
1

Deep Reinforcement Learning for
Sequence-to-Sequence Models

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, Chandan K. Reddy, Senior Member, IEEE

Abstract—In recent times, sequence-to-sequence (seq2seq)
models have gained a lot of popularity and provide state-of-
the-art performance in a wide variety of tasks such as machine
translation, headline generation, text summarization, speech to
text conversion, and image caption generation. The underlying
framework for all these models is usually a deep neural network
comprising an encoder and a decoder. Although simple encoder-
decoder models produce competitive results, many researchers
have proposed additional improvements over these seq2seq mod-
els, e.g., using an attention-based model over the input, pointer-
generation models, and self-attention models. However, such
seq2seq models suffer from two common problems: 1) exposure
bias and 2) inconsistency between train/test measurement. Recently,
a completely novel point of view has emerged in addressing
these two problems in seq2seq models, leveraging methods from
reinforcement learning (RL). In this survey, we consider seq2seq
problems from the RL point of view and provide a formulation
combining the power of RL methods in decision-making with
seq2seq models that enable remembering long-term memories.
We present some of the most recent frameworks that combine
concepts from RL and deep neural networks. Our work aims
to provide insights into some of the problems that inherently
arise with current approaches and how we can address them
with better RL models. We also provide the source code for
implementing most of the RL models discussed in this paper to
support the complex task of abstractive text summarization and
provide some targeted experiments for these RL models, both in
terms of performance and training time.

Index Terms—Deep learning; reinforcement learning; sequence
to sequence learning; Q-learning; actor-critic methods; policy
gradients.

I. INTRODUCTION

SEQUENCE-to-sequence (seq2seq) models constitute a
common framework for solving sequential problems [1].

In seq2seq models, the input is a sequence of certain data units
and the output is also a sequence of data units. Traditionally,
these models are trained using a ground-truth sequence via a
mechanism known as teacher forcing [2], where the teacher
is the ground-truth sequence. However, due to some of the
drawbacks of this training approach, there has been significant
line of research connecting inference of these models with
reinforcement learning (RL) techniques. In this paper, we
aim to summarize such research in seq2seq training utilizing
RL methods to enhance the performance of these models
and discuss various challenges that arise when applying RL

Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy are with the
Discovery Analytics Center, Department of Computer Science at Virginia
Tech, Arlington, VA. {yaserkl,tshi}@vt.edu, {naren,reddy}@cs.vt.edu. Cor-
responding author: yaserkl@vt.edu.

This paper is currently under review in IEEE Transactions on Neural
Networks and Learning Systems

Fig. 1: A simple seq2seq model. The blue boxes correspond
to the encoder part which has Te units. The green boxes
correspond to the decoder part which has T units.

methods to train a seq2seq model. We intend for this paper
to provide a broad overview on the strength and complexity
of combining seq2seq training with RL training and to guide
researchers in choosing the right RL algorithm for solving
their problem. In this section, we will briefly introduce the
working of a simple seq2seq model and outline some of the
problems that are inherent to seq2seq models. We will then
provide an introduction to RL models and explain how these
models could solve the problems of seq2seq models.

A. Seq2seq Framework

Seq2seq models are common in various applications ranging
from machine translation [3]–[8] , news headline genera-
tion [9], [10] , text summarization [11]–[14] , speech-to-text
applications [15]–[18] , and image captioning [19]–[21].

In recent years, the general framework for solving these
problems uses deep neural networks that comprise two main
components: an encoder which reads the sequence of input
data and a decoder which uses the output generated by the
encoder to produce the sequence of final outputs. Fig 1
gives a schematic of this simple yet effective framework. The
encoder and decoder are usually implemented by recurrent
neural networks (RNN) such as Long Short-Term Memory
(LSTM) [22]. The encoder takes a sequence of length Te in-
puts1, X = {x1, x2, · · · , xTe}, where xt ∈ A = {1, · · · , |A|}
is a single input coming from a range of possible inputs (A),
and generates the output state ht. In addition, each encoder
receives the the previous encoder’s hidden state, ht−1, and if
the encoder is a bidirectional LSTM, it will also receive the
state from the next encoder’s hidden state, ht+1, to generate its
current hidden state ht. The decoder, on the other hand, takes
the last state from the encoder, i.e., hTe and starts generating

1In this paper, we use input/output and action interchangeably since
choosing the next input is akin to choosing the next action and generating the
next output is akin to generating the next action.

ar
X

iv
:1

80
5.

09
46

1v
4

 [
cs

.L
G

]
 1

5
A

pr
 2

01
9

2

an output of size T < Te, Ŷ = {ŷ1, ŷ2, · · · , ŷT }, based
on the current state of the decoder st and the ground-truth
output yt. The decoder could also take as input an additional
context vector ct, which encodes the context to be used while
generating the output [9]. The RNN learns a recursive function
to compute st and outputs the distribution over the next output:

ht′ = Φθ(xt′ , ht)
st′ = Φθ(yt, st/hTe , ct)
ŷt′ ∼ πθ(y|ŷt, st′)

(1)

where t
′

= t+ 1, θ denotes the parameters of the model, and
the function for πθ and Φθ depends on the type of RNN. A
simple Elman RNN [23] would use a sigmoid function for Φ
and a softmax function for π [1]:

st′ = σ(W1yt +W2st +W3ct)
ot′ = softmax(W4st′ +W5ct)

(2)

where ot is the output distribution of size |A| and the output
ŷt is selected from this distribution. W1, W2, W3, W4, and W5

are matrices of learnable parameters of sizes W1,2,3 ∈ Rd×d
and W4,5 ∈ Rd×|A|, where d is the size of the input representa-
tion (e.g., size of the word embedding in text summarization).
The input to the first decoder is a special input indicating the
beginning of a sequence, denoted by y0 = ∅ and the first
forward hidden state h0 and the last backward hidden state
hTe+1 for the encoder are set to a zero vector. Moreover, the
first hidden state for decoder s0 is set to the output that is
received from the last encoding state, i.e., hTe .

