the copy

bandwidth from MCDRAM to DDR is lower than the copy bandwidth from DDR

to MCDRAM, which made us investigate the read and write bandwidths separately

for the two types of memories. Figure 4.2 also shows that as the number of threads

increase, the copy bandwidth to DDR decreases dramatically to only 14 GB/s using

all the available threads.

4.4 Read vs Write Bandwidths

In this section we investigate the read and write bandwidths of MCDRAM and DDR.

The experiments show MCDRAM bandwidth of 350 GB/s and 270 GB/s for read and

write, respectively. It seems that up to 32 cores, the benchmark is not bandwidth-

limited on MCDRAM. In general write operations have slightly less overhead than

reads in terms of data movement. The higher cost of write at the memory controller

or in the memory shows up only when the application becomes bandwidth-limited.

We see this trend on MCDRAM up to 32 cores, when the write performance is better
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than read. Bandwidth on DDR is more stable with varying number of threads, 88

GB/s and 50 GB/s for reads and writes, respectively.

4.5 Mixed Triad Benchmark

In this benchmark, we measure the sustained bandwidth when an operation makes

references to both types of memories to either load or store its operands. Measuring

the bandwidth for different configurations is important because in an application

objects referenced in a loop or basic block may come from different memory types

thus observed bandwidth can be lowered than that of if all objects are referenced from

a single type of memory. The triad operation uses three data objects A,B and C and

a scalar quantity α. We modify the stream triad and place the objects as follows:

1. A and B in MCDRAM, C in DDR

2. A in MCDRAM, B and C in DDR

3. B and C in MCDRAM, A in DDR

4. C in MCDRAM, A and B in DDR
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Figure 4.4 shows very interesting results. We observe that the best performance

is achieved in the first configuration where the MCDRAM contains two of the objects

and one of them is the object associated with the write operation. This is because

the MCDRAM can handle both reads and writes at a higher bandwidth than DDR.

Among these four configurations, the lowest bandwidth is observed in the third case,

where MCDRAM has both of the read-intensive objects, while DDR has the write-

intensive object. This shows that the write operation to DDR becomes the bottleneck

causing the entire operation to be limited to only approximately 80 GB/s at 64

threads, in which use of MCDRAM provides no performance benefit. We compare

these four cases with two additional cases where all the data is either kept in the

MCDRAM or DDR. As expected the best bandwidth is achieved when all the objects

are in MCDRAM. However, the performance of all objects in DDR is better than

configurations 3) and 4) when more than 64 threads are used.
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4.6 Discussion of Memory Benchmarks

We propose the following placement scheme for Intel KNL architecture. If the size of

data is less than the remaining space in MCDRAM, we suggest allocating all objects

to the MCDRAM. If the size of data exceeds that of the remaining space in MCDRAM

(fast memory), then we suggest allocating write intensive data to MCDRAM while

the read intensive data to DDR (slow memory). The read bandwidth of MCDRAM

is higher than its write bandwidth, same is the case for DDR. However, if we perform

object placement according to higher bandwidth criteria, the write bandwidth of DDR

would lead to the overall bandwidth of the system to become a bottleneck causing

the overall sustained bandwidth to be lower than the case when write intensive data

is allocated in MCDRAM. A higher bandwidth policy might heavily penalize the

application. This finding constitutes the basis of our placement algorithm, which will

be discussed in the next section.
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INITIAL PLACEMENT ALGORITHM

5.1 Naive Placement Algorithm

The naive version of the algorithm picks objects greedily according to their frequency

of accesses along with their sizes. It takes three inputs 1) the sizes of each object, 2)

the reference count of each object, and 3) the fast memory size. First, it computes

all the possible sets of objects in a program. Then by iterating over all the sets

generated in the previous step, it calculates the total size requirement and the total

reference count for each subset. In the meantime the algorithm checks if the total

object size of the subset exceeds the fast memory capacity, if so, it excludes that

particular subset from consideration of potential placement on the fast memory. It

repeats this procedure until all the subsets are consumed and returns the subset with

the highest overall reference count while having enough size to be accommodated in

fast memory. The runtime complexity of this algorithm grows exponentially therefore

we improve this algorithm, which will be discussed next.

