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Abstract

Stable isotope ratio analysis (SIRA) is an increasingly impor-
tant tool to determine the harvest location of traded, organic,
products. The pattern in stable isotope ratio values depends
on external factors such as geographic location, atmospheric,
or inherent features such as species. Previous work on SIRA
for product tracing is either limited by their application of
relatively simple statistical analysis and models or does not
leverage more powerful machine learning models that can
integrate external factors like atmospheric variables. In this
work, we implement an end-to-end machine learning frame-
work that not only models the spatial variability and prob-
abilistic distribution of the isotope ratios but also leverages
machine learning tools (i.e., feature selection, Gaussian pro-
cess regression, and boosting algorithms) to incorporate at-
mospheric variables. Additionally, the pipeline incorporates
uncertainty estimation to facilitate the process of origin deter-
mination which is useful for tracking illegally shipped items.
Our novel predictive pipeline GB-SIRA (Gaussian Process
Boosting SIRA) improves the existing benchmark for stable
isotope ratio prediction. We present our experiments on a col-
lection of oak (Quercus spp.) tree samples from around the
world. Our pipeline outperforms comparable state-of-the-art
models when tasked with predicting stable isotopes of the
oak samples. The deployment of this work has shown early
promise in advancing SIRA for harvest location determina-
tion which can be used to help enforce social, environmental,
and economic trade restrictions by identifying the origin of
falsely labeled organic products throughout the supply chain.
Furthermore, we propose a plan for additional application and
advancement of our framework.

Stable Isotope Ratio Analysis, Machine Learning, Gaus-
sian Process Modeling

Introduction
Stable isotopes are chemical variants of elements that do not
go through radioactive decay. The ratio of stable isotopes
denotes the relative enrichment of different elemental stable
isotopes in a sample which is typically measured by mass
spectrometry (Barrie and Prosser 1996) and allows us to un-
derstand the enrichment of these isotopes in that sample.
The natural variation observed for this ratio is determined
by underlying mechanisms that are affected by a range of
different factors including but not limited to environmental,
atmospheric, soil, metabolic fraction, or other characteristics

specific to a species (Siegwolf et al. 2022; Wang et al. 2021;
Vystavna, Matiatos, and Wassenaar 2021).

Therefore, stable isotope ratios can be useful for under-
standing the origin of organic products. Previous work has
shown how it can be used to trace the origin of items such as
timber, seafood, agricultural products, and fiber such as cot-
ton (Truszkowski et al. 2023; Mortier et al. 2024; Watkin-
son et al. 2022; Cusa et al. 2022; Wang et al. 2020; Meier-
Augenstein et al. 2014). Given the complexity of global sup-
ply chains and the environmental and societal harm that
practices such as illegal resource harvesting and forced la-
bor present, it is increasingly difficult for stakeholders (e.g.,
consumers, businesses involved in international trade, and
governments seeking to enforce regulations) to ensure that
products do not contribute to such environmental and social
ills. The use of stable isotope testing as a tool to determine
the origin of such products is seen as a critical tool to verify
legality and identify instances of false or fraudulent location
of harvest claims.

However, many of the works that focus on using SIRA to
determine the origin of organic products are limited by:
1. The lack of a comprehensive machine learning (ML)

modeling approach where methods like regression anal-
ysis (Watkinson et al. 2020, 2022) or clustering (Yang,
Hutcheon, and Krouse 2001) have been used. These
methods, despite being relatively effective for smaller
datasets, do not leverage all the information contained
in the dataset along with the spatial variation observed in
the data. Some of the works in this area try to model the
spatial variation of the isoscape but are limited to a more
basic probabilistic statistical modeling approach (Mortier
et al. 2024) that doesn’t facilitate the incorporation of en-
vironmental factors like atmospheric variables.

2. Absence of a holistic end-to-end predictive pipeline
that can facilitate feature selection and a more system-
atic analysis of predicted isotope ratio values. While the
advantage of statistical or probabilistic modeling in esti-
mating uncertainty makes it an attractive choice for the
scientific community as the confidence in which one can
use a particular prediction is a very important aspect of
the application area, it can also facilitate a more opti-
mized data collection approach. More recently, the use
of co-kriging methods with external features has been
shown to produce a more accurate prediction of isotope



ratios (Truszkowski et al. 2023).
3. The absence of multimodal feature integration as ex-

isting works do not leverage the vast information present
in atmospheric data by systematic feature selection meth-
ods. Furthermore, the incorporation of atmospheric vari-
ables into the covariance matrix doesn’t allow for the
same interpretability that decision tree-based methods fa-
cilitate.

