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1. INTRODUCTION

Increasingly, environmental sustainability is becoming an important criterion of product design and
competitive differentiation. For example, about 75% of enterprise customers surveyed were ex-
pected to use some type of environmental criteria in their buying decisions [Plummer et al. 2008]. A
common approach to quantify broad environmental impacts is the method of life cycle assessment
(LCA) [Baumann and Tillman 2004], which takes a comprehensive view of multiple environmental
impacts, such as, greenhouse gas emissions, resource consumption, toxicity, carcinogenicity, etc.
across the entire life cycle of a product (from cradle to grave). LCA can, for example, be used to
answer questions like: which is more environmentally sustainable: an e-reader or an old-fashioned
book? [Goleman and Norris 2010], or how does the environmental footprint of a KindleTM compare
with that of a NookTM?
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However, performing LCA is not a straightforward process. A typical system may easily consist
of several thousand input variables; for example, an environmental evaluation of a server involves
creating an inventory of all its components, usually down to parts such as ICs, resistors, capacitors,
fans, screws, heat sink, etc.; estimating their mass (or volume); and, finally manually mapping each
component to representative entries in an environmental impact factor database. Since this process
is so labor intensive, it is a challenge to estimate the environmental footprint of any realistic system,
and designing to reduce environmental footprint requires deep domain expertise and experience.

Thus, two significant problems exist in achieving sustainable design on a large scale within rea-
sonable cost and time bounds. First, an approach that allows for automation of the assessment pro-
cess that eliminates the need for detailed manual data collection and inventory creation is desired.
Second, a system that automatically provides a limited, narrow set of reasonable design recommen-
dations for a given product would be very helpful.

In this paper, we propose a framework (AutoLCA) composed of a palette of data mining algo-
rithms — iterative k-medoids clustering, classification, disparate clustering, and constrained opti-
mization algorithms — to address the above problems. To understand how these algorithms interop-
erate, it is helpful to view objects/nodes (i.e., components, parts, and processes) as existing in two
domains–the substitutability domain and the impact factor domain. The former is indicative of how
replaceable one node is with another, captured by the node text description. For example, it might be
possible to replace a particular kind of capacitor with another kind. The second domain corresponds
to the impact factors of the nodes, which relates to their environmental sustainability. For instance,
it has been claimed anecdotally that a Google search uses the equivalent energy of boiling a kettle
of water, and thus while these two elements have widely different descriptions, they have similar
sustainability characteristics.

First, we use iterative clustering methods in the substitutability domain to organize bill of ma-
terial (BOM) data that is typically available for products in a company. An excerpt from a printed
circuit board (PCB) BOM, listing a few components with attributes such as a part number and a
short, unstructured text description is shown in Table I. Although a BOM provides a comprehensive
listing of the components, it does not include their environmental impacts. We induce a naive Bayes
classifier to map BOM nodes to nodes in an environmental impacts (EI) database. Nodes in the EI
database have at least two attributes, a short, text description of the node, and a set of impact factor
values. Table II shows an example of a few nodes in an EI database. The transformation of BOM
nodes to the EI database achieves two purposes: (1) an automated mechanism for environmental
assessment of BOM components, to identify the components where redesign efforts should be fo-
cused; and, (2) recommendation of sustainable design alternatives based on disparateness between
the substitutability and impact factor domains, as shown in Figure 1.

To validate our approach, we applied it to real data for four different products to (1) estimate
environmental footprint of the BOM components; (2) identify the top contributors to a particular
impact (carbon emissions); and, (3) suggested design alternatives for the top impact contributors,
which on implementation could reduce the carbon footprint as much as high as 36%. The products
we used are a printed circuit board (PCB) for an enterprise computer, a desktop computer (without
screen), a laser jet printer, and a color laser jet printer. Although in some cases the improvement is

Table I. Sample nodes from a PCB BOM.

Type Part # Description
Capacitor71211838211Y cap-chip-270pf-50v-k-x7r-0603-tap

71211858231V cap-chip-470pf-50v-j-x7r-0603-tap
7121B1159312 capacitor-al,220uf,16v,m,-55˜+105c...

Resistor 7124A1235812 res-chip-976-1%-1/10w-0603-tap
7124A1235812 res-chip-976-1%-1/10w-0603-tap
7124B1216112 resistor-ar,4p2r,0,5%,1/16w,1616,tr

Inductor 7125A1123812 idut-4.7uh-20%-43mhz-650ma-smd
7125B1147812 inductor,0.22uh,+/-10%,25mhz,250ma
7125B1147812 inductor,0.22uh,+/-10%,25mhz,250ma
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Fig. 1. The elements of AutoLCA.

Table II. Impact factors of some nodes in the EI database.

Description SO2 (kg) CO2 (kg)
capacitor, electrolyte type, > 2cm height 0.21549 47.78
resistor, SMD type, surface mounting 13.123 11.204
inductor, miniature RF chip type, MRFI 0.38215 54.542
integrated circuit, IC, memory type 2.6046 505.92

modest (as low as 1%), the millions of such products routinely purchased across the globe can add
up to constitute a sizable contribution to sustainability. In summary:

— We formulate sustainable design as a series of clustering–classification–clustering tasks. We ad-
dress the task of finding a set of more eco-friendly alternative components by a disparate clustering
formulation between two domains in the EI database.

— We demonstrate how AutoLCA simplifies estimating the environmental footprint of the BOM by
more than an order of magnitude over current methods.

— We validate our techniques on real data from a large computer manufacturer.