5.2 Improved Placement Algorithm

To improve the time complexity of the naive placement algorithm, we resort to

a dynamic programming scheme, which is largely known as the Knapsack algo-

rithm [Sedgewick, 1984]. This algorithm brings down the complexity of our approach

from exponential to pseudo-exponential time, allowing us to generate mappings for a

relatively large input. In the placement problem, the knapsack is considered as the

fast memory. It is associated with a maximum weight that it can carry, which in our

case is the total capacity of the fast memory. The data objects to be placed on fast
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memory are represented as the individual items, which can be carried by the knap-

sack. These individual items have the properties of weight and a value, which in our

case are the sizes of each object and its reference count, respectively. High reference

count refers to a high value. The objective is to maximize the most valuable objects

in fast memory without overloading it. Unlike the naive algorithm, this algorithm

does not generate all the possible combinations of the input. Instead it computes

the best possible solution (object mapping on fast memory) for each value of the size

from one to maximum fast memory size recursively.

We present two flavors of the improved placement algorithm based on Knapsack.

The first one takes into account the total number of references made by an object.

In this case, an object’s fate is decided only by its overall reference count without

differentiating references as read or write. We refer to this flavor as write-agnostic

placement. As discussed in Section ?? the read and write bandwidths differ for both

fast and slow memories. Therefore, for a program with objects having widely varying

read and write counts, we propose the second flavor of the improved algorithm. We

refer to this variant as write sensitive placement.

5.2.1 Write Agnostic Object Placement

Algorithm 1 shows the pseudo code of this algorithm based on the dynamic pro-

gramming implementation of Knapsack. First, the algorithm initializes four data

structures, namely M, inFast, access, and size. M is the grid in which we evaluate

whether to include an object, inFast is a boolean auxiliary grid where we store the

decision of inclusion of each object, access stores the reference counts of each object

and S stores the size in kilobytes of each object. The variables n indicates the number

of objects and W is the capacity of fast memory. In line 8, the algorithm iterates over

the objects considering each sub-solution at a time. At each iteration of the first for

loop, the algorithm considers the object if its size is less than or equal to the current

size being considered on the fast memory. If the object can fit inside the fast memory,

the algorithm checks (line:12-15) if keeping the object in fast memory is better than
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the current objects in fast memory. If the object qualifies to be in the fast memory,

a value of true is set for that object in the boolean grid. When all the objects in the

list are considered, the algorithm terminates. After this, another loop iterates over

the boolean grid to select the selected items. These items are finally suggested to the

programmer to place on the fast memory.

5.2.2 Write Aware Object Placement

To address both reads and writes separately, we allocate two separate data structures,

one for each type of reference counts for all objects, namely Reads and Writes in

Algorithm 1. The working of the algorithm is the same as described in the previous

section. However, for this case, when an object is being considered to be placed in the

fast memory, its write access count is multiplied by a coefficient, α to weight writes

more than reads. The value of α can vary between different heterogeneous memory

systems. For KNL, we observe that read bandwidth is roughly 1.5 times the write

bandwidth, therefore we use the coefficient as 1.5 in our experiments. The coefficient

for another system could be determined by measuring the ratio between its read and

write bandwidths. By using a coefficient, we penalize the reads.

5.3 Evaluation

To evaluate the proposed placement algorithm, we perform experiments on the Intel

KNL architecture using 64 threads with thread affinity set to scatter. We compare

the performance of the placement algorithm against various system configurations

summarized in Table 5.1.

1. All-DDR: All objects are allocated in the slow memory (DDR).

2. All-MCDRAM: All objects are allocated in the fast memory (MCDRAM).

3. 4GB Cache: We make all allocations to the DDR in this mode and let the

hardware cache objects into MCDRAM. We also fix the size of MCDRAM acting
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as last level cache to 4GB for a fair comparison with our placement algorithm

where there is no cache. In this configuration, no explicit allocations are made

to the MCDRAM.

4. 8GB Cache: This configuration is the same as the previous one except that

the MCDRAM size acting as last level cache is 8GB. This configuration allows

us to compare our placement algorithm, where we set the cache size to 4GB and

fast memory size to 4GB.

5. Our Placement w/o Cache: We allocate objects on the fast memory based

on the suggestions provided by our placement algorithm. The fast memory size

is set to 4GB in the algorithm. No hardware caching is enabled.

6. Our Placement w/ Cache: This is similar to the previous configuration,

however we augment the allocatable fast memory used by our placement algo-

rithm with last level cache by setting aside 4GB of MCDRAM for hardware

caching.

We have two flavors of the placement algorithm as described in Section ??. Write-

Agnostic allocates objects on the fast memory by considering load and store accesses

cumulatively. Write-Sensitive favors stores over loads during calculating the sug-

gested placement. For our experiments, we have set the coefficient to 1.5 as discussed

in Section 5.2.2.

In the evaluations, we use 6 applications, whose descriptions are provided in table

5.2. We evaluate applications based on the speedups achieved, which allows us to

compare applications with varying execution times in a single figure.