Our proposed framework uses organic SIRA samples
along with atmospheric data to increase feature explainabil-
ity. We then use feature selection to reduce the dimension of
the data and eliminate extraneous information that may dete-
riorate model performance. For prediction, a combination of
prediction and probabilistic models are chosen (1) because
of the small sample size, (2) to increase the interpretability
of the pipeline when used in real-world applications, and (3)
to incorporate atmospheric variables into the prediction task.
The spatial pattern of stable isotope predictions is modeled
using Gaussian Process (for accuracy) along with a decision
tree-boosting algorithm (to fully utilize the feature set). The
output of this model is an isoscape with variable values of
stable isotope ratios across different geographical locations
(West et al. 2009).

This output can then be used to infer the origins of an
unseen sample with varying degrees of confidence which
has proven to be an effective tool used to assist in the en-
forcement of trade and sustainability regulations governing
commodities like timber, such as identification of sanctioned
Russian wood and species listed on the Convention on the
International Trade in Endangered Species (Mortier et al.
2024; Grove and Rutherford 2023).

The main contributions of the project are the following:

1. Reformulating SIRA as an End-to-end ML Pipeline:
We investigate the societally important problem of pre-
dicting stable isotope ratios over a large landscape to
determine the origin of organic products traded globally
and identify illegal harvesting and circumvention of reg-
ulations meant to protect resources, such as trees, and the
timber and forest products produced from them. To the
best of our knowledge, we are the first to create an end-
to-end ML prediction pipeline that is usable in practice.

2. Multifarious data integrating framework that can be
applied and interpreted by domain experts: We pro-
pose a novel end-to-end ML Architecture that incorpo-
rates atmospheric variables by mapping them to sample
locations and then filtering out the extraneous or noisy
signals through a feature selection module. The predic-
tion module leverages both the probabilistic modeling
of Gaussian process models and the feature extraction
power of decision tree-based boosting algorithms.

3. Experimental validation and benchmarking for fu-
ture application: We validate the effectiveness of our
model through the means of extensive experimental de-
sign. First, we experiment with the optimal number of
features from comprehensive atmospheric data. Next, we
experiment with different ML techniques which allows
us to consider the strengths and weaknesses of each

model for real-world use and choose the optimal predic-
tion model. This sets a benchmark and systemic guide-
line for future researcher on this topic.

4. Social Impact: We describe how these methods are al-
ready being implemented to have a positive social im-
pact. They are particularly useful in creating isoscape
predictions in sub-national areas where it has been im-
possible to collect physical ground truth samples because
of security concerns and sanctions, e.g., in Russia. Refer-
ence isoscapes derived from combined ground truth sam-
ple data and predicted values for areas lacking samples
have been used in 2024 enforcement activities in relation
to timber which is at high risk of being Russian harvested
in multiple EU Member States.

Related Work
Stable Isotope Ratio Analysis: Stable isotope ratio analy-
sis (SIRA) has been an area of research for several bioor-
ganisms, including but not limited to timber. For exam-
ple, they have been effective in determining the origin of
oceanic creatures like galloprovincialis mussels (del Rio-
Lavı́n et al. 2022), fish (Cusa et al. 2022) or dairy prod-
ucts (O’Sullivan, Schmidt, and Monahan 2022). While these
works have demonstrated the effectiveness of traditional sta-
tistical modeling for stable isotope ratio modeling, they gen-
erally focus on smaller geographical areas and are not lim-
ited by the data paucity issues that conventional ML models
often face. When it comes to SIRA on timber, prior works
have shown promising results with a simplistic modeling ap-
proach that does not generalize to a larger geographical area
(Watkinson et al. 2020, 2022). There still remains scope to
incorporate external factors that inform the spatial-organic
process of these organisms as Truszkowski et al. (2023) and
Mortier et al. (2024) have shown. Motivated by these find-
ings, we propose a holistic feature integration pipeline that
aims to further capture the non-linear, hierarchical nature of
these external factors.