2. RELATED WORK

A common tool used for environmental design is life-cycle assessment (LCA) [Baumann and Till-
man 2004]. In this approach, detailed inventories are compiled for a given product across the mate-
rial extraction, manufacturing, transportation, use, and disposal phases of a product or service. These
inventories are aggregated, often by mass or energy, to obtain a comprehensive view of resources
going into the product or system across the life-cycle. The aggregated inventory is then translated
into environmental outputs using a set of known impact factors across pre-defined environmental
impact categories [Glasson et al. 2005]. Once these impacts of a given product are known, the de-
signer then tries to uncover alternative designs that might result in a lower environmental footprint.
While simple in concept, sustainable product design is often challenging due to the requirements
for extensive inventory data. For many complex products, the inventory could easily exceed several
thousand components [Vigon 1994]. As a result, the time and cost associated with collecting accu-
rate data across the entire life-cycle is often prohibitive. A few researchers have applied data mining
techniques for sustainabile design and LCA [Patnaik et al. 2009; Marwah et al. 2011; Ramakrishnan
et al. 2012; Sundaravaradan et al. 2011b; Sundaravaradan et al. 2011a]. Sousa and Wallace [Sousa
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and Wallace 2006] develop an automated classification system to support LCA. Park and Seo [Park
and Seo 2006] propose a knowledge-based approximate life cycle assessment system to assess the
environmental impacts of product design alternatives. However, neither of these consider product
bill of material data.

The framework we have developed is analogous to transfer learning methods where knowledge
gained in one domain can be used to solve a similar or different problem in another domain. Transfer
learning methods have received attention in the recent years [Ling et al. 2008; Davis and Domingos
2009; Kuhlmann and Stone 2007] due to the fact that solutions of real life problems require diverse
knowledge from other domains. They have been studied for cross-language text classification [Ling
et al. 2008], to transfer knowledge within a number of domains including molecular biology, web,
and social networks [Davis and Domingos 2009], and in gaming domains [Kuhlmann and Stone
2007]. Since bill of material nodes and environmental impact factors are in two different domains,
we solve the problem of finding design alternatives in one domain (BOM) by transfering required
knowledge from another (Envirnomental impact). In fact, the problem is actually one of transferring
negative information because we desire to identify nodes that are substitutable for each other but
have different environmental impact factors, so that we can design more sustainable alternatives.

Our research goal of finding design alternatives also has parallels to work in identifying more than
one clustering solution, including alternative clustering [Qi and Davidson 2009; Dang and Bailey
2010], subspace clustering [Agrawal et al. 1998; Cheng et al. 1999], nonredundant clustering/views
[Cui et al. 2007; Gondek and Hofmann 2005], associative clustering [Sinkkonen et al. 2004; Kaski
et al. 2005], meta-clustering [Caruana et al. 2006; Zeng et al. 2002], and consensus clustering [Monti
et al. 2003; Strehl and Ghosh 2003]. A key distinguishing feature of our work is the formulation of
information-theoretic functions for clustering alternatives using a uniform contingency table frame-
work. While contingency tables have been employed elsewhere [Sinkkonen et al. 2002; Brohee and
van Helden 2006], they have been used primarily as criteria to evaluate clusterings. The few works
[Nadif and Govaert 2005; Greenacre 1988] that do use contingency tables to formulate objective
criteria use them in the context of a specific algorithm such as co-clustering or block clustering,
whereas we use them to find design alternatives through disparate clustering. This work can also
be viewed as a form of relational clustering [Hossain et al. 2010; Hossain et al. 2013] because we
use data from two different domains, the substitutability domain and the impact factor domain, to
model the ‘alternativeness’ property of two clusterings.

3. PROBLEM FORMULATION

Let B be a collection of bill of material nodes where B = ∪
i
{pi ∪ bi}, i = 1, . . . , nb are associated

part numbers and short text descriptions of the nodes of the collection. The i-th bill of material node
is expressed as Bi = {pi ∪ bi}. Let E be a database that contains the environmental impacts of a
collection of ne nodes. The attributes of E can be divided into two sets, t and ej , j = 1, . . . , le where
t is the text description attribute and ej’s are the impact factor attributes. t forms a text description
dataset T and le impact factor attributes form a real-valued impact factor matrix X of size ne × le.
We use ts and xs respectively to refer to the text description and impact factor vector of the s-th
node Es of E .

Recall that we address two main problems here: (1) environmental assessment of Bi’s, where
‘environmental assessment’ can be defined as the process of estimating different environmental
impacts (such as carbon emissions, toxic effluents, energy use, etc.) for a given product; and, (2)
discovering more sustainable design alternatives to Bi’s with the largest footprint, which we reduce
to finding alternatives to corresponding Ei’s.

Figure 2 shows the overall architecture of AutoLCA, which consists of two main parts. The top
figure shows how we build a classifier to map BOM nodes to the environmental database, and
then prepare a list of design alternatives of all components. At first we cluster the BOM nodes
using an iterative k-medoids clustering algorithm, then we map each medoid to the environmental
database to map all node of each cluster. We train a Naive Bayes classifier on top of the mappings
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Table III. List of synonyms (partial).

ID Synonyms ID Synonyms
1 integrated circuit, ic 7 htsk, heatsink
2 capacitor, cap 8 insul, insulator
3 resistor, res 9 fstnr, fastener
4 inductor, idut,.. 10 covr, cover
5 led, diode, di,.. 11 crbd, cardboard
6 hdd, disk, — —

Table IV. List of units (partial).