5.4 Comparison against All-DDR and All-MCDRAM

Figure 5.1 illustrates the speedup achieved by the proposed placement without L3

cache over the All-DDR configuration, i.e. when all the data of an application is placed

on the slow memory. The figure also shows the case when all the data is allocated on
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Table 5.1: System configuration modes

HBM DDR Cache

(L3)

Boot

Mode

All-DDR — 384GB — Flat

All-MCDRAM 16GB — — Flat

4GB Cache — 384GB 4GB Hybrid

8GB Cache — 384GB 8GB Hybrid

Our Placement (w/o Cache) 4GB 384GB — Flat

Our Placement (w/ Cache) 4GB 384GB 4GB Hybrid

Table 5.2: Evaluated Applications

Applications Description # of ob-

jects

Footprint

(GB)

Triad [McCalpin,

1995]

Triad kernel of STREAM benchmark 3 6.00

Matrix Transpose Transpose of a matrix is stored in another

matrix

2 6.00

CG [Bailey et al.,

1991]

Conjugate Gradient solves unstructured

sparse linear systems

13 5.23

HotSpot [Huang

et al., 2006]

Approximates processor temperature and

power by solving PDEs

3 6.00

Image Segmenta-

tion

Divides and recolors an image into segments

to identify boundaries

7 5.55

BFS [Che et al.,

2009a]

Breath first search graph traversal algorithm 6 9.74
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Figure 5.1: Speedup of our placement configuration achieved over placing all objects

in the slow memory

the fast memory. Both versions of our placement algorithm outperform the All-DDR

for most of the applications. However, we observe a performance degradation in BFS.

This is mainly due to the nature of graph traversal applications. Such applications are

limited by memory latency [Asanovi et al., 2006]. The memory latency of MCDRAM

is higher than that of DDR. Therefore, placing more data on MCDRAM coupled

with indirect access to objects increases the latency and degrades the performance of

application.

For Triad, Matrix Transpose and CG, both versions of our placement algorithms

suggest the same placement. This is due to the access pattern of the application.

Write-Sensitive algorithm suggests a better placement over Write-Agnostic for ap-

plications where there is a significant difference in read and write references of the

objects. The suggestions by Write-Sensitive version of our proposed algorithm for

HotSpot and Image Segmentation yields higher performance because of the difference

between the amount of loads and stores for majority of their objects. The three ob-
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Figure 5.2: Speedup achieved over placing all objects in the slow memory coupled

with 4GB MCDRAM as a last level cache.

jects in HotSpot have a difference of more than 80% between its load and store counts.

While Image Segmentation has a difference of 70% between load and store counts for

more than half of its objects.

5.5 Comparison against MCDRAM as a last level cache

4GB Cache

Figure 5.2 shows the speedup achieved by our placement algorithm against the implicit

placement done by hardware caching. We evaluate the applications in this mode

because it performs hardware caching at runtime without requiring any changes to

the source code, therefore no intervention from the programmer is required. We find

that all applications except BFS perform better with the placement suggested by our

algorithm. This shows that our placement algorithm can beat the hardware caching

and suggest a more intelligent placement of objects. With Matrix Transpose, our

placement scheme suggests to place the object being written in to on the fast memory.
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Figure 5.3: Speedup achieved over placing all objects in slow memory using 8GB

MCDRAM as a last level cache. Our placement is coupled with a 4GB L3 MCDRAM

cache, an addressable 4GB of MCDRAM and DDR.

Depending on how the transpose loop is written, this may lead to non-contiguous

accesses to the corresponding object in fast memory. Due to the higher latency of

MCDRAM, the array that is accessed non-contiguously should not be placed in fast

memory. Therefore, we implemented the matrix transpose in a way that the elements

of write array are referenced contiguously for all cases. This allows us to leverage the

high bandwidth characteristic of MCDRAM without getting penalized by its higher

memory latency trait.

8GB Cache

Figure 5.3 shows the speedup achieved by our algorithm coupled with a 4GB of

L3 MCDRAM cache over a configuration with 8GB of L3 MCDRAM cache and slow

memory. According to our settings, with this configuration all the data can be cached

in the fast memory (acting as L3 cache of 8GB). With this comparison, we show that

our placement coupled with a 4GB L3 cache can yield a better performance.
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Algorithm 1 Object Placement

1: procedure PlaceObjects(Objects, M, inFast, Access, S, α)

2: M[0:n-1][0:W-1] ← 0

3: inFast[0:n-1][0:W-1] ← false

4: Access[0:n-1] ← Access counts for objects

5: Reads[0:n-1] ← getReadAccesses(Access)