Spatial Regression: Spatial predictive modeling, despite
being a widely researched topic, has potential to utilize the
rapid progress in multimodal data collection framework.
While kriging has been used for ubiquitous tasks like sound-
level mapping (Aumond et al. 2018), spatial interpolation
of horizon depth (Knotters, Brus, and Voshaar 1995), spa-
tial modeling of water quality index (Khan et al. 2023), and
other tasks, Gaussian process regression (GPR) has proven
to be effective for spatial prediction of drought (Elbeltagi
et al. 2023), standardized precipitation index, and prediction
of COVID-19 spread (Velásquez and Lara 2020). Further-
more, techniques like inverse distance weighting (IDW) has
also been shown to be effective for tasks such as evaluat-
ing groundwater quality (Singh and Verma 2019), reference
evaporation (Hodam et al. 2017), rainfall distribution esti-
mation (Chen and Liu 2012). However, the inherent assump-
tion of these models about the spatial homogeneity of the
target variable may not extend to stable isotopes as exter-
nal factors like temperature, soil, and altitude may affect the
values. Hence, we leverage the utility of spatial prediction
models in capturing the geographical variance along with



the added feature of incorporating uncertainty with a more
streamlined incorporation of additional features.

ML in application: The application of conventional ML
in the application of fields such as biological sciences, epi-
demiology, and meteorology is ubiquitous (Velásquez and
Lara 2020; Rustam et al. 2020; Maurya et al. 2023; Elbelt-
agi et al. 2023; Balaji 2021). One key takeaway from this
vast array of works, has been the effectiveness of ML mod-
els to automate the process of feature selection as demon-
strated by Sarkar, Alhamadani, and Lu (2022), Maurya et al.
(2023) and other works. We follow a similar approach of se-
lecting features from hundreds of variables before feeding
them into the predictive model. One key challenge in SIRA
is the lack of samples with reliable values for each stable
isotope, making large-scale ML and DL models unsuitable.
Therefore, decision tree-based models and boosting algo-
rithms are ideal candidates to leverage the selected atmo-
spheric variables. To this effect Pan et al. (2023), showed
how relevant features can be learned by combining multiple
weak decision tree-based learners. When presented with a
structured selection of relevant features decision tree-based
models have faired well even against larger black-box DL
models, leading to a more sustainable application of AI tech-
niques (Ferro et al. 2023). However, due to the real world
applicability of SIR prediction, there is an added importance
to quantifying uncertainty as demonstrated by probabilistic
modeling techniques like the Gaussian Process or Kriging.
However, it can be combined with decision tree-boosting al-
gorithms to leverage both the probabilistic nature of spatial
correlation and the non-linear correlation of structured high-
dimensional feature vectors (Sigrist 2022).

Preliminaries
Stable Isotope Ratios: A stable isotope ratio is the ratio of
two stable isotopes of a single element (Coplen, Kendall,
and Hopple 1983). The measurement is usually expressed
through delta notation that signifies percentage per milliliter.
Oxygen, carbon, hydrogen, nitrogen, and sulfur are some of
the most common elements whose stable isotope ratios are
measured and used for various scientific analyses. For each
element, we have a different stable isotope that we are inter-
ested in. In general, it can be defined as follows:

δHighE =

( (
highE/naturalE

)
sample

(highE/naturalE)standard
− 1

)
× 1000

where E is the element. The following are the four stable
isotope ratios used in this paper:
• δ13C: a measure of the ratio of two stable isotopes of

Carbon (13C and 12C).
• δ18O: a measure of the ratio of two stable isotopes of

Oxygen (18O and 16O).
• δ2H: a measure of the ratio of two stable isotopes of Hy-

drogen (2H and 1H).
• δ34S: a measure of the ratio of two stable isotopes of

Sulfur (34S and 32S).
Problem Statement: Given a set of n samples with loca-

tion X = X1, X2, X3...Xn with corresponding atmospheric

variable A(X)=A(X1),A(X2),A(X3),...,A(Xn) we aim to
learn a function Y = F (A(X), X) where Y corresponds to
a single stable isotope ratio value. Hence, for each isotope
ratio we aim to train an individual model and predict stable
isotope ratio values over an isoscape.

The Proposed Framework
The GB-SIRA pipeline for stable isotope ratio prediction of
timber is designed as an end-to-end ML Framework with
each stage performing a task, the output of which is then
used as input for the next stage (Fig. 1). The first stage is the
atmospheric feature construction module. This module uses
25 different datasets containing the last 20 years of atmo-
spheric data for locations across the globe and maps it to the
locations associated with the timber samples in the dataset.
The next module of feature selection takes the feature vec-
tors of atmospheric variables and selects top-k pertinent fea-
tures which is used to train the optimal model for prediction
of isotope ratios.