The most widely used method to train the decoder for
sequence generation is called the teacher forcing algorithm [2],
which minimizes the maximum-likelihood loss at each decod-
ing step. Let us define y = {y1, y2, · · · , yT } as the ground-
truth output sequence for a given input sequence X . The
maximum-likelihood training objective is the minimization of
the following cross-entropy (CE) loss:

LCE = −
T∑
t=1

log πθ(yt|yt−1, st, ct−1, X) (3)

Once the model is trained with the above objective, the model
generates an entire sequence as follows: Let ŷt denotes the
action (output) taken by the model at time t. Then, the next
action is generated by:

ŷt′ = arg max
y

πθ(y|ŷt, st′) (4)

This process could be improved by using beam search to
find a reasonable good output sequence [7]. Now, given the
ground-truth output Y and the model generated output Ŷ , the
performance of the model is evaluated with a specific measure.
In seq2seq problems, discrete measures such as ROUGE [24],
BLEU [25], METEOR [26], and CIDEr [27] are used to
evaluate the model. For instance, ROUGEl, an evaluation
measure for textual seq2seq tasks, uses the largest common
substring between Y and Ŷ to evaluate the goodness of the
generated output. Algorithm 1 shows these steps.

Algorithm 1 Training a simple seq2seq model
Input: Input sequences (X) and ground-truth output sequences (Y).
Output: Trained seq2seq model.
Training Steps:
for batch of input and output sequences X and Y do

Run encoding on X and get the last encoder state hTe .
Run decoding by feeding hTe to the first decoder and obtain the
sampled output sequence Ŷ .
Calculate the loss according to Eq. (3) and update the parameters
of the model.

end for
Testing Steps:
for batch of input and output sequences X and Y do

Use the trained model and Eq. (4) to sample the output Ŷ
Evaluate the model using a performance measure, e.g., ROUGE

end for

B. Problems with Seq2seq Models

One of the main issues with the current seq2seq models
is that minimizing LCE does not always produce the best
results for the above discrete evaluation measures. Therefore,
using cross-entropy loss for training a seq2seq model creates
a mismatch in generating the next action during training and
testing. As shown in Fig 1 and also according to Eq. (3), during
training, the decoder uses the two inputs, the previous output
state st−1 and the ground-truth input yt, to calculate its current
output state st and uses it to generate the next action, i.e., ŷt.
However, at the test time, as given in Eq. (4), the decoder
completely relies on the previously generated action from the
model distribution to predict the next action, since the ground-
truth data is not available anymore. Therefore, in summary, the
input to the decoder is from the ground-truth during training,
but the input comes from the model distribution during model
testing. This exposure bias [28] results in error accumulation
during the output generation at test time, since the model has
never been exclusively exposed to its own predictions during
training. To avoid the exposure bias problem, we need to
remove the ground-truth dependency during training and use
only the model distribution to minimize Eq. (3). One way
to handle this situation is through the scheduled sampling
method [2] or Gibbs sampling [29]. In scheduled sampling,
the model is first pre-trained using cross-entropy loss and
will subsequently and slowly replace the ground-truth with
a sampled action from the model. Therefore, a decision is
randomly taken to whether use the ground-truth action with
probability ε, or an action coming from the model itself with
probability (1 − ε). When ε = 1, the model is trained using
Eq. (3), and when ε = 0 the model is trained based on the
following loss:

LInference = −
T∑
t=1

log πθ(ŷt|ŷ1, · · · , ŷt−1, st, ct−1, X) (5)

Note the difference between this equation and CE loss; in
CE the ground-truth output yt is used to calculate the loss,
while in Eq. (5), the output of the model ŷt is used to calculate
the loss.

Although scheduled sampling is a simple way to avoid the
exposure bias, due to its random selection between choosing
ground-truth output or model output, it does not provide a

3

clear solution for the back-propagation of error and therefore
it is statistically inconsistent [30]. Recently, Goyal et al. [31]
proposed a solution for this problem by creating a continuous
relaxation over the argmax operation to create a differentiable
approximation of the greedy search during the decoding steps.

As yet another line of research on avoiding the exposure
bias problem, adversarial generative models are also proposed
for various seq2seq models [32]–[35]. In general, adversarial
models are comprised of a discriminator and a generator [36].
The generator tries to generate data similar to the ground-
truth data while the discriminator’s job is to discern whether
the generated data is close to real data or it is a fake. Finally,
the generator takes the feedback from the discriminator and
optimizes its actions towards generating higher quality data.
Since generator will only rely on its own output in generating
the data, similar to the scheduled sampling, it is avoiding on
reliance to the ground-truth data and hence avoids the exposure
bias problem. However, adversarial generative models, in
general, suffer from the reward sparsity [33], [35] and mode
collapse [37] problems. Although, there are ways to avoid
these two problems [38], studying these solutions is outside
the scope of this work.

The second problem with seq2seq models is that, while
the model training is done using the LCE , the model is
typically evaluated during the test time using discrete and
non-differentiable measures such as BLEU and ROUGE. This
will create a mismatch between the training objective and the
test objective and therefore could yield inconsistent results.
Thus, a solution that could use these measures during training
of the model will inherently solve this mismatch problem.
Recently, it has been shown that both the exposure bias and
non-differentiability of evaluation measures can be addressed
by incorporating techniques from reinforcement learning [13],
[39]–[41].

C. Reinforcement Learning

In RL, a sequential Markov Decision Process (MDP) is con-
sidered, in which an agent interacts with an environment ε over
discrete time steps t [42]. Let M = (S,A,P, R, s0, γ, T) rep-
resent this discrete finite-horizon discounted Markov decision
process, where S is the set of states, A is the set of actions,
P : S×A×S → R+ is the transition probability distribution,
R : S × A → R is a reward function, s0 : S → R+ is the
initial state distribution, γ ∈ [0, 1] a discount factor, and T is
the horizon.