6: Writes[0:n-1] ← getWriteAccesses(Access)

7: S[0:n-1] ← Object Sizes

8: Candidates ← {}

9: for i = 1...n do

10: for j = 0...W do

11: Mi,j ←Mi−1,j

12: if Si−1 ≤ j then

13: Mi,j ← max(Mi−1,j, Readsi−1 + α∗ Writesi−1 +Mi−1,j−Si−1
)

14: if Mi,j > Mi−1,j then

15: inFasti,j ← true

16: while n > 0 do

17: if inFastn,W ==true then

18: Candidates.push(Objectsn−1.getName())

19: W = W − Sn

20: n = n− 1

21: return Candidates



Chapter 6

DYNAMIC PLACEMENT

6.1 Cost Model

We devise a cost model, which captures the attributes of a system and takes into

account the application level details to produce a score for each object to be placed on

a desired memory. This cost model forms the objective function of the 0/1 Knapsack

algorithm which produces an allocation scheme for an application being run on an

heterogeneous memory system. The knapsack is considered as HBM and is associated

with a maximum weight that is the total capacity of HBM. The data objects are

considered to be the individual items, which can be carried by the knapsack. Each

item has a weight and a value, which in our case are the size of the object and its

score, assigned by the cost model. The objective is to place the most valuable objects

in HBM without overloading it.

6.1.1 Cost Model for Initial Placement

The initial placement approach allocates the objects at the start of an application

and the placement does not change throughout the execution. Objects are accessed

from the respective memories they are allocated to. Since this scheme is static, the

cost model does not consider the lifecycle of an object. This trade off is compensated

by the zero overhead of object transfers across memories, yielding in a performance

benefit for certain application workloads.

The initial placement variant of the cost model only considers the overall load and

store accesses to memory of an object. A memory can prioritize writes over reads

or vice versa and this feature could vary from one memory architecture to another.

Therefore we add α and β coefficients for the writes and reads, respectively for a setup
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where loads or stores are to be favored over the other. For example, on Intel KNL

write-sensitive objects should be prioritized to be placed on MCDRAM [Laghari and

Unat, 2017]. The following equation calculates a score for each object m which forms

the basis of our cost model’s objective function in initial placement. The knapsack

algorithm suggests a candidate object list to the programmer based on these scores.

Scorem = α ∗Writesm + β ∗Readsm (6.1)

6.1.2 Cost Model for Phase-Based Dynamic Placement

Phase-based cost model improves the initial placement by taking the life cycle of an ob-

ject into account during the program execution. Applications can have objects which

are heavily accessed in a particular phase of their runtime. Having such objects in

HBM throughout the program execution cannot yield full potential of heterogeneous

memory systems. Since the different memories can be controlled through software by

the programmer, it is more advantageous to evict unused objects and allocate objects

which are going to be used in the next phases. There are several ways to identify the

application phases. One of the easiest way is to divide the application into phases

based on loops. Since a loop accesses the same objects in a repeating fashion, the

benefit of bringing those objects into HBM can compensate the transfer overhead.

We also identify if certain objects in a phase tend to be latency-bound or bandwidth-

bound by analyzing whether accesses are indirect or streaming. The former being a

candidate for latency-bound object while the latter can be categorized as a bandwidth-

bound object. We use this information in our cost model to better decide which object

would yield a higher performance benefit in a particular kind of memory. For instance,

having a latency-bound object in MCDRAM of Intel KNL can yield to a degraded

application performance. Phase-based cost model uses the following attributes about

the application and the underlying machine: a) Remaining load and store count of

an object, b) Transfer overhead caused by data movement, c) Read and write band-

widths of different memories, d) Strided access behavior and latency-boundness.
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Firstly, the phase-based cost model discards the memory access information of

objects from the previous phases for the current phase. This helps the cost model to

decide whether an object is losing its advantage over its lifetime during execution. If

the number of accesses for a particular object decreases, it becomes less advantageous

to keep that object in HBM. Secondly, the eviction and admission of objects from

and to HBM introduces an overhead. This overhead is due to synchronous transfer

of objects between memories. To overlap the transfers with execution of the previous

phase, we spare some threads for the transfer mechanism. Note that this means

slightly reduced thread count for the phase computation. The third attribute relates

to the different read and write bandwidth performance of different types of memories.

The fourth attribute considers indirect or strided access behavior of an application.

Our cost model prioritizes the objects which are accessed in a contiguous fashion to

be placed on HBM in Intel KNL. Note that this behavior can vary between systems.

In such cases, our cost model can make decisions accordingly.