Feature Construction: Stable isotope ratios are largely
dependent on various environmental factors including but
not limited to precipitation, water vapor pressure, reflected
short wave radiation(Vystavna, Matiatos, and Wassenaar
2021; Elbeltagi et al. 2023), and the ecological process that
facilitates the enrichment, or lack thereof, for stable iso-
topes as observed in oak trees is a lengthy process that can
be captured by climatic patterns over a long time. Hence,
the collected comprehensive data about these atmospheric
properties(NASA 2024; Huffman et al. 2020; Bowen and
Revenaugh 2003) is further aggregated by month for 20
years to capture the overall climatic condition and the pe-
riodic pattern. The dataset for oak trees includes stable iso-
tope ratio values along with the latitude and longitude where
the oak wood sample was collected. Coordinates common
in both Quercuss spp. and atmospheric can be directly
mapped. However, for coordinates not present in the atmo-
spheric dataset, consistent with Tobler’s first law of geogra-
phy.(Miller 2004), we use IDW interpolation with a thresh-
old geodesic distance.

Feature Selection Module: After aggregating and map-
ping these variables to every location and eliminating vari-
ables with more than 50 percent null values we are left with
a feature vector longer than 200. Since the dataset has 487
samples, we focus on reducing the dimension using the F-
regression technique. The hyperparameter in this case is the
choice of k which indicates several features. However, re-
gardless of the value of k, the main objective of this tech-
nique is choosing the most correlated features. Since, in our
work, we are interested in 4 different isotope ratios, our tar-
get variables are δ13C, δ2H, δ2H, and δ18O. For each target
and independent variable, the F-value is calculated which is
then used to rank the features. Thus for each stable isotope
ratio, we choose the top-k atmospheric variables as feature
vectors of length k. In our experiments, we found k = 21 to
be optimal for δ13C, k = 19 to be optimal for δ2H, k= 25
to be optimal for δ18O, and k = 30 to be optimal for δ2H.



Figure 1: GB-SIRA framework

Prediction Module: In this section we are tasked with
leveraging two types of data: 1) spatial data in the form
of latitude and longitude values for the oak wood samples,
and 2) atmospheric feature data as extracted from the fea-
ture selection module. Gaussian Process Models are often
used for modeling spatial data which is also known as the
universal kriging method. However, for capturing the com-
plex non-linear relationship with the atmospheric variables,
mixed effect models like decision tree-based boosting algo-
rithms have shown to be effective. In this section, we will
describe the two methods and discuss how the combined
method of Gaussian process and mixed effect modeling ap-
proach as described in(Sigrist 2022) has been implemented
for our prediction module. Given we have a set of locations
X=x1,x2...,xn where the corresponding atmospheric feature
vector is A(X)=a(x1),a(x1),...,a(xn) and a(Xi) is the at-
mospheric feature at location xi, we want to learn two sep-
arate learners, one for the atmospheric data and one for the
spatial data. First, let’s talk about the mixed-effect learner.

Learning Base Learners: To model the non-linear rela-
tionship between atmospheric variables and stable isotopes,
we use Mixed-Effect Modeling consisting of multiple tree-
based learners. The algorithm tries to learn a set S of tree-
based base learners f(·) in a function space H , defined as
the linear function span of S. Hence, the prediction derived
from this mixed-effect model is defined as y′ = F (A(X)).

GPR: GPR is particularly popular for scientific applica-
tions because of its probabilistic modeling approach that al-
lows for uncertainty estimation. The main assumption is the
data samples as observed in the dataset are described by a
set of functions instead of a single function with set pa-
rameters. Hence, it is an inherently non-parametric model.
Now, the probability density function that forms the ba-

sis of this model is defined as P (f |x) = N (f |µ, k) here
µ = [m(x1),m(x2)...m(xn)] is the mean estimate and K
is the covariance matrix where Kij = k(xi, xj) where k
is kernel covariance function. Traditionally, it is assumed to
be zero mean. However, we combine the output of the base
decision tree learner by modifying the probability density
function in the following way:

P (f |x) = N (f |y′, k) (1)

In this work, the Gaussian process takes as an input X =
x1, x2, x3...xn where xi denotes GPS location of ith sample
in the training set. The target variable y is a single isotope
ratio. The GPR fits the following kernel coefficient W :

w = [Knn +Σ]−1y (2)

where Σ is the error term that corresponds to the uncertainty
estimation and Knn is the covariance matrix of dimension
(n x n) where n is the number of samples in the training set.