Unit of Units Unit of Units
Capacitance pf, uf, mfd Time ms, ns

Resistance ohm, kohm, mohm Voltage volts, v, vdc
Inductance uh, nh Current a, ma
Frequency hz, khz, mhz Power watts, w, kw

so that we can automatically map any new BOM to the environmental DB nodes. Finally, we use
disparate clustering to find functionally similar components with disparate environmental impact
factors, which provide candidates for more sustainable design recommendations.

Figure 2 (bottom) shows how we can find an alternative design of a specific product. At first,
we use the classifier we trained in the figure at top to map each node of the bill of materials of the
product to the environmental DB nodes. Then we use a constrained optimization fit to find envi-
ronmental footprint of each component. We also find the design alternatives from the list generated
earlier. We suggest replacements for the components that have high environmental footprint with
similar but more environment friendly components to design a more sustainable product.

We describe AutoLCA in detail in the following three sections.

4. BOM NODES TO EI NODES MAPPING

Since BOM nodes do not have impact factor information, they need to be mapped to an environ-
mental impact factor database. To this end, we used a real BOM dataset containing about 6.8K
nodes, obtained from a large computer manufacturer, to build a classifier.

4.1. Parsing, list of synonyms, and units

Table I shows some sample bill of material nodes. Along with the short description, every bill
of material node is associated with a part number. Similar nodes typically have a common prefix in
their part numbers. They also have similar tokens in their description string. For example, a capacitor
generally starts with “cap” or “capacitor”, a resistor with “res” or “resistor”, and an inductor with
“idut” or “inductor”. We maintain a list of synonyms (Table III) to combine semantically equivalent
terms. Further, these descriptions often contain different units such as those for capacitance, voltage,
inductance, etc. The same unit can appear in different forms. For example, capacitance can have
units pf (pico-Farad), uf (µ-Farad), mfd (milli-Farad), etc. The appearance of any of these terms
denotes a capacitor. To combine similar units to a single term we maintain unit lists (Table IV).

4.2. Dissimilarity measures

We used several measures to calculate the dissimilarity between two bill of material nodes. All
these measures involve two basic dissimilarity calculations, (1) DLCS — based on longest common
substring (LCS), and (2) DLCP — based on longest common prefix (LCP) between two strings,
defined by

DLCS (s1, s2) = |s1|+ |s2|− 2× LCS(s1, s2),

DLCP (s1, s2) = |s1|+ |s2|− 2× LCP (s1, s2).

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.



0:7

(1) Dissimilarity based on whole strings:

d1 (Bi, Bj) = DLCP (pi, pj) +DLCS (bi, bj) .

(2) Token based Euclidean distance: For this and the next metric, we tokenize the description based
on common separators such as space, comma, semicolon, etc. We associate each distinct term
in the two descriptions bi and bj of the bill of material nodes Bi and Bj with a dimension of
Euclidean space. Note that we collapsed similar terms to a single one using our list of synonyms.

The frequencies of each of the terms in the descriptions bi and bj form two vectors!bi and!bj . In
addition to this, we have the part numbers pi and pj . We generate two vectors !pi and !pj based
on the frequencies of each of the letters of the two part numbers pi and pj . Then we define a
dissimilarity by

d2 (Bi, Bj) = ‖!bi −!bj‖2 + ‖!pi − !pj‖2.

(3) Token based dissimilarity: In this measure, we tokenize each of the bill of material node descrip-
tions and calculate the LCS based dissimilarity between each pair of tokens of two descriptions.
We also include the LCP based distance between the two part numbers. Suppose that the tokens
of bi are bui , u = 1, . . . , ηi (likewise bu

′

j , u′ = 1, . . . , ηj for bj). We define this dissimilarity by

d3 (Bi, Bj) = DLCP (pi, pj)

+
1

ηi

ηi
∑

u=1

min
u′

(

DLCS

(

bui , b
u′

j

))

where ηi > ηj .

We analyzed all three distance measures (d1, d2, and d3) using clustering results with feedback
from an expert. Based on the analysis, we selected d3 as the dissimilarity measure for the k-medoids
clustering algorithm. Section 7.1 describes the details of this selection procedure.

4.3. Clustering BOM nodes

Mapping each of the bill of material nodes to the environmental database is a daunting task, e.g.
a typical BOM can contain several hundred to a few thousand nodes. Since we desire to minimize
the human effort in this process, we propose mapping of clusters instead of mapping of individual
bill of material nodes. We use an iterative k-medoids clustering algorithm to bring similar bill of
material nodes together in the same group. We use the k-medoids algorithm instead of k-means
because of two reasons:

(1) the bill of material database contains short text descriptions, so it is very hard to fit them in the
vector space model. Although we can tokenize the text descriptions and use the frequencies of
the tokens for vector quantization, it leads us to the second problem.

(2) a long mean prototype in a vector form does not provide the expert an intuition about the theme
of the cluster. On the other hand, a medoid is an easy to understand representative node of a
cluster.

Instead of manually mapping all the nodes of the bill of material database to the environmental
database, the expert only maps the medoids of the clusters. This reduces the effort of mapping by
orders of magnitude.