The four attributes discussed above are translated into the final cost model, which

is used as the objective function in the 0/1 Knapsack algorithm. An object can be

accessed from either HBM or HCM in a particular phase. Based on the cost model,

we transfer objects to the appropriate memory. An object is favorable to reside on

one type of memory if its access time is reduced when it is placed in that memory. We

calculate the access time of an object based on its score, element type and the stream

bandwidth of the particular memory its going to be accessed from. We compute the

access time metric only to estimate the benefit of having the object on one particular

memory. By no means, this metric is the time required to load or store that object.

For an object m, the access time is:

AccessT imem =
Scorem ∗ ElementTypem

Bandwidthstream
(6.2)

We calculate the score in the same fashion as for the initial placement strategy.

However, there is one notable change in score calculation. For initial placement we use

the global read and write references to calculate the score. In phase-based placement,
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we use the remaining reads and writes for that object in the application. This ensures

that the score of the object decreases if the object has fewer memory accesses in the

later part of the application. The score function for phase-based placement translates

to:

Scorem = α ∗ RemainingWritesm + β ∗ RemainingReadsm (6.3)

We observe in our experiments that memory access bandwidth is reduced in the

presence of strided or indirect accesses as expected. This access pattern can change

the access time of an object and in turn can influence the decision of placing an

object in HBM. To incorporate this behavior, we use the Bandwidthstrided instead of

Bandwidthstream.

Through Access T imem, the algorithm decides whether the object is used fairly

enough to be kept in HBM. Since objects are moved between phases, it introduces the

added overhead of transfer between memories. In worst case, every phase can have a

different working set, resulting in too much transfer overhead. To take this overhead

into account, we calculate the transfer cost incurred by moving an object. Following

equation shows the transfer cost calculation performed to determine the overhead of

transferring an object from one memory to another. The copy bandwidth for each

memory type can vary. The transfer cost takes into account this differing feature of

the memory as well.

TransferCostm =
ObjectSizem
Bandwidthcopy

(6.4)

We use access time and transfer cost of an object m to build our objective function

(ObjFunc), which is in turn used in 0/1 Knapsack algorithm to decide which objects

should reside on HBM. We add the eviction cost of object n in case an object needs

to be evicted from HBM to HCM to open up space for object m. This overhead is

very similar to transfer cost except that it uses the copy bandwidth from HBM to
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HCM, which can be different than the one from HCM to HBM [Laghari and Unat,

2017].

ObjFuncm = AccessT imem − TransferCostm − EvictionCostn (6.5)

The 0/1 Knapsack algorithm uses this objective function for the phase objects at

each phase and tries to maximize the function. As an output, the algorithm lists the

objects that are the best candidates to reside on HBM for a particular phase.

6.2 Methodology

We present our work in the form of a tool which performs object allocation and

asynchronous transfers of data between different types of memories. The working of

our tool is two-tiered. In the first tier, we profile the application using two different

sampling based profilers. In the next tier, we insert API calls to the tool on the

application so that the tool can run the object selection algorithm and perform object

transfers between the memories. In the following sections we explain these steps.

6.2.1 First Tier: Profiling

Our cost model requires object-level information to be collected on the application

to devise an allocation strategy. In particular, it requires the a) program-level load

and store counts, b) phase-level load and store counts, and c) the size of each ob-

ject. We assess various tools which use static code analysis or binary instrumenta-

tion techniques to intercept object level events [Chan et al., 2013] [Dulloor et al.,

2016] [Shende and Malony, 2006]. Collecting object-level information through static

code analysis [Unat et al., 2015] is very fast and incurs minimal overhead but it

has limited capabilities as it cannot capture indirect memory accesses or conditional

executions. Binary instrumentation techniques are known to be accurate but slow, in-

curring large overheads. To strike a balance between accuracy and speed, we leverage
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Figure 6.1: Interaction of ADAMANT and Cachegrind with our tool. ADAMANT

provides the object reference counts whereas Cachegrind determines code blocks used

as phases.

ADAMANT [Cicotti and Carrington, 2016] and Cachegrind [Nethercote and Seward,

2007] to gather object-level information along with the phase information.

ADAMANT

is a sampling based address tracing tool that provides object-level load and store

information at the program level without any significant overhead. ADAMANT can

intercept with memory allocation calls and distinguish between statically and dy-

namically allocated objects. In order to store the object access information, our tool

maintains a hashmap of objects and their load and store counts. For static objects,

the mechanism of recording loads and store is straightforward – by matching the ob-

ject names in the application code. For dynamic allocations, we compare the memory

start addresses given by ADAMANT to the memory addresses we obtain from the ap-

plication code. This allows us to keep track of each object and its remaining memory

accesses throughout the execution.