Now, for a new set of unseen samples x, the prediction
will be calculated as

ŷ = y′ + wT k (x, x′) (3)

In our case, K is the kernel function of our choosing. We
are using a combination of radial basis function, periodic,
and rational quadratic function as the covariance function as



shown below:

k (x, x′) =
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(4)

Joint Optimization: As described in (Sigrist 2022) we
need to combine the two learners through a joint opti-
mization goal. Here the loss function is the negative log-
likelihood function as described below:

L =
1

2
(y − ŷ)Tw−1(y − ŷ) +

1

2
log det(w) (5)

if w is the parameter of the Gaussian Process co-efficient
kernel and F (·) is the mixed-effect learner F (A(X)) the
goal is to find the joint minimizer:

(F̂ (·), ŵ) = argmin
(F (·),w)∈(H,w)

R(F (·),w) (6)

where R(F (·),w) is a risk functional defined as:

R(F (·),w) : (F (·),w) 7→ L (7)

where L is the loss function described earlier. R is deter-
mined by evaluating F (A(X)), ŷ and then calculating the
loss function L. The risk factor R is minimized using the
Gaussian Process Boosting algorithm. First, for iteration i
we determine wi as the following:

wi = argminw∈w L (y, Fi−1,w) (8)

where L is the loss function denoted in equation 5. Then, we
update base learner Fi through the functional Newton step.

Fi = Fi−1 −
f ′ (Fi−1)

f ′′ (Fi−1)
(9)

where f ′ and f ′′ denotes first and second order derivatives.

Experiment and Results
Data Description and Preprocessing
Quercus spp. dataset: We use data from 487 trees of the
genus Quercus with samples from countries such as China,
the United States, Ukraine, and Russia. Stable isotope ratio
measurements for each sample were calculated and aggre-
gated as described in (Watkinson et al. 2020). Each entry
contained stable isotope ratio measurements of oxygen, hy-
drogen, sulfur, and carbon and the samples GPS coordinates.

Atmospheric dataset and cleaning: Our atmospheric
data includes isotopic composition of precipitation, water
vapour, shortwave radiation, temperature, and many more
other factors (Bowen and Revenaugh 2003; Huffman et al.
2020; NASA 2024). This dataset consists of 25 atmospheric
variables for 20 years. However, while mapping the atmo-
spheric variable to the sampled location of the Quercus spp.
dataset, we found a few of the variables to have more than 50
percent values null because of the sparse nature of the data.
That left 19 atmospheric variables each having 12 months of
data for every year. We use the dataset of collected samples
to map atmospheric variables to the location of a given data
point, allowing us to create a comprehensive feature set of
atmospheric variables for each sample in the dataset along
with their location.

Experimental Research Questions
The research questions related to the experimental evidence
regarding the validity of the design and methodology of the
architecture to understand the effectiveness of the proposed
GB-SIRA framework, are the following:

• RQ1: How does the proposed framework compare to the
existing works in stable isotope ratio prediction?

• RQ2: Does combining tree boosting with Gaussian Pro-
cess through Gaussian Process Boosting benefit the out-
come compared with using either of the techniques indi-
vidually?

• RQ3: Is the choice of feature selection and incorpora-
tion of atmospheric variables justified by more accurate
prediction?

Experimental Setup and Evaluation
For all isotope ratios we split the dataset into an 80:20
training/test split. We perform K-fold cross-validation with
k = 5 and then choose the average score on all evalua-
tion metrics for reporting. For the GP-Boost algorithm of
GB-SIRA, we perform parameter searching and finalize the
learning rate to be 0.03 and max depth to be 3.

The model is evaluated using standard metrics for regres-
sion tasks, R2 value and RMSE score. The definitions of
both are given below:

R2 value: the R-squared value is a widely used metric
for evaluating regression problems that indicates the propor-
tion of variance in dependent variables that can be directly
explained by the independent variables.

RMSE: RMSE helps understand how close the prediction
is to the ground truth across the test samples.