We construct the clusters iteratively using a k-medoids clustering algorithm. We illustrate this
iterative clustering process in Alg. 1. We, at first, generate clusterings with different number of
clusters and select the best clustering using overall Average Silhouette coefficient (ASC) (Steps
2 and 3 of Alg. 1). We then set a sum of squared distance (SSD) and an ASC threshold to select
candidate clusters from the selected clustering for the next iteration (Step 4 of Alg. 1). SSD measures
the cohesion of the clusters and ASC is a measure that takes both cohesion and separation into
account. Lower SSD and higher ASC values are better. We do not set any absolute value of SSD as
a threshold, rather we focus on a plot of SSD where the horizontal axis refers to clusters sequenced
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by the ascending order of their corresponding SSD. We calculate the rate of increase of SSD (slope
of the curve) at every point and find a threshold where it increases rapidly. However, we set a fixed
ASC threshold of 0 to select clusters for the next iteration. Any negative ASC value of a cluster
indicates overlap with other clusters and we make the nodes of those clusters to be candidates for
the next level of clustering.

The number of clusters k can vary from iteration to iteration. In our experiment, a domain expert
provided the maximum number of clusters km that would be acceptable for manual mapping. As
illustrated in Alg. 1, at every iteration we attempt to generate around 50% of the left number of
clusters. Instead of strictly generating 50% of the left clusters at any certain iteration, we generate a
range of number of clusters around 50%. For example, in the first iteration, we generate clusterings
with different numbers of clusters ranging from (0.5× km) ± (q × km) where q < 1.0 reflects a
percentage over km. We generated clusterings with different k within this range and selected the
one with the highest ASC.

The purpose of the bill of material node clustering is not to present a good set of clusters of the
entire dataset, but rather to present a subset of clusters that contain enough varieties of nodes in
different clusters so that one medoid can represent an entire group of bill of material nodes. An
expert maps the medoids of the clusters of the bill of material nodes to the environmental database.
At the end of all iterations we had 80 clusters with 80 representative medoids. An expert manually
mapped all of these 80 medoids to the nodes of environmental database. Mapping only the medoids
results in a reduction of almost two orders of magnitude compared to mapping all the bill of materil
nodes. Section 7.2 provides the detailed results.

4.4. BOM nodes to EI nodes classification

The purpose of clustering the bill of material nodes is to reduce the human effort of manual mapping
to the environmental database. As stated earlier, all the clusters generated by the iterative k-medoids
clustering algorithm are given to an expert. The expert manually maps the clusters medoids to the
environmental database. Note that the expert can avoid mapping a cluster if he/she feels that the
medoid is not a representative one for that cluster. kb ≤ en where kb is the number of cluster-
medoids mapped to en unique environmental DB node. After the mapping, we consider that each of
the BOM nodes of each cluster also maps to the same environmeltal DB node as the corresponding

Algorithm 1 The iterative clustering algorithm.

Procedure Iterative k-medoids(B, km, q):
Description of parameters:
B= collection of bill of material nodes,
km= maximum number of clusters expected,
q= a percentage (q < 1.0) over km.

1. S = B
2. Apply k-medoids clustering on S using different numbers of clusters, k, in the following

range (0.5× km)± (q × km).
3. Select the clustering that has the highest overall ASC.
4. Store the clusters of the selected clustering possessing desired SSD and ASC.
5. Reject the rest of the clusters and form a new S combining all the nodes of the rejected

clusters. If all the clusters are rejected, then exit.
6. Check if nodes of the new S can be assigned to any of the stored (nonrejected) clusters. A

node of a rejected cluster can be assigned to a nonrejected cluster if the distance between
the node of the rejected cluster and the medoid of the nonrejected cluster is less than the
distance between the medoid and the furthest node of the same nonrejected cluster. If all
the nodes (or a desired percentage) can be assigned to the existing stored clusters, then exit.

7. km = km− total number of stored (nonrejected) clusters so far.
8. Go to step 2.
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Table V. A “capacitor” related text cluster in the envi-
ronmental DB.

[Seed] capacitor, unspecified, at plant
capacitor, electrolyte type, > 2cm height, at plant
capacitor, electrolyte type, < 2cm height, at plant
capacitor, smd type, surface-mounting, at plant
capacitor, film, through-hole mounting, at plant
capacitor, tantalum-, through-hole mounting, at plant

medoid. Now that we have a number of such mappings, we build a classifier on top of it. Any new
bill of material node can be mapped to an environmental DB node using this classifier. We use a
naive Bayes classifier for this purpose.

Sections 7.3 and 7.4 depict experimental results on automatic mapping and how terms class prob-
abilities can be used to characterize each cluster.

4.5. Confidence score for classification

Here we formulate a confidence score for the naive Bayes classification based automatic mapping
we use. Let all the T terms of all the descriptions of the training set be ordered in descending order
of their conditional probabilities (P (t|e)) of being mapped to a particular environmental node e.
The confidence score of a bill of material node b, if b is mapped to environmental DB node e and
binary vector B records presence/absence of each of the T terms in b, is computed by the following
formula:

S(e) =

∑T
i=1 (Bi × exp (−i))
∑T

i=1 exp (−i)
(1)

Note that this confidence score S(e) of a bom of being mapped to environmental node e ranges
from 0 to 1.0 where 0 indicates that none of the terms of the bom node match with the important
terms of the description of e and 1.0 indicates a complete match. In practice, a complete match is
rare because the number of terms in a BOM node ηb & T . However the match can be very close
to 1.0 becasue of the negative exponent used in the formula for higher order indices. In Section 7.3,
we show that our classification technique maps BOM nodes to EI nodes with high confidence.