Cachegrind

is one of the tools in the Valgrind instrumentation framework [Nethercote and Seward,

2007], which we use for extracting phase information from an application. Cachegrind
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simulates the application behavior with the memory and caches in a computer. It

provides us with last level cache misses and can distinguish misses as load or store

misses. We interpret LLC misses as accesses to memory and combine these statistics

with those found by ADAMANT for a better estimate of an object’s memory traffic.

In addition, Cachegrind allows us to virtually divide the application into phases. The

phases form the boundaries at which we run our object placement algorithm to select

objects for the upcoming phase. Cachegrind gives memory access information at the

granularity of a statement from the program. We sum the memory accesses made

by the statements inside a code block and determine if that particular code block

qualifies as a phase, incurring significant amount of memory traffic. Since a phase

contains multiple objects, our algorithm can make a selection of objects to be kept

on HBM.

ADAMANT and Cachegrind are two separate tools, therefore they require separate

profiling runs to gather application information at a target platform. However, once

the information is collected, there is no need to perform profiling again.

6.2.2 Second Tier: Object Placement

After we have gathered object-level statistics and phase information of an application,

we insert API calls to our tool into the application. Our API can perform allocation

and deallocation of objects seamlessly as the programmer would not need to evict and

admit objects during the runtime. At every phase our tool takes care of all object

level asynchronous migrations from one memory to another if our object selection

algorithm decides to do so.

Initialization

At the beginning of the target application, we initialize our tool with the previously

profiled data. This includes the output from ADAMANT and Cachegrind, namely the

object level statistics and the phase information. After initialization, our tool stores

all the objects-level information, which includes each object’s size and reference count
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to memory. To reduce the cost of allocation and deallocation for every object to be

placed in HBM, we divide the HBM into buffers. Each buffer is configured such

that it can host the biggest object in the application. Along with configurable buffer

size, during initialization, we can also tune the number of buffers allocated. For each

buffer, we maintain a modified bit to keep track whether the object stored in the

buffer is modified or not. When the object selected for eviction to accommodate

another object is not modified, it can simply be overwritten, incurring no eviction

cost.

Object Selection

We currently require the programmer to add an API call before every phase of the

application which is determined using Cachegrind in the first tier. The purpose of

this API call is to run the object placement algorithm at each of these calls, which

is equipped with the objective function discussed in the cost model. Since our tool

has acquired the phase-level information previously, it knows which objects are being

accessed in a particular phase. Based on this information, and the output from the

placement algorithm, our tool transfers objects to and from the HBM. As mentioned

earlier, the task of moving objects from one memory to another comes with an over-

head. Our placement algorithm, with the help of cost model, does not move objects

which have a movement cost greater than the benefit gained from keeping objects in

HBM. Lastly, during the execution of the last phase, the tool does not perform any

transfers.

Object Eviction

After our placement algorithm suggests objects to be placed on HBM, the tool checks

for the object currently residing on HBM. If either of the buffers in HBM contain

objects from the selection, our tool does not modify those buffers. For the remaining

buffers which does not contain matching objects, we need to evict these objects and

add new objects to HBM, or we can simply overwrite the objects currently residing
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on HBM. The modified bit for each buffer determines whether the object requires

transfer or not. If so, the tool transfers the content from that buffer back to HCM

prior to transferring the new object in that particular buffer.

Asynchronous Transfers

We make use of parallelism during the transfer and object placement selection process.

The runtime uses two threads to run the object placement algorithm and perform

required transfers to and from both memory types. This job is carried asynchronously

during application execution. Therefore, by the time the program reaches the next

phase, the objects used in that particular phase are in the appropriate memories.

The asynchronous transfers minimize the execution of the application as compared

to the scenario when these calculations and transfers are conducted synchronously.

Asynchrony is not achieved in all cases. If the application is executing phase p, our

tool will calculate the placement strategy for phase p + 1. However, in some cases,

our tool will suggest objects to be removed from HBM for phase p + 1 which are

currently being used in phase p from HBM. In such cases the tool will wait for phase

p to complete its execution and then proceed with the transfer of object to or from

HBM.

6.3 Evaluation

In this section, we evaluate the performance of our phase-based object placement

tool against various placement policies on Intel Knights Landing (KNL). The Intel

KNL machine is equipped with a high bandwidth memory which is known as Multi-

Channel DRAM, or MCDRAM for short. Intel KNL has three memory modes. A

Flat Mode where the HBM can be accessed as a separately addressable memory, a

Cache Mode where the HBM acts as a hardware managed last level cache and a Hybrid

Mode in which the HBM can act as a combination of the two aforementioned modes.