RQ1: Baseline Experiments
To answer the first research question, we compare our frame-
work to existing work in stable isotope ratio prediction and
compare our results based on the chosen metrics. For the
works that did not use the same set of sample location, we
employ their methodology on our data for comparison

• Watkinson et al. (2020): This work proposes the use of
ordinary kriging for the spatial interpolation of the iso-
tope ratio values.



Baseline Comparison Atmospheric R2 RMSE
Variables δ18O δ13C δ2H δ34S δ18O δ13C δ2H δ34S

Watkinson et al. (2020) 0.470 0.320 0.700 0.690 - - - -
Watkinson et al. (2022) 0.856 0.301 0.730 0.601 0.673 0.779 6.112 1.233

Truszkowski et al. (2023) X 0.869 0.331 0.790 0.667 0.631 0.757 6.279 1.070
RF X 0.894 0.284 0.779 0.553 0.660 0.781 6.380 1.310

SVR X 0.754 0.313 0.750 0.682 0.940 0.773 6.410 1.040
GB-SIRA X 0.902 0.322 0.841 0.689 0.619 0.768 5.911 1.011

Table 1: Baseline Comparison Results

• Watkinson et al. (2022): This work uses a GPR to predict
the isotope ratio values in Quercus spp.

• Truszkowski et al. (2023): This work, similar to ours,
uses atmospheric data for stable isotope ratio prediction
but the covariance matrix is modified by using location-
specific atmospheric variables making it analogous to a
co-kriging method.

• Random Forest (RF): Among decision tree-based meth-
ods RF has traditionally been shown to be effective for
modeling structured data where the linear assumption of
the model may not hold.

• Support vector regression (SVR): This is a regression
model variation of SVM that has shown to be effective
extensively for a dataset of this size.

Results: The baseline experiments as detailed in Table 1
show the performance of our proposed model GB-SIRA
compared to others. From the results, it is clear that in terms
of R2 value, GB-SIRA outperforms the state-of-the-art for
3 of the 4 isotope ratio prediction tasks. However, even for
δ2H the difference with the best-performing model is negli-
gible. It is important to note that for Watkinson et al. 2020,
RMSE was not reported. In terms of RMSE, we also ob-
serve the lowest RMSE value for GB-SIRA for all stable iso-
tope ratios. The performance of the GB-SIRA overall com-
pares favorably against existing works on the same task. This
shows the effectiveness of the GB-SIRA framework.

RQ2: Does combining tree-boosting with GPR
benefit the model performance?
To answer this research question we tested each individ-
ual element after the feature selection module to compare
against the final model. The result of this experimental set-
ting is described in Table 2. The framework without the
Gaussian Process element becomes a decision-tree boosting
algorithm called lightGBM which takes as input the output
of the feature selection module and doesn’t model the spa-
tial element. On the other hand, without the boosting algo-
rithm combined, GB-SIRA only takes the sample longitude
and latitude as input which makes it the traditional GPR.
When compared to the performance of the proposed frame-
work, these two models do not show any improvement in
the R2 despite showing slight improvement on RMSE for
lighGBM. However, given the significance of uncertainty
estimation for real-world applications, it is clear that com-
bining the two methods is the right strategy.

Ablation Study R2

δ18O δ13C δ2H δ34S

Boosting 0.885 0.329 0.819 0.675
GPR 0.856 0.301 0.730 0.601

GB-SIRA 0.902 0.322 0.841 0.689
RMSE

Boosting 0.601 0.780 5.820 1.070
GPR 0.673 0.779 6.112 1.233

GB-SIRA 0.619 0.768 5.911 0.987

Table 2: Ablation Study

RQ3: Is the choice of feature selection justified?
To answer this we look at the two best-performing models
from Table 1. Since the co-kriging method also takes advan-
tage of the atmospheric variable, we create an experimental
setting that facilitates both the inclusion and exclusion of the
feature selection module. The result as described in Table 3
shows that the inclusion of the feature selection step before
modeling produces a better prediction for both models.

Case Study and Social Impact
The real-world implication of having GB-SIRA pipeline is
that it can create species-wide isoscapes that predict sub-
national variability even in areas without ground truth sam-
ple data. This is particularly useful if the security context
makes sample data collection challenging or impossible.