The goal of the agent is to excel at a specific task, e.g.,
moving an object [43], [44], playing an Atari game [45], or
generating news summary [13], [46]. The idea is that given
the environment state at time t as st, the agent picks an
action ŷt ∈ A, according to a (typically stochastic) policy
π(ŷt|st) : S × A → R+ and observes a reward rt for that
action2. The cumulative discounted sum of rewards is the
objective function optimized by policy π. For instance, we
can consider our seq2seq conditioned RNN as a stochastic
policy that generates actions (selecting the next output) and

2we remove the subscript t whenever it is clear from the context that we
are in time t

receives the task reward based on a discrete measure like
ROUGE as the return. The agent’s goal is to maximize the
expected discounted reward, Rt = Eπ[

∑T
τ=0 γ

τrτ], where
the discounting factor γ controls the trades off between the
importance of immediate and future rewards. Under the policy
π, we can define the values of the state-action pair Q(st, yt)
and the state V (st) as follows:

Qπ(st, yt) = E[rt|s = st, y = yt]
Vπ(st) = Ey∼π(s)[Qπ(st, y = yt)]

(6)

Note that the value function Vπ is defined over only the
states whereas Qπ is defined over (state, action) pairs. The
Qπ formulation is advantageous in model-free contexts since
it can be applied to current states without having access to
a model of the environment. In contrast, the Vπ formulation
must, by necessity, be applied to future states and thus requires
a model of the environment (i.e., which states and actions
lead to which other future states). The preceding state-action
function (Q function for short) can be computed recursively
with dynamic programming:

Qπ(st, yt) = Es
t
′ [rt + γ Ey

t
′∼π(s

t
′)[Qπ(st′ , yt′)]︸ ︷︷ ︸
Vπ(s

t
′)

] (7)

Given the above definitions, we can define a function called
advantage, denoted by Aπ relating the value function V and
Q function as follows:

Aπ(st, yt) = Qπ(st, yt)− Vπ(st)
= rt + γ Es

t
′∼π(s

t
′ |st)[Vπ(st′)]− Vπ(st)

(8)

where Ey∼π(s)[Aπ(s, y)] = 0 and for a deterministic policy,
y∗ = arg maxy Q(s, y), it follows that Q(s, y∗) = V (s),
hence A(s, y∗) = 0. Intuitively, the value function V measures
how good the model could be when it is in a specific state
s. The Q function, however, measures the value of choosing
a specific action when we are in such state. Given these
two functions, we can obtain the advantage function which
captures the importance of each action by subtracting the
value of the state V from the Q function. In practice, seq2seq
model is used as the policy which generates actions. The
definition of an action, however, will be task-specific; e.g.,
for a text summarization task, the action denotes choosing the
next token for the summary, whereas for a question answering
task, the action might be defined as the start and end index
of the answer in the document. Also, the definition of the
reward function could vary from one application to another.
For instance, in text summarization, measures like ROUGE
and BLEU are commonly used while in image captioning,
CIDEr and METEOR are common. Finally, the state of the
model is usually defined as the decoder output state at each
time step. Therefore, the decoder output state at each time is
used as the current state of the model and is used to calculate
our Q, V , and advantage functions. Table I summarizes the
notations used in this paper.

D. Paper Organization
In general, we define the following problem statement that

we are trying to solve by combining these two different models
of learning.

4

TABLE I: Notations used in this paper.

Seq2seq Model Parameters
X The sequence of input of length Te, X = {x1, x2, · · · , xTe}.
Y The sequence of ground-truth output of length T , Y = {y1, y2, · · · , yT }.
Ŷ The sequence of output generated by model of length T , Ŷ = {ŷ1, ŷ2, · · · , ŷT }.
Te Length of the input sequence and number of encoders.
T Length of the output sequence and number of decoders.
d Size of the input and output sequence representation.
A Input and output shared vocabulary.
ht Encoder hidden state at time t.
st Decoder hidden state at time t.
πθ The seq2seq model with parameter θ.

Reinforcement Learning Parameters
rt = r(st, yt) The reward that the agent receives by taking action yt when the state of the environment is st

Ŷ
Sets of actions that the agent is taking for a period of time T , Ŷ = {ŷ1, ŷ2, · · · , ŷT }
This is similar to the output that the seq2seq model is generating.

π
πθ

The policy that the agent uses to take the action.
Seq2seq models use RNNs with parameter θ for the policy.

γ Discount factor to reduce the effect of rewards from future actions.
Q(st, yt)
Qπ(st, yt)

The Q-value (under policy π) that shows the estimated reward of taking action yt when at state st.

QΨ(st, yt) A function approximator with parameter Ψ that estimates the Q-value given the state-action pair at time t.
V (st)
Vπ(st)

Value function which calculates the expectation of Q-value (under policy π) over all possible actions.

VΨ(st) A function approximator with parameter Ψ that estimates the value function given the state at time t.

Aπ(st, yt)
Advantage function (under policy π) which defines how good a state-action pair is
w.r.t. the expected reward that can be received at this state.

AΨ(st, yt) A function approximator with parameter Ψ that estimates the advantage function for the state-action pair at time t.

Problem Statement: Given a series of input data and a
series of ground-truth outputs, train a model that:

• Only relies on its own output, rather than the ground-
truth, to generate the results (avoiding exposure bias).

• Directly optimize the model using the evaluation measure
(avoiding mismatch between training and test measures).

Although recently there had been a couple of survey articles
on the topic of deep reinforcement learning [47], [48], these
works heavily focused on the reinforcement learning methods
and their applications in robotics and vision, while giving less
emphasis to how these models could be used in a variety of
other tasks. In this paper, we will summarize some of the
most recent frameworks that attempted to find a solution for
the above problem statement in a broad range of applications
and explain how RL and seq2seq learning could benefit from
each other in solving complex tasks. To this end, we will
provide insights on some of the challenges and issues with
the current models and how one can improve them with better
RL models. The goal of this paper is to provide information
about how we can broaden the power of seq2seq models
with RL methods and understand challenges that exist in
applying these methods to deep learning contexts. In addition,
currently, there does not exist a good open-source framework
for implementing these ideas. Along with this paper, we
provide a library that combines state-of-the-art methods for
the complex task of abstractive text summarization with recent
techniques used in deep RL. The library provides a variety of
different options and hyperparameters for training the seq2seq
model using different RL models. Moreover, We provide
experimental results on some of the most common techniques
that are explained in this paper and we encourage researchers
to experiment with other hyperparameters and explore how
they can use this framework to gain better performance on

different seq2seq tasks. The contributions of this paper are
summarized as follows:
• We provide a comprehensive summary of RL methods that

are used in deep learning and specifically in the context of
training seq2seq models.