We compare our tool under various memory configurations supported in KNL. Table

6.1 summarizes these configurations and the labeling convention that we will use in
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results.

1. All-DDR: All objects are allocated in DDR. MCDRAM is not used.

2. All-MCDRAM: All objects are allocated in MCDRAM. DDR is not used.

3. Hardware Cache: We make all allocations to DDR and let the hardware cache

objects into MCDRAM.

4. Initial Placement w/o Cache: Only initial placement is performed based on

the program-level object references. HBM is set to 4GB in the algorithm. No

hardware caching is enabled.

5. Dynamic Placement w/o Cache: uses phase-based object placement and

its cost model, and performs asynchronous transfers between HBM and HCM.

HBM is set to 4GB. No hardware caching is enabled.

6. Dynamic Placement w/ Cache: Similar to the previous configuration, how-

ever we augment the allocatable HBM with last level cache by setting aside 4GB

of MCDRAM for hardware caching.

Table 6.2 shows the applications from Rodinia and NAS Parallel benchmark suites

we used for evaluation. The table also shows the memory footprint of each application

and the phases which were identified. All our experiments are conducted with 64

OpenMP threads. Thread affinity is set to scatter for all application execution. To

rule out any anomalies with the gathered results, we take an average of 5 runs for each

experiment. We decided to report speedups instead of execution times because the

scale of running time for each application is drastically different. Dynamic placement

results use asynchronous transfers if possible unless stated otherwise.
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Table 6.1: Intel KNL configurations used to evaluate our tool

Label HBM DDR Cache

(L3)

Boot

Mode

All-DDR — 96GB — Flat

All-MCDRAM 16GB — — Flat

Hardware Cache — 96GB 16GB Cache

Initial Placement (w/o Cache) 4GB 96GB — Flat

Dynamic Placement (w/o Cache) 4GB 96GB — Flat

Dynamic Placement (w/ Cache) 4GB 96GB 4GB Hybrid

6.3.1 Comparison against All-DDR and All-MCDRAM

Figure 6.2 shows the speedup achieved when the program is executed with the place-

ment strategy suggested by our tool against the default placement setting i.e. when

all the data is housed in the DDR memory, referred as ALL-DDR. In this figure,

we also compare our performance against when all the data is allocated in the fast

MCDRAM , referred as ALL-MCDRAM. We observe and confirm our hypothesis that

dynamic placement consistently performs better than the initial placement. This is

mainly due to the object eviction and admission protocol conducted by our tool. In

most of the cases we observe that our tool performs nearly as good as the best case

scenario i.e. when all the objects are allocated in the MCDRAM .

6.3.2 Comparison against Hardware Cache

MCDRAM in Intel KNL can be set as a last level cache. In this mode, the hardware

performs caching from DDR to all levels of cache. The application is executed without

any changes made to it, which is the easiest mode for the programmer. However,

this might not always result in the best performance. Figure 6.3 shows the speedup

achieved by the placement conducted by our tool against hardware caching. We
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Table 6.2: Evaluated Applications

Applications Description # of Ob-

jects

Footprint

(GB)

# of

Phases

CG [Bailey et al.,

1991]

Conjugate Gradient solves un-

structured sparse linear systems

13 5.23 17

BT [Bailey et al.,

1991]

Block tri-diagonal solver 11 4.49 31

FT [Bailey et al.,

1991]

Performs discrete fast Fourier

Transform

5 4.50 28

LU [Bailey et al.,

1991]

Lower-Upper Gauss-Seidel solver 14 4.53 30

SP [Bailey et al.,

1991]

Scalar Penta-diagonal solver 10 7.76 28

SRAD [Che et al.,

2009b]

Diffusion method for ultrasonic

and radar imaging applications

7 5.55 4

HotSpot [Che

et al., 2009b]

Thermal simulation tool used for

processor temperature estimation

3 6.44 11

BFS [Che et al.,

2009b]

Breadth First Search graph

traversal algorithm

6 9.75 5

observe that majority of the applications perform well over hardware caching. In all

the cases, dynamic placement achieves better performance than automatic hardware

caching. For CG, FT and Image Segmentation, the initial placement fails to perform

better than hardware caching. This is mainly because the initial placement only

suggests object allocation based on the global load and store counts and does not

dynamically adapt the application behavior. Whereas dynamic placement considers

the loads and stores for each phase separately and performs object movement across

memories when necessary.
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Figure 6.2: Speedup achieved by the object placement conducted by our tool against

All-DDR mode. Red line shows the baseline. All values below 1 indicate degraded

performance.