Furthermore, the actionability of these species’ isoscapes
can be improved by visualizing uncertainty estimations to
communicate the relative confidence of a predicted value in
a particular region. This enables real-world decision-making
based on predictions with low uncertainty values to manage
legal and financial liabilities arising from timber supply con-
tracts and law enforcement activities.

These isoscape predictions have been made around the
Russia/Ukraine border region where it has been impossible
to collect physical ground truth samples because of security
concerns and sanctions as seen in Fig 2. These isoscapes
have then been leveraged in the past year for the enforce-
ment of timber trade, which is at high risk of being Rus-
sian harvested in multiple EU Member States (Tokar 2024;
Nazaryan 2024).

Our work contributes to social and environmental impact
initiatives by contributing much-needed advances to shed



R2 RMSE
δ18O δ13C δ2H δ34S δ18O δ13C δ2H δ34S

Co-Kriging without Feature Selection 0.850 0.271 0.766 0.631 0.683 0.801 6.350 1.210
GB-SIRA without Feature Selection 0.874 0.289 0.781 0.655 0.662 0.813 6.210 1.194
Co-Kriging with Feature Selection 0.869 0.331 0.790 0.667 0.631 0.757 6.279 1.070
GB-SIRA with Feature Selection 0.902 0.322 0.841 0.689 0.619 0.768 5.911 0.987

Table 3: Experiments with Feature Selection

Figure 2: Case Study: Isoscapes for Eastern European Region-Ukraine/Russia Border for timber

light on complex global supply chains and tools that can be
used to ensure the products we consume do not contribute
to social or environmental harm. These methods can be used
to verify that wood and forest products are labeled correctly
and come from legal and sustainable sources. It can also be
used to identify timber harvested illegally in protected ar-
eas, in high conservation value forests, or in the lands of
Indigenous peoples and vulnerable communities that might
be mislabeled to obfuscate the true harvest origin.

Conclusion
We presented a holistic multimodal ML framework for sta-
ble isotope ratio prediction that also estimates uncertainty
for each prediction which allows domain experts to use it in
a real-world setting. We demonstrate the quantitative effec-
tiveness of combining atmospheric variables through nonlin-
ear hierarchical modeling facilitated by decision tree boost-
ing and spatial probabilistic modeling of the Gaussian Pro-
cess, by comparing our results with other related work and
ablation studies. Furthermore, the case study showcases that
the application of this work is already having a social im-
pact. Isoscapes produced by GB-SIRA are being used to
verify claims made about the origin of organic products and
helping industry and government officials identify instances
of false or fraudulent location-of-harvest claims.

Future Research: We are in the process of extending our
work to identify origin of grains in regions where collection

of data is hard to come by. This work will focus on going be-
yond stable isotope ratio prediction by developing a pipeline
for the inverse problem of location determination.

Further Application: There is promise for additional so-
cial and environmental impact of this work, given that the
application of our SIRA methods can be applied to origin
testing for a variety of organic products. Our work is partic-
ularly relevant given the EU’s regulation on deforestation-
free products and forest-risk commodities (EUDR) which
requires proving that products made from forest-risk com-
modities, e.g., cattle, wood, cocoa, soy, coffee, palm oil,
and rubber, do not originate from recently deforested land
or have contributed to forest degradation (European Com-
mission 2023).

Furthermore, there has been increased scrutiny on the use
of forced labor to produce products and food that enter the
global supply chain. Products such as garments and apparel
made from cotton produced in the Xinjiang region of China
by Uyghurs, and fish and seafood harvested by forced labor,
have particularly complex supply chains (McLymore 2024;
Masters 2023; PBS News 2023; Cusa et al. 2022). This work
contributes to the advancement of accurate scientific meth-
ods used to assist the determination of origin claims for all
organic products covered in policies such as the EUDR and
the US Lacey Act and Uyghur Forced Labor Prevention Act.
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Appendix:
Programming Language Used: Python.

Libraries used:SkLearn, gpboost, shapely.geometry,
pykrige, pandas, numpy,lightgbm

Hyperparamters: For
• SVR: Kernel -SVR, degree = 3
• RF: randomstate = 0
• GPBoost: kernel- custom(as described in main text),
maxdepth = 3, learningrate = 0.03

• Gaussian Process: kernel = custom
• LightgbM: maxdepth = 5
• ordinary kriging: maxlag = 2, nlags=15

Code and Data: Entire codebase and required data is
shared in supplementary files