• We summarize the challenges, advantages, and disadvan-
tages of using different RL methods for seq2seq training.

• We provide guidelines on how one could improve a specific
RL method to obtain a better and smoother training for
seq2seq models.

• We provide an open-source library for implementing a
complex seq2seq model using different RL techniques 3

along with experiments that aim for identifying an accurate
estimate on the amount of improvement that RL algorithm
provide for current seq2seq models.
This paper is organized as follows: Section III provides

details of some of the common RL techniques used in training
seq2seq models. We provide a brief introduction to different
seq2seq models in Section IV and later explain various RL
models that can be used along with the seq2seq model training
process. We provide a summary of recent real-world applica-
tions that combine RL training with seq2seq training and in
Section V we present the framework that we implemented and
discuss the details about how this framework can applied to
different seq2seq problems and provide experimental results
for some of the well-known RL algorithm. Finally, in Sec-
tion VI, we discuss conclusions of our work.

II. SEQ2SEQ MODELS AND THEIR APPLICATIONS

Sequence to Sequence (seq2seq) models have been an inte-
gral part of many real-world problems. From Google Machine

3www.github.com/yaserkl/RLSeq2Seq/

www.github.com/yaserkl/RLSeq2Seq/

5

Translation [4] to Apple’s Siri speech to text [49], seq2seq
models provide a clear framework to process information
that is in the form of sequences. In a seq2seq model, the
input and output are in the form of sequences of single units
like sequence of words, images, or speech units. Table II
provides a brief summary of various seq2seq models and their
corresponding inputs and outputs. We also cite some of the
important research papers for each application domain.

In recent years, different models and frameworks were
proposed by researchers to achieve better and robust results
on these tasks. For instance, attention-based models have been
successfully applied to problems such as machine transla-
tion [3], text summarization [9], [10], question answering [64],
image captioning [19], speech recognition [16], and object
detection [89]. In an attention-based model, at each decod-
ing step, the previous decoder output is combined with the
information from the encoder’s output at a specific position to
select the best decoder output.

Although attention-based models can significantly improve
the performance of seq2seq models in various tasks, in appli-
cations with large output space, it is challenging for the model
to reach a desirable outcome.

On the other hand, there are more advanced models in
seq2seq training like pointer-generator model [12], [90] and
the transformers model which uses self-attention layers [91],
but discussing these models is outside the scope of this paper.

Aside from these well-defined seq2seq problems, there are
other related problems that partially work on the sequence of
inputs but the output is not in the form of a sequence. Here
are a few prominent applications that fall into this category.

• Sentiment Analysis [92]–[94]: The input is a sequence
of words and the output is a single sentiment (positive,
negative, or neutral).

• Natural Language Inference [95]–[97]: Given two sen-
tences, one as a premise and the other as a hypothesis,
the goal is to classify the relationship between these two
sentences into one of the entailment, neutrality, and contra-
diction classes.

• Sentiment Role Labeling [98]–[101]: Given a sentence and
a predicate, the goal is to answer questions like “who did
what to whom and when and where”.

• Relation Extraction [102]–[104]: Given a sentence, the
goal is to identify whether a specific relationship exists in
that sentence or not. For instance, based on the sentence
“Barack Obama is married to Michelle Obama”, we can
extract the “spouse” relationship.

• Pronoun Resolution [105]–[108]: Given a sentence and a
question about a pronoun in the sentence, the goal is to
identify who that pronoun is referring to. For instance, in
the sentence “Susan cleaned Alice’s bedroom for the help
she had given”, the goal is to find who the word “she” is
referring to.

Note that, although in these applications, only the input data
is represented in terms of sequences, we still consider them
to be seq2seq problems.

A. Evaluation Measures

Seq2seq models are usually trained with cross-entropy loss,
i.e., Eq. (3). However, the performance of these models is
evaluated using discrete measures. There are various discrete
measures that are used for evaluating these models and each
application requires its own evaluation measure. We briefly
provide a summary of these measures according to their
application context:

• ROUGE 4 [24], BLEU 5 [25], METEOR 6 [26]: These
are three of the most commonly used measures in appli-
cations such as machine translation, headline generation,
text summarization, question answering, dialog generation,
and other applications that require evaluation of text data.
ROUGE measure finds the common unigram (ROUGE-
1), bigram (ROUGE-2), and largest common substring
(LCS) (ROUGE-L) between the ground-truth text and the
output generated by the model and calculate respective
precision, recall, and F-score for each measure. BLEU
works similar to ROUGE but through a modified precision
calculation, it inclines to provide higher scores to outputs
that are closer to human judgement. In a similar manner,
METEOR uses the harmonic mean of unigram precision
and recall and it gives higher importance to recall than the
precision. Although these methods are designed to work for
all text-based applications, METEOR is more often used
in machine translation tasks, while ROUGE and BLEU
are mostly used in text summarization, question answering,
and dialog generation.

• CIDEr 7 [27], SPICE 8 [109]: CIDEr is frequently used in
image and video captioning tasks in which having captions
that have higher human judgement scores is more important.
Using sentence similarity, the notions of grammaticality,
saliency, importance, accuracy, precision, and recall are
inherently captured by these metrics.
SPICE is a recent evaluation metric proposed for image
captioning that tries to solve some of the problems of
CIDEr and METEOR by mapping the dependency parse
trees of the caption to the semantic scene graph (contains
objects, attributes of objects, and relations) extracted from
the image. Finally, it uses the F-score that is calculated using
the tuples of the generated and ground-truth scene graphs
to provide the caption quality score.

• Word Error Rate (WER): This measure, which is mostly
used in speech recognition, finds the number of substi-
tutions, deletions, insertions, and corrections required to
change the generated output to the ground-truth and com-
bines them to calculate the WER.