5. PREPARING DESIGN ALTERNATIVES

In Section 4 we described how BOM nodes can be mapped to en unique nodes in the environmental
database. In this stage of the framework, we use these en nodes as seeds to form clusters around
them. We select a set of neighbors for each of these en environmental nodes based on their text
descriptions. We might obtain ke clusters which is less than en because some of the seeds can be
neighbors of each other. We select only those nearest neighbors that contain at least the first token
of the seed node. A text cluster with a seed related to “capacitor” is shown in Table V. It shows that
all the elements of the cluster are related to capacitor. We restrict the neighbor search by applying
the constraint that the neighbors should contain at least the first token of the seed node because
we desire the text-description based clusters to be cohesive enough to contain similar as well as
substitutable elements.

Now that we have the clusters based on neighbors and text descriptions, we seek to generate an
impact factor clustering that is cohesive in the impact factor space as well as dissimilar from the
text-based clustering. Note that the text based ke clusters group functionally similar components.
We seek to identify a second clustering that would contain components possessing similar impact
factors, at the same time we desire this second clustering to be disparate from the text clustering.
The disparateness between functionality (text) based clustering and environmental impact based
clustering would provide us the design alternatives.
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5.1. Formulation

Let T be the text dataset with ke clusters and X be the corresponding environmental impact factor
dataset. Each of the text descriptions of T is associated with one vector of X forming an implicit
one-to-one relationship. Let us consider that there are lx impact factors i.e., xs ∈ Rlx .

Since we desire to find design alternatives for each of the clusters of T , we expect the elements
of each cluster of T to be scattered over multiple clusters of X . Let C(t) and C(x) be the cluster
indices, i.e., indicator random variables, corresponding to T and X and let k be the corresponding
number of clusters. Thus, both C(t) and C(x) takes values in {1, . . . , k}.

Let mi,X be the prototype vector for cluster i in impact factor vector-set X . mi,X ’s are precisely

the quantities we wish to estimate/optimize for, but in this section, assume they are given. Let v(xs)
i

be the cluster membership indicator variables, i.e., the probability that vector xs is assigned to

cluster i in vector-set X . Similarly, v(ts)j refers to the cluster membership indicator variables for the

text dataset T . Thus,
∑k

i=1 v
(xs)
i =

∑k
j=1 v

(ts)
j = 1. The traditional hard assignment is:

v(xs)
i =

{

1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . k,
0 otherwise.

Ideally, we would like a continuous function that tracks these hard assignments to a high degree
of accuracy. A standard approach is to use a Gaussian kernel to smooth out the cluster assignment
probabilities:

v(xs)
i =

exp(− ρ
D
||xs −mi,X ||2)

∑k
i′=1 exp(−

ρ
D
||xs −mi′,X ||2)

(2)

where D = maxs,s′ ||xs − xs′ ||2, 1 ≤ s, s′ ≤ n is the pointset diameter. ρ/D is the width of
the Gaussian kernel. Notice that D is completely determined by the data but ρ is a user-settable
parameter, and precisely what we can tune.

5.2. Setting up the Disparate Clustering Framework

T and X are two different but related datasets of the environmental database E . As stated earlier, the
relationships between them is one-to-one. At this point, we have the clusters of T and we seek to
identify a clustering based on the impact factors. One straightforward approach is to apply k-means
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Fig. 3. (left) There are implicit one-to-one relationships between the text cluster nodes and the impact factor vectors. This is
the initial state where our disparate clustering framework is not yet applied. (right) The clustering of impact factor vectors is
influenced by its locality as well as the text clustering. Note that we optimize the objective function over the mean prototypes
of the impact factor DB only. As a result, the mean prototypes of the text clustering remains unchanged after disparate
clustering.
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clustering on X . In an ideal case, this approach will not provide any difference between the text
clusters and the impact factor vector-set clusters. Figure 3 (left) shows this ideal situation where
every element of a text cluster is mapped to the elements of exactly one cluster of the impact factor
clustering. This situation does not provide any information regarding design alternatives. In contrast,
Figure 3 (right) shows a scenario where the elements of a text cluster are distributed among multiple
impact factor clusters. The benefit of this second clustering is that we can find design alternatives for
the nodes of the text clustering. For example, in Figure 3 (right), we find that capacitors 7011 and
7012 can be used as alternatives of capacitor 7013. Similarly, resistor 7068 has two alternatives 7069
and 7070. The disparateness between the text clustering and the impact factor vector-set clustering
provides us the information about design choices.

Now, we desire to identify a clustering in X which maintains its own locality but is different than
a given set of assignments in the text dataset T . We formulate this problem in a disparate clustering
fashion. The assignments learnt from the nearest neighbors of the medoids of T will be used to
influence the clustering of X in addition to the local memberships of X .

We construct a k × k contingency table to capture the relationships between entries in clusters
across T and X . We simply iterate over the implicit one-to-one relationships between T and X :
we suitably increment the appropriate entry in the contingency table in a one-to-one relationship

fashion: wij =
∑n

s=1 v
(ts)
i v(xs)

j , where ts and xs refer to the s-th text description and impact
factor vector respectively.

We also define wi. =
∑k

j=1 wij , w.j =
∑k

i=1 wij , where wi. and w.j are the row-wise
and column-wise counts of the cells of the contingency table respectively. Table VI shows two
contingency tables before and after our disparate clustering framework is applied. Note that each of
these contingency tables capture the relationships between two clusterings.

We will find it useful to define the distributions of the row-wise and column-wise random vari-
ables:

αi(j) =
wij

wi.
and βj(i) =

wij

w.j

The row wise distributions represent the conditional distributions of the clusters in T given the
clusters in X ; the column wise distributions are also interpreted analogously.