6.3.3 Analyzing Transfers between Phases

In this section, we study the benefit of asynchronous transfers and analyze some

statistics about object movement between phases. Our tool hides the overhead of

object selection and object transfer for phase p + 1 by overlapping this calculation

and data movement while phase p is under execution. Figure 6.4 shows the speedup

achieved over the placement when transfers are performed synchronously. We perform

the same experiments for each application by conducting the object selection and

movements synchronously i.e. when object selection and object transfers are done in

a serial fashion without sparing any threads for these computations. The speedup

achieved confirms that asynchronous transfers have a considerable advantage over

synchronous transfers even though we steal two threads from the main computation

to perform object selection and transfer asynchronously.

Table 6.3 shows the number of phases in which a transfer occurs and how many
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Figure 6.3: Speedup achieved by our tool against MCDRAM acting as LLC. Red line

shows the baseline. All values below 1 indicate degraded performance.

objects are moved in total. It also shows the percentage of phases that data movement

is required. For example, for CG, out of 17 phases, six phases require data movement

between two memories and total 13 objects are moved. Results prove the benefit

of dynamic placement since it adapts the application behavior as the working set

of application changes from phase to phase. In our experiments, we also observe

that a higher percentage value has a direct relation to increased performance using

asynchronous transfers. This might be because it gives more opportunities to hide

the transfer latency since object selection algorithm runs at every phase regardless.

6.3.4 Latency-Sensitive Applications

While some applications benefit from the high bandwidth characteristics of an HBM,

others might get degraded performance because of higher latency of HBM compared

to DRAM. Applications which include indirect or strided access can be characterized

as latency-sensitive applications. Figure 6.5 shows the bandwidth degradation of

MCDRAM and DDR in KNL. As the stride size increases, the bandwidth of both
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Figure 6.4: Speedup achieved by asynchronous transfers over synchronous transfers

using dynamic placement strategy.

memories degrades drastically. Due to high access latency of HBM in Intel KNL,

MCDRAM loses its advantage over DDR for some objects as in the BFS application.

Our cost model distinguishes between such objects by changing their access band-

widths. As discussed previously, if an application contains objects which exhibit

indirect accesses, we change its access bandwidth to Bandwidthstrided. For HBM,

the Bandwidthstrided is lower than the Bandwidthstream. Changing bandwidths for

objects according to their access patterns can yield different and better placement

strategies. We changed the bandwidth for BFS to monitor this effect. Three objects

in two phases in BFS were allocated Bandwidthstrided for calculating placement strat-

egy. For the remaining objects we used stream bandwidth. Overall, we only observe

improvement but we expect the benefit is higher for an application which has a lot

more objects with mixed access patterns.
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Table 6.3: Some statistics about object movement

Applications Phases Transfers Objs Moved Transfers/Phase

CG 17 6 13 35.3%

BT 31 3 10 9.67%

LU 28 4 12 13.3%

SP 30 3 8 11.1%

FT 28 10 12 35.7%

SRAD 4 1 3 25.0%

HotSpot 11 6 9 54.5%

BFS 5 3 5 60.0%

Figure 6.5: Bandwidth degradation comparison of MCDRAM and DDR in Intel KNL

as the stride length is increased.
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CONCLUSION

In this work we explore the benefits of heterogeneous memory systems. Such

systems are equipped with multiple memories both having varying characteristics.

An HM system typically has a high bandwidth memory which, as its name suggests,

has a considerably higher bandwidth than the other memory. The HBM in an HM

system can have differing latency characteristics. The HBM is usually low in capacity

therefore a secondary higher capacity memory is required to complement the HBM.

The high capacity memory has a lower bandwidth than the HBM. Multiple memories

introduce the need for efficient and intelligent object allocation to reach the maximum

potential of the HM system. To address this challenge, this thesis proposes two

schemes 1) Initial Placement which considers object memory references and its

size in the application and based on these statistics, it suggests an object allocation

strategy to the programmer. Objects, in this scheme, are allocated statically prior

to application execution and are not changed throughout application execution. The

second scheme is 2) Dynamic Placement which considers object memory accesses,

sizes of objects, and phases in an application. Based on a cost model, it suggests a

placement scheme of objects in HBM. Moreover, data transfers between the phases

are performed asynchronously to hide the transfer overhead. We tested our placement

algorithm on various applications on Intel KNL which is equipped with MCDRAM

and DDR memory, and observe a speedup of up to 2x. Our future work will facilitate

the placement further by fully automating the entire process.
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