B. Datasets

In this section, we briefly describe some of the datasets that
are commonly used in various seq2seq models. We provide a

4https://github.com/andersjo/pyrouge/
5https://www.nltk.org/ modules/nltk/translate/bleu score.html
6http://www.cs.cmu.edu/∼alavie/METEOR/
7https://github.com/vrama91/cider
8http://www.panderson.me/spice/

https://github.com/andersjo/pyrouge/
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
http://www.cs.cmu.edu/~alavie/METEOR/
https://github.com/vrama91/cider
http://www.panderson.me/spice/

6

TABLE II: A summary of different applications of seq2seq models. In seq2seq models, the input and output are sequences
of unit data. The input column provides information about the sequences of data that are fed into the model and the output
column provides information about the sequences of data that the model generates as its output.

Application Problem Description Input Output References

Machine Translation
Translating a sentence from a
source language to a target
language

A sentence (sequence of words)
in language X (e.g., English)

Another sentence (sequence of
words) in language Y
(e.g., French)

[1], [6], [7]
[3], [50], [51]

Text Summarization
Headline Generation

Summarizing a document
into a more concise and
shorter text

A long document like a news
article (sequence of words)

A short summary/headline
(sequence of words)

[9], [10], [14], [52]
[12], [53]–[58]

Question Generation
Generating interesting
questions from a text
document or an image

A piece of text (sequence of
words) or image (sequence
of layers)

A set of questions (sequence
of words) related to the text
or image

[59]–[62]

Question Answering
Given a text document or an
image and a question, find
the answer to the question

A textual question (sequence of
words) or an image (sequence of
layers)

A single word answer from
a document or the start and
end index of the answer in
the document

[63]–[65]

Dialogue Generation
Generate a dialogue between
two agents e.g., between a
robot and human

A dialogue from the first agent
(sequence of words) or audibles
(sequence of speech units)

A dialogue from the second
agent (sequence of words) or
audibles (sequence of speech
units)

[66]–[69]

Semantic Parsing
Generating automatic SQL
queries from a given
human-written description

A human-written description
of the query (sequence of words)

The SQL command
equivalent to that description [70], [71]

Image Captioning
Given an image, generate
a caption that explains the
content of the image

An image (sequence of layers) The caption (sequence of
words) describing that image

[72]–[75]
[19], [20], [76]

Video Captioning
Given a video clip, generate
a caption that explains the
content of the video

A video (sequence of images) The caption (sequence of
words) describing the video [77]–[80]

Computer Vision

Finding interesting events
in a video clip, e.g., predicting
the next action of a specific
object in the video

A video (sequence of images)

Differs from application
to application. For instance,
one might be interested in
determining the next action
of a specific object or entity
in the video

[81]–[84]

Speech Recognition

Given a segment of audible
input (e.g., speech),
convert it to text and
vice versa

A speech (sequence of speech
units)

The text of the input speech
(sequence of words) [16], [17], [85], [86]

Speech Synthesis Given a segment of text it
generates its audible sounds A text (sequence of words)

A speech representing
(sequence of speech units)
representing its audible
sounds

[87], [88]

short list of some of the most common datasets that are used
in various seq2seq applications as follows:

• Machine Translation: The most common dataset used
for Machine Translation task is the WMT’14 9 dataset
which contains 850M words from English-French parallel
corpora of UN (421M words), Europarl (61M words), news
commentary (5.5M words), and two crawled corpora of 90M
and 272.5M words. The data pre-processing for this dataset
is usually done following the code 10 provided by Axelrod
et al. [110] .

• Text Summarization: One of the main datasets used in
text summarization is the CNN-Daily Mail dataset [111]
which is part of the DeepMind Q&A Dataset 11 and
contains around 287K news articles along with 2 to 4
highlights (summary) for each news article 12. Recently, an-
other dataset, called Newsroom, was released by Connected

9http://www.statmt.org/wmt14/translation-task.html
10http://www-lium.univ-lemans.fr/∼schwenk/cslm joint paper/
11https://cs.nyu.edu/∼kcho/DMQA/
12For downloading and pre-processing please refer to: https://github.com/

abisee/cnn-dailymail

Experiences Lab 13 [112] which contains 1.3M news articles
and various metadata information such as the title and
summary of the news. The document summarization chal-
lenge 14 also provides some datasets for text summarization.
More specifically, in this dataset, DUC-2003 and DUC-2004
which contain 500 news articles (each paired with 4 different
human-generated reference summaries) from the New York
Times and Associated Press Wire services, respectively. Due
to the small size of this dataset, researchers usually use this
dataset only for evaluation purposes.

• Headline Generation: Headline generation is similar to the
task of text summarization and typically all the datasets that
are used in text summarization will be useful in headline
generation, too. There is a big dataset which is called
Gigaword [113] and contains more than 8M news articles
from multiple news agencies like New York Times and
Associate Press. However, this dataset is not freely available
and researchers are required to buy the license to be able
to use it though one can still find pre-trained models on

13https://summari.es/
14https://duc.nist.gov/data.html

http://www.statmt.org/wmt14/translation-task.html
http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
https://cs.nyu.edu/~kcho/DMQA/
https://github.com/abisee/cnn-dailymail
https://github.com/abisee/cnn-dailymail
https://summari.es/
https://duc.nist.gov/data.html

7

different tasks using this dataset 15.
• Question Answering and Question Generation: The

CNN-Daily Mail dataset was originally designed for ques-
tion answering and is one of the earliest datasets that is
available for tackling this problem. However, recently two
large-scale datasets that are solely designed for this prob-
lem were released. Stanford Question Answering Dataset
(SQuAD) 16(1.0 and 2.0) [114], [115] is a dataset for
reading comprehension and contains more than 100K pairs
of questions and answers collected by crowd-sourcing over
a set of Wikipedia articles. The answer to each question
is a segment which identifies the start and end indices of
the answer within the article. The second dataset is called
TriviaQA 17 [116], and similar to SQuAD, it is designed for
reading comprehension and question answering task. This
dataset contains 650K triples of questions, answers, and
evidences (which help to find the answer).

