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Abstract
The development process for biochemical network models follows the traditional pipeline:

Biochemical Network→ ODE→ Simulation→ Time Series→ System Dynamics

Understanding how small changes in the original network propagate to cause qualitative differ-
ences in dynamics are key issues in model comprehension, iterative model improvement, and
validation. We present an automatic approach to summarize time series data from simulations
into state transition diagrams capturing the system dynamics. Finally, we show how key behav-
ioral features inferred from the state transition diagrams can be connected back to the network
topology in a way that cannot be directly inferred from the ODE model or the raw time series
dataset. Our approach for network comprehension thus opens up an important algorithmic
approach to the toolkit of the systems biologist. We demonstrate applications to studying the
yeast cell cycle progression both in wild-type cells and in mutants which cause cell cycle arrest
at different stages. Our algorithm identifies key cell cycle states, transitions between them, and
deviations in these transitions among mutants in a completely unsupervised manner.

Background
The cell cycle is a regulatory system of fundamental biological significance, governed (in Eu-
karyotes) by a universal mechanism that has been characterized in great detail both genetically
and biochemically [Murray and Hunt, 1993]. Realistic and accurate models are available [Chen
et al., 2004], which make specific predictions that can be tested experimentally. However, cell
cycle modeling has now reached the limit of what can be hand-crafted, and the next level of
sophistication will require powerful tools to comprehend regulatory networks and the underlying
state transitions they model.
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Figure 1: Modeling the cell cycle

Molecular biologists have painstakingly dissected and characterized individual components and
their interactions to derive a consensus picture of the regulatory network. The responses of the
living cell to internal and external stimulus are controlled by complex interacting protein net-
works. These networks are nearly impossible to comprehended by intuitive reasoning alone.
Mathematical modeling, based on biochemical rate equations, provides a rigorous tool for mod-
eling the complexities of molecular regulatory networks. Even thought such models capture the
dynamics of the system well, comprehending these models is still difficult.

Methods for Temporal Redescription of Data
We outline two methods for temporal redescription: one based on clustering species concen-
tration vectors and another based on clustering time points. The former has been applied to
redescribing data from simulations and the latter has been applied to redescribing data from
gene expression measurements.
Temporal information is initially stripped out from simulation results and multivariate species
concentration vectors are clustered to identify dense regions of spate space. The original time
series data is redescribed in terms of these clusters thus putting back the temporal relation-
ships. Hence, by using clusters of species concentrations to define the “states” and transitions
between these states to define the system trajectories, we show how we can reconstruct key
dynamical features such as linear state progressions and even higher level features such as
oscillations.

v(t): State Vector(s)

3 instances Process progression in state‐space

Temporal redescription can also be viewed as a task of segmenting the time series data. Each
segment is modeled as a mixture of clusters so that segment boundaries involve significant
re-grouping and re-definition of clusters [Tadepalli et al., 2008]. This work has been applied to
redescribing time series data from gene expression measurements.
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Figure 4: Segmenting the yeast cell cycle (YCC) data. The YCC involves the staged coor-
dination of several phases (M/G1, time points [1–3]; G1,S, time points [4–6]; and G2,M, time
points [7–9]). (A) Mean expression profiles for each group of genes depict the changing em-
phasis across the three phases. Contingency tables capture the concerted grouping of genes
within segments (B, first row) as well as the re-groupings between segments (C, first row). Ob-
serve that the contingency tables in the second row involve significant enrichments whereas
the tables in the third row approximate a uniform distribution. Gantt chart views (C) depict the
temporal coordination of biological processes underlying the dataset.

Results
In automatic state discovery from cell cycle time series/trajectory data, concentration profiles
and rate of change dynamics of each state map directly to known cell cycle phases.

Key‐Molecules in Cell Cycle

Reconstructed
State Transitions

Figure 5: Reconstruction of the state transition diagram for wild type cell cycle progression

Mutant cell cycle models:
1. Cdc14− ts: Cdc14 causes inactivation of mitotic CDK, enabling cells to exit mitosis.
2. Cdc20− ts: Cdc 20 activates Anaphase Promoting Complex essential for exit from mitosis.
3. Clb1δClb2δ: Clb1,2 are kinases essential for entry into mitosis.
4. Tem1δ: Tem1 is a GTP-binding protein active in Mitotic Exit Network pathway.

Normal
Cell Cycle

Mutant‐1: Exit‐of‐mitosis
Teleophase Arrest

Mutant‐2: CDC‐20 Knoct‐out
Metaphase Arrest

Mutant‐4: MEN Pathway
Teleophase Arrest

Mutant‐3:Clb1Clb2 Knoct‐out;
G2 Arrest

Figure 6: Contrasting state progression of wild-type vs mutant cell cycle models.
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