5.3. The objective function

Now that we have a contingency table, we must evaluate it to see if it reflects disparateness of the
two clusterings. Ideally, we expect that the contingency table would be uniform in a perfect disparate
clustering if the clusters of T are of equal size. Therefore in the ideal case of our objective criterion,
we compare the row-wise and column-wise distributions from the contingency table entries to the
uniform distribution. If the clusters of T are not of equal size then the relationships of X should be
compared with the cluster distribution of T . Note that the distribution of the relationships of T is
still uniform since the clustering of X is unknown. We use KL-divergences to define the objective
function (lower values are better):

F =
1

k

k
∑

i=1

DKL

(

αi||U(
1

k
)
)

+
1

k

k
∑

j=1

DKL

(

βj ||U
T (

1

k
)
)

−
1

ne

N
∑

s=1

DKL

(

p
(

V (ts)
)

||U(
1

k
)
)

−
1

ne

N
∑

s=1

DKL

(

p
(

V (xs)
)

||UT (
1

k
)
)

(3)
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Table VI. Two contingency tables for the scenar-
ios of Figure 3.

3 0 0
0 3 0
0 0 3

1 1 1
1 1 1
1 1 1

where U is the uniform distribution over k clusters and UT is the probability distribution of the
elements of k text clusters, and the second two terms help guard against degenerate solutions.

We minimize this objective function over the mean prototypes of the impact factor dataset X . For
this optimization purpose, we adopt an augmented Lagrangian formulation with a quasi-Newton
trust region algorithm.

6. DETERMINING ENVIRONMENTAL FOOTPRINT OF BOM COMPONENTS

In order to estimate the environmental impact of components of a BOM, they need to be mapped
to nodes in the EI DB. The naive Bayes classifier addressed in the previous section, provides this
transformation. However, one pending challenge with the mapping is that the units specified on
the BOM and EI DB may differ. For example, most product BOMs specify the number of repeating
instances for a particular part number, while the environmental DB nodes may be specified per mass
(kg) or volume. Considering a given BOM as a tree with the product or part node as the root and
its components as its children, we can address this problem by recognizing the following property
— the parent impact is approximately equal to the sum of the impacts of the children. Knowing the
quantity, in compatible units (usually weight or volume), of any EI node (parent or any child) in the
product allows this can be formulated as a constrained optimization problem:

min
x

le
∑

i=1

W (i)

&Ip
subject to x ≥ 0

where W = abs(Ax − &Ip), Ip is the impact factor vector of the parent node, A is a matrix with
le rows (le is the total number of impact factors) and Nc columns (Nc is the number of child
nodes), and & is a coefficient or weight associated with the parent node. Note that x is a vector-
valued variable of length Nc. Minimization of x allows the environmental impact of all the BOM
components to be estimated. The environmental impact Lj of the j-th factor can be computed as:

Lj =
∑Nc

i=1 Aj,ixi, where Aj,i corresponds to the (j, i)-th cell of matrix A and xi corresponds
to the i-th element of x. We draw a pie chart for an impact factor to illustrate the corresponding
environmental footprint. Section 7.6 describes some of these pie charts for a number of products.

7. EXPERIMENTAL RESULTS

In this section, we present a comprehensive evaluation of AutoLCA against a broad range of qualita-
tive and quantitative measures. We apply AutoLCA on real data from a large computer manufacturer.
The dataset we use has a total of 6,812 nodes from thirteen different bill of materials. The envi-
ronmental database has 3,949 nodes with more than 200 impact factors. Then, we specifically apply
AutoLCA to four different BOMs, evaluate them on the basis of carbon impact of the child nodes,
present a list of substitutes resulting from disparate clustering to an expert, and finally, estimating
the potential carbon savings from substitutions that may be feasible based on the recommendations
of the expert.

The specific questions we seek to answer in this section are:

(1) What is the performance of the distance measures introduced in Section 4.2? (Section 7.1)
(2) Does the iterative k-medoids clustering algorithm provide cohesive clusters? (Section 7.2)
(3) How well does automatic classification perform in mapping bill of material nodes to environ-

mental database nodes? How is this reflected in the estimated confidence scores? (Section 7.3)
(4) How can we characterize the BOM clusters? (Section 7.4)
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(5) Can disparate clustering bring functionally similar (substitutable) but environmentally diverse
(based on impact factors) nodes into the same cluster? (Section 7.5)

(6) Can AutoLCA recommend viable alternatives for product components resulting in a more sus-
tainable product design? (Section 7.6)

7.1. Analyzing Distance Measures

We analyzed all three distance measures (d1, d2, and d3) introduced in Section 4.2 using cluster-
ing results with feedback from an expert. We generated 50 clusters with these three dissimilarity
measures and the expert then marked BOM nodes wrongfully placed in each cluster. We observed
that the whole string based dissimilarity d1 and the token & LCS based dissimilarity d3 have small
number of clusters with large error. On the other hand, the Euclidean distance d2 results in a num-
ber of clusters with large error. A distribution analysis on the number of erroneous BOM nodes in
the clusterings using three similarity measures lead us to choose either d1 or d3 as our dissimilar-
ity measure because the very few clusters with erroneous BOM nodes can become candidates for
“re-clustering” and the rest of the clusters are cohesive enough to keep as they are. The total per-
centages of erroneous BOM nodes in these three clusterings with d1, d2, and d3 are 29.5%, 32.2%,
and 18.8%, respectively. We finally select d3 because it provides clusters with the lowest amount of
erroneous elements.