• Dialogue Generation: The dataset for this problem usually
comprises of dialogues between different people. The Open-
Subtitles dataset 18 [117], Movie Dialog dataset 19 [118],
and Cornell Movie Dialogues Corpus 20 [119] are three
examples of these types of datasets. OpenSubtitles contains
conversations between movie characters for more than 20K
movies in 20 languages. The Cornell Movie Dialogues
corpus contains more than 220K dialogues between more
than 10K movie characters.

• Semantic Parsing: Recently Zhong et al. [70] released a
dataset called WikiSQL 21 for this problem which con-
tains 80654 hand-annotated questions and SQL queries
distributed across 24241 tables from Wikipedia. Although
this is not the only dataset for this problem but it offers
a larger set of examples from other datasets such as Wik-
iTableQuestion 22 [120] and Overnight [121].

• Sentiment Analysis: For this application, Amazon product
review 23 [122] dataset is one of the largest dataset which
contains more than 82 million product reviews from May
1996 to July 2014 in its de-duplicated version. Another big
dataset for this task is the Stanford Sentiment Treebank
(SSTb) 24 [94], which includes fine grained sentiment labels
for 215,154 phrases in the parse trees of 11,855 sentences.

• Natural Language Inference: Stanford Natural Lan-
guage Inference (SNLI) 25 [123] is the standard dataset
for this task which contains 570K human-written English
sentence pairs manually labeled for the three classes entail-
ment, contradiction, and neutral. The Multi-Genre Natural
Language Inference (MultiNLI) 26 [124] corpus is another
new dataset which is collected through crowd-sourcing

15http://opennmt.net/Models/
16https://rajpurkar.github.io/SQuAD-explorer/
17http://nlp.cs.washington.edu/triviaqa/
18http://opus.nlpl.eu/OpenSubtitles.php
19http://fb.ai/babi
20http://www.cs.cornell.edu/∼cristian/Cornell Movie-Dialogs Corpus.html
21https://github.com/salesforce/WikiSQL
22https://nlp.stanford.edu/software/sempre/wikitable/
23http://jmcauley.ucsd.edu/data/amazon/
24https://nlp.stanford.edu/sentiment/
25https://nlp.stanford.edu/projects/snli/
26https://www.nyu.edu/projects/bowman/multinli/

and contains 433K sentence pairs annotated with textual
entailment information.

• Semantic Role Labeling: Proposition Bank (Prop-
Bank) 27 [125] is the standard dataset for this task which
contains a corpus of text annotation with information about
basic semantic propositions in seven different languages.

• Relation Extraction: Freebase 28 [126] is a huge dataset
containing billions of triples: the entity pair and the specific
relationship between them which are selected from the New
York Times corpus (NYT).

• Pronoun Resolution: The OntoNotes 5.0 dataset 29 is
the standard dataset for this task. Specifically, researchers
use the Chinese portion of this dataset to do the pronoun
resolution in Chinese [105], [106], [108].

• Image Captioning: There are two datasets that are mainly
used in image captioning. The first one is the COCO
dataset 30 [127] which is designed for object detection,
segmentation, and image captioning. This dataset contains
around 330K images amongst which 82K images are used
for training and 40K used for validation in image captioning.
Each image has five ground-truth captions. SBU [128] is
another dataset which consists of 1M images from Flickr
and contains descriptions provided by image owners when
they uploaded the images to Flickr.

• Video Captioning: For this problem, MSR-VTT 31 [129]
and YouTube2Text/MSVD 32 [130] are two of the widely
used datasets. MSR-VTT consists 10K videos from a com-
mercial video search engine each containing 20 human
annotated captions and YouTube2Text/MSVD which has
1970 videos each containing on an average 40 human
annotated captions.

• Image Classification: The most popular dataset in computer
vision is the MNIST dataset 33 [131]. This dataset consists
of handwritten digits and contains a training set of 60K
examples and a test set of 10K examples. Aside from this
dataset, there is a huge list of datasets that are used for
various computer vision problems and explaining each of
them is beyond the scope of this paper 34.

• Speech Recognition: LibriSpeech ASR Corpus 35 [132]
is one of the main datasets used for the speech recognition
task. This dataset is free and is composed of 1000 hours
of segmented and aligned 16kHz English speech which is
derived from audiobooks. Wall Street Journal (WSJ) also
has two Continuous Speech Recognition corpora containing
70 hours of speech and text from a corpus of Wall Street
Journal news text. However, unlike the LibriSpeech dataset,
this dataset is not freely available and researchers have to
buy a license to use it. Similar to the WSJ dataset, TIMIT 36

27http://propbank.github.io/
28https://old.datahub.io/dataset/freebase
29https://catalog.ldc.upenn.edu/LDC2013T19
30http://cocodataset.org/
31http://ms-multimedia-challenge.com/2017/challenge
32http://www.cs.utexas.edu/users/ml/clamp/videoDescription/
33http://yann.lecun.com/exdb/mnist/
34Please refer to this link for a comprehensive list of datasets that are used

in computer vision: http://riemenschneider.hayko.at/vision/dataset/
35http://www.openslr.org/12/
36https://catalog.ldc.upenn.edu/ldc93s1

http://opennmt.net/Models/
https://rajpurkar.github.io/SQuAD-explorer/
http://nlp.cs.washington.edu/triviaqa/
http://opus.nlpl.eu/OpenSubtitles.php
http://fb.ai/babi
http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://github.com/salesforce/WikiSQL
https://nlp.stanford.edu/software/sempre/wikitable/
http://jmcauley.ucsd.edu/data/amazon/
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/projects/snli/
https://www.nyu.edu/projects/bowman/multinli/
http://propbank.github.io/
https://old.datahub.io/dataset/freebase
https://catalog.ldc.upenn.edu/LDC2013T19
http://cocodataset.org/
http://ms-multimedia-challenge.com/2017/challenge
http://www.cs.utexas.edu/users/ml/clamp/videoDescription/
http://yann.lecun.com/exdb/mnist/
http://riemenschneider.hayko.at/vision/dataset/
http://www.openslr.org/12/
https://catalog.ldc.upenn.edu/ldc93s1

8

is another dataset containing the read speech data. It contains
time-aligned orthographic, phonetic, and word transcriptions
of recordings for 630 speakers of eight major dialects of
American English in which each of them are reading ten
phonetically sentences.

III. REINFORCEMENT LEARNING METHODS

In reinforcement learning, the goal of an agent interacting
with an environment is to maximize the expectation of the
reward that it receives from the actions. Therefore, the focus
is on maximizing one of the following objectives:

maximize Eŷ1,··· ,ŷT∼πθ(ŷ1,··· ,ŷT)[r(ŷ1, · · · , ŷT)] (9)

maximize
y

Aπ(st, yt) (10)

maximize
y

Aπ(st, yt)→Maximizey Qπ(st, yt) (11)

There are various ways in which one can solve this problem. In
this section, we explain the solutions in detail and provide their
strengths and weaknesses. Different methods aim solving this
problem by trying one of the following approaches: (i) solve
this problem through Eq. (9); (ii) solve the expected discounted
reward E[Rt =

∑T
τ=t γ

τ−trτ]; (iii) solve it by maximizing the
advantage function (Eq. (10)); and (iv) solve it by maximizing
Q function using Eq. (11). Most of these methods are suitable
choices for improving the performance of seq2seq models,
but depending on the approach that is chosen for training the
reinforced model, the training procedure for seq2seq model
also changes. The first and one of the simplest algorithms that
will be discussed in this section is the Policy Gradient (PG)
method which aims to solve Eq. (9). Section III-B discusses
Actor-Critic (AC) methods which improve the performance
of PG models by solving Eq. (10) through Eq. (7) expansion
on Q-function. Section III-C discusses Q-learning models that
aim at maximizing the Q function (Eq. (11)) to improve the
PG and AC models. Finally, Section III-D will provide more
details about some of the recent models which improve the
performance of Q-learning models.

A. Policy Gradient

In all reinforcement algorithms, an agent takes some action
according to a specific policy π. The definition of a policy
varies according to the specific application that is being
considered. For instance, in text summarization, the policy
is a language model p(y|X) that, given input X , tries to
generate the output y. Now, let us assume that our agent
is represented by an RNN and takes actions from a policy
πθ

37. In a deterministic environment, where the agent takes
discrete actions, the output layer of the RNN is usually a
softmax function and it generates the output from this layer.
In Teacher Forcing, a set of ground-truth sequences are given
and the actions are chosen according to the current policy
during training and the reward is observed only at the end
of the sequence or when an End-Of-Sequence (EOS) signal is
seen. Once the agent reaches the end of sequence, it compares

37In seq2seq model, this represents πθ(yt|ŷt−1, st, ct−1) in Eq. (1)

the sequence of actions from the current policy (ŷt) against
the ground-truth action sequence (yt) and calculate a reward
based on any specific evaluation metric. The goal of training
is to find the parameters of the agent in order to maximize the
expected reward. This loss is defined as the negative expected
reward of the full sequence:

Lθ = −Eŷ1,··· ,ŷT∼πθ(ŷ1,··· ,ŷT)[r(ŷ1, · · · , ŷT)] (12)

where ŷt is the action chosen by the model at time t
and r(ŷ1, · · · , ŷT) is the reward associated with the actions
ŷ1, · · · , ŷT . Usually, in practice, one will approximate this
expectation with a single sample from the distribution of
actions acquired by the RNN model. Hence, the derivative
for the above loss function is given as follows:

∇θLθ = − E
ŷ1···T∼πθ

[∇θ log πθ(ŷ1···T)r(ŷ1···T)] (13)

Using the chain rule, this equation can be re-written as
follows [133]:

∇θLθ =
∂Lθ
∂θ

=
∑
t

∂Lθ
∂ot

∂ot
∂θ

(14)

where ot is the input to the softmax function. The gradient
of the loss Lθ with respect to ot is given by [41], [133]:

∂Lθ
∂ot

=
(
πθ(yt|ŷt−1, st, ct−1)− 1(ŷt)

)
(r(ŷ1, · · · , ŷT)− rb)

(15)
where 1(ŷt) is the 1-of-|A| representation of the ground-truth
output and rb is a baseline reward and could be any value
as long as it is not dependent on the parameters of the RNN
network. This equation is very similar to the gradient of a
multi-class logistic regression. In logistic regression, the cross-
entropy gradient is the difference between the prediction and
the actual 1-of-|A| representation of the ground-truth output:

∂LCEθ
∂ot

= πθ(yt|yt−1, st, ct−1)− 1(yt) (16)

Note that, in Eq. (15), the generated output from the model
is used as a surrogate ground-truth for the output distribution,
while, in Eq. (16), the ground-truth is used to calculate the
gradient.

The goal of the baseline reward is to force the model to
select actions that yield a reward r > rb and discourage those
that have reward r < rb. Since only one sample is being
used to calculate the gradient of the loss function, it is shown
that, having this baseline would reduce the variance of the
gradient estimator [41]. If the baseline is not dependent on the
parameters of the model θ, Eq. (15) is an unbiased estimator.
To prove this, we simply need to show that adding the baseline
reward rb does not have any effect on the expectation of loss:

Eŷ1···T∼πθ [∇θ log πθ(ŷ1···T)rb] = rb
∑
ŷ1···T

∇θπθ(ŷ1···T)

= rb∇θ
∑
ŷ1···T

πθ(ŷ1···T) = rb∇θ1 = 0
(17)

This algorithm is called REINFORCE [41] and is a
simple yet elegant policy gradient algorithm for seq2seq
problems. One of the challenges with this method is that the
model suffers from high variance since only one sample is

9

Fig. 2: A simple attention-based pointer-generation seq2seq
model with Self-Critic reward. At each decoding step, the
context vector for that decoder is calculated and combined
with the decoder output to get the action distribution. In
pointer-generation model, the attention distribution is further
combined with the action distribution through switches called
pointers to get the final distribution over the actions. From
each output distribution, a specific action ŷ2 is sampled and
the greedy action ŷg2 is extracted. The difference of the rewards
from sampling and greedy sequence is used to update the loss
function.