7.2. Results of iterative k-medoids clustering

We perform an SSD and ASC analysis at the end of each iteration of the iterative k-medoids cluster-
ing. Note that some of the very high SSD and negative ASC clusters are removed at the end of each
iteration which become candidates for the next iteration of the algorithm. Our observation is that at
the end of every iteration, there are a few clusters with high SSD and negative ASC that contain a
heterogeneous mix type of bill of material nodes. The algorithm stops iterating if all (or a desired
percentage) of these nodes can be assigned to any of the previous good clusters. For our dataset with
6,812 bill of material nodes, the algorithm stopped after the third iteration leaving 864 nodes. These
864 nodes did not have enough resemblance with the elements of the existing clusters and they did
not have enough structure to form a new clusters either. As stated earlier in Section 4.3, at the end
of all iterations we had 80 clusters with 80 representative medoids which were manually mapped to
the environmental DB nodes by an expert.
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Fig. 4. (left)Classifier’s evaluation: We calculated the accuracy with k-fold cross validation (k being varied from 2 to 8).
The accuracies are shown for different number of suggestions. (right)Classifier’s confidence score: Around 90% of the bill
of material nodes have confidence score greater than 0.6.
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7.3. Mapping BOM nodes to EI nodes

80 medoids generated by our iterative k-medoids clustering were mapped to 30 unique environmen-
tal DB nodes by an expert. For the classification purpose, we consider that each of the BOM nodes
of each cluster also maps to the same environmental DB node as the corresponding medoid. We
build a naive Bayes classifier on top of this mapped data. We have a total of 1,932 terms in 5,948
bill of material descriptions of the 80 clusters. All these terms become features for the naive Bayes
classifier.

We found that the accuracy of the classifier improves (around 4%) with the use of synonyms
along with the units. More importantly, it is essential to keep the synonyms in the same bucket for
characterization (described in the following subsection). We evaluate the mapping process using
cross validation technique. We calculated the accuracies using different number of folds ranging
from two to eight with varying number of suggested mappings ranging from one to five. The plot of
Figure 4 (left) shows that the classifier has more than 95% accuracy when we use 3 to 8-folds with
five suggested mappings from a pool of 30 options. With the lowest amount of training (2-fold),
the accuracy is still more than 90% with five suggestions. The accuracy is more than 80% with any
number of folds for more than one suggestions. The accuracies of the mappings are fairly high for
a pool of thirty class labels.

We applied naive Bayes classification on 5,948 nodes of all the clustered data and computed
confidence score (Section 4.5) for each of the nodes. Figure 4 (right) shows the distribution of the
confidence scores computed over all 5,948 nodes. We observed that around 90% of the bill of mate-
rial nodes have confidence score greater than 0.6 which indicates high confidence in automatically
mapping the bill of material nodes using naive Bayes classification.

7.4. Characterization of the BOM clusters

The most frequently occurring terms in a BOM cluster allow us to characterize it by associating
(tagging) that cluster with those terms. In fact, this can assist an expert in the manual mapping
process. After we have the medoids (clusters) mapped and the classifier trained, we can characterize
the different classes using the terms with high class probabilities. These terms could also be shown
to the user to justify the categorization of a new BOM node to a particular EI DB node. The top left
plot of Figure 5 shows the list of terms in the horizontal axis ordered based on their probabilities
of being mapped to EI DB node 7013 (capacitor). All the BOM clusters mapped to EI DB node
7013 can be characterized by the terms, “capacitor”, “cap”, “capacitance”, “voltage”, etc. In the
same figure, we show three more similar plots for inductor, integrated circuit, and resistor related
clusters. We have a total of thirty such plots (only four of them are shown in Figure 5) to characterize
80 BOM clusters.

7.5. Construction of text clusters and disparate impact factor clusters

For the disparate clustering phase of the experiments, the experts selected 46 impact factors of
their interest out of more than 200 for ease of analysis and verification. As described in Section 5,
we construct text description clusters based on neighbors in the EI database. We seek to identify
a second clustering that would contain components possessing similar impact factors, at the same
time we desire this second clustering to be disparate from the text clustering. We obtained a total
of 170 nodes around 30 seeds. (These 30 seeds are the unique environmental DB nodes used as
class labels in Section 7.3). The disparateness between functionality (text) based clustering and
environmental impact based clustering would provide us the design alternatives. Table VII shows
some text-based clusters (C1) and the disparate cluster IDs (C2) of the correspondign nodes. In table
VII, two integrated circuits (7016 and 7015) are shown to be in the same text-based cluster but
they are in two different clusters in the impact factor based disparate clustering. Similarly, capacitor
7014 has two alternatives (7010 and 7013), all of which are in different impact factor cluster than
capacitor 7014. Figure 6 shows distributions of percentage difference of the impact factors between
capacitor 7014 and two of its alternatives. A positive difference indicates that the alternative has
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lower impact whereas a negative difference indicates that a replacement with the alternative would
result in a higher impact at that specific factor. Note that 7010 has higher positive difference than
7013. On the other hand, 7013 has higher negative difference than 7010 indicating that the impact
factors of these two alternatives are very diverse.

7.6. Carbon Hotspot Analysis and Redesign

We apply AutoLCA to four specific products: a printed circuit board (PCB) for an enterprise com-
puter, a desktop computer (without screen), a laser jet printer, and a color laser jet printer. The BOM
of these products is mapped to EI nodes using the classifier. In order to determine the quantity of
each component in the products (which in turn is used to assess the environmental impact of the
components), we solve the constrained optimization problem described in Section 6. The results are
summarized in Table VIII and show good fits.