used for training at each time step. To alleviate this problem, at
each training step, one can sample N sequences of actions and
update the gradient by averaging over all these N sequences
as follows:

Lθ = 1
N

∑N
i=1

∑
t log πθ(ŷi,t|ŷi,t−1, si,t, ci,t−1)×(

r(ŷi,1, · · · , ŷi,T)− rb
) (18)

Having this, the baseline reward could be set to be the
mean of the N rewards that are sampled, i.e., rb =
1/N

∑N
i=1 r(ŷi,1, · · · , ŷi,T). Algorithm 2 shows how this

method works.
As another solution to reduce the variance of the model,

Self-Critic (SC) models are proposed [40]. In these SC mod-
els, rather than estimating the baseline using current samples,
the output of the model obtained by a greedy-search (the
output at the time of inference) is used as the baseline. Hence,
the sampled output of the model is used as ŷt and greedy
selection of the final output distribution is used for ŷgt where
the superscript g indicates greedy selection. Following this
mechanism, the new objective for the REINFORCE model
would become as follows:

Lθ = 1
N

∑N
i=1

∑
t log πθ(ŷi,t|ŷi,t−1, si,t, ci,t−1)×(

r(ŷi,1, · · · , ŷi,T)− r(ŷgi,1, · · · , ŷ
g
i,T)
) (19)

Fig 2 shows how an attention-based pointer-generator seq2seq
model can be used to extract the reward and its baseline in
Self-Critic model.

The second problem with this method is that the reward is
only observed after the full sequence of actions is sampled.
This might not be a pleasing feature for most of the seq2seq
models. If we see the partial reward of a given action at time
t, and the reward is bad, the model needs to select a better
action for the future to maximize the reward. However, in the
REINFORCE algorithm, the model is forced to wait till the

Algorithm 2 REINFORCE algorithm
Input: Input sequences (X), ground-truth output sequences (Y),
and (preferably) a pre-trained policy (πθ).
Output: Trained policy with REINFORCE.
Training Steps:
while not converged do

Select a batch of size N from X and Y .
Sample N full sequence of actions:
{ŷ1, · · · , ŷT ∼ πθ(ŷ1, · · · , ŷT)}N1 .
Observe the sequence reward and calculate the baseline rb.
Calculate the loss according to Eq. (18).
Update the parameters of network θ ← θ + α∇θLθ .

end while
Testing Steps:
for batch of input and output sequences X and Y do

Use the trained model and Eq. (4) to sample the output Ŷ .
Evaluate the model using a performance metric, e.g. ROUGEl.

end for

end of the sequence to observe its performance. Therefore, the
model often generates poor results or takes longer to converge.
This problem magnifies especially in the beginning of the
training phase where the model is initialized randomly and
thus selects arbitrary actions. To alleviate this problem to a
certain extent, Ranzato et al. [28] suggested to pre-train the
model for a few epochs using the cross-entropy loss and then
slowly switch to the REINFORCE loss. Finally, as another
way to solve the high variance problem of the REINFORCE
algorithm, importance sampling [134], [135] can also be used.
The basic underlying idea of using the importance sampling
with REINFORCE algorithm is that rather than sampling
sequences from the current model, one can sample them from
an old model and use them to calculate the loss.

B. Actor-Critic Model

As mentioned in Section III-A, adding a baseline reward
is a necessary component of the PG algorithm in order to
reduce the variance of the model. In PG, the average reward
from multiple samples in the batch was used as the baseline
reward for the model. In Actor-Critic (AC) model, the goal
is to train an estimator for calculating the baseline reward.
For computing this quantity, AC models try to maximize the
advantage function through Eq. (7) extension. Therefore, these
methods are also called Advantage Actor-Critic (A2C) models.

In these models, the goal is to solve this problem using the
following objective:

Aπ(st, yt) = Qπ(st, yt)− Vπ(st) =
rt + γ Est′∼π(st′ |st)[Vπ(st′)]− Vπ(st)

(20)

Similar to the PG algorithm, to avoid the expensive inner
expectation calculation, we can only sample once and approx-
imate advantage function as follows:

Aπ(st, yt) ≈ rt + γVπ(st′)− Vπ(st) (21)

Now, in order to estimate Vπ(s), a function approximator can
be used to approximate the value function. In AC, neural
networks is typically used as the function approximator for the
value function. Therefore, we fit a neural network Vπ(s; Ψ)
with parameters Ψ to approximate the value function. Now,
if we consider rt + γVπ(st′) as the expectation of reward-
to-go at time t, Vπ(st) could play as a surrogate for the

10

baseline reward. Similar to the PG, the variance of the model
would be high since only one sample is used to train the
model. Therefore, the variance can be reduced using multiple
samples. In the AC model, the Actor (our policy, θ) provides
samples (policy states at time t and t+1) for the Critic (neural
network estimating value function, Vπ(s; Ψ)) and the Critic
returns the estimation to the Actor, and finally, the Actor uses
these estimations to calculate the advantage approximation and
update the loss according to the following equation:

Lθ = 1
N

∑N
i=1

∑
t log πθ(ŷi,|ŷi,t−1, si,t, ci,t−1)AΨ(si,t, yi,t)

(22)
Therefore, in the AC models, the inference at each time t

would be as follows:

arg max
y

πθ(ŷt|ŷt−1, st, ct−1)AΨ(st, yt) (23)

Fig. 3 provides an illustration of how this model works at one
of the decoding steps.

1) Training Critic Model: As mentioned in the previous
section, the Critic is a function estimator which tries to
estimate the expected reward-to-go for the model at time t.
Therefore, training the Critic is basically a regression problem.
Usually, in AC models, a neural network is used as the function
approximator and the value function is trained using the mean
square error:

L(Ψ) =
1

2

∑
i

||VΨ(si)− vi||2 (24)

where vi =
∑T
t′=t r(si,t′ , yi,t′) is the true reward-to-go at time

t. During training the Actor model, we collect (si