After determing the component impact factors, these can be used to perform a carbon hotspot
analysis, where essentially a Pareto list of the biggest environmental contributors to the parent foot-
print is generated so that a designer or LCA practitioner can zoom in on where further efforts should
be focused. Figure 7 shows such a hotspot analysis of the four products for the impact of carbon
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Fig. 5. We characterize the bill of material clusters by the top terms with highest class probabilities of being mapped to a
corresponding environmental DB node. All the plots above show the top term probabilities which can be used to characterize
any BOM cluster. For example, the upper left plot shows that the characterizing terms of any BOM cluster which maps
to the environmental DB node 7013 are “capacitor”, “cap”, “capacitance”, “voltage”, etc. The rest of the plots show the
characterizing terms of inductor (10154), integrated circuit (7015), and resistor (7068). Note that terms inside square brackets
indicate a set of synonyms, and a term inside parentheses indicates a unit.
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Table VII. Text description based and impact factor based disparate
cluster samples.

EI ID Text description C1 C2
7016 integrated circuit,logic type 23 25
7015 integrated circuit, memory type 23 6
7014 capacitor, unspecified, at plant 27 23
7013 capacitor, tantalum type 27 12
7012 capacitor, electrolyte type I 27 23
7011 capacitor, electrolyte type II 27 23
7010 capacitor, smd type, surface-mounting 27 17
8054 tantalum, powder, capacitor-grade 27 10
7067 inductor, ring core choke type 14 23
10154 inductor, unspecified 14 6
7111 diode, unspecified 25 27
7077 light emitting diode 25 22
7075 diode, glass-, smd type, surface.. 25 27
7076 diode, glass-, through-hole mounting 25 22
1056 aluminium, production mix 39 27
1057 aluminium, production mix, cast alloy 39 3
1058 aluminium, production mix, wrought alloy 39 22
1670 alkyd paint, white, 60% in solvent 7 20
1669 alkyd paint, white, 60% in h2o 7 10
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Fig. 6. Percentage difference between the impact factors of 7014:Capacitor and two of its alternatives 7010 and 7013.
Negative difference in impact factor indicates that the alternative has larger corresponding impact than 7014:Capacitor.

emissions. Both for PCB and desktop, the largest contributors are integrated circuits (ICs) (85%
for PCB and 33% for desktop; note that for desktop the printed wiring board itself would contain

Table VIII. Error between the sum of the child node impacts and the parent (Percentage
median and mean errors).

Product #components #children Median error(%) Mean error(%)
Printed circuit board 560 14 0.2069 2.31687
Desktop computer 159 16 4.85987 12.5731
Laser jet printer 435 26 3.78832 14.9138
Color laser jet printer 456 24 3.83017 14.9089
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Fig. 7. Hotspot analysis of the carbon footprint of four different products.

ICs, so essentially this percentage would be actually higher). This is followed by discrete compo-
nents such as transistors, resisters, capacitors. This is quite similar to the results uncovered through
a manual LCA, where the ICs were found to have the largest contributions. For the printers, the
largest contributor is the toner, which again matches manual studies. However, aluminum is higher
than expected, particularly for the laser jet printer. The contribution of epoxy (plastics) also matches
well. A designer desiring to further reduce the carbon footprint of any of these products can cor-
rectly identify where efforts should be focused. This is important because it becomes possible for
someone who has no LCA or environmental background to automatically obtain feedback regarding
the sustainability of their design.

Next, we aim to provide suggestions for more sustainable design of the four products. For each
product, we look for child nodes that belong to the same cluster in C1 (text-based clusters) but in
different ones in C2 (disparate clusters). Such nodes are likely similar in functionality but different
in their environmental impacts, making them good candidates for substitution in order to reduce
environmental footprint. A list of such substitutions were presented to an expert to advise on their
feasibility, based on which the savings in the carbon footprint of each product was estimated as
shown in Table IX. While redesign of desktop results in a potential savings of 36% in the carbon
footprint, for the PCB and the printers the savings are in the range of 1-2%. The reason for low
savings in the printers is that the main contributors to carbon footprint, namely, toner, epoxy and
chromium steel do not have good substitutes in the database.

The fact that the savings are not large for the printers is very useful from a practitioner’s stand-
point – it essentially means that Auto-LCA can be used as a tool to expediantly decide where further
Design for Environment (DfE) efforts should be focussed. For example, it can help a large company
to decide which class of its products it should focus on first (e.g. desktops vesus printers). Thus
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Table IX. Carbon footprint reduction
for four products.

Product Reduction
Printed circuit board 2%

Desktop computer 36%
Laser jet printer 1%

Color laser jet printer 1%

auto-LCA is useful in identifying environmental impact hotspots both within a product and across
products.

8. CONCLUSION

We have proposed a framework for environmental assessment and redesign of products from their
bill of materials. Sustainable redesign is formulated as a transfer learning problem to map between
diverse attribute spaces. A detailed case study on several complex electronic products shows that
our framework can expeditiously determine the environmental hotspots in products providing valu-
able information on which components to focus on for redesign. For the four products considered,
our redesign recommendations based on disparate clustering can reduce carbon footprint from 1%
to 36%, enabling companies to decide which class of products is most suitable for environmen-
tal redesign. In future we will expand our work to other domains to be able to further assess the
compatibility of the discovered design alternatives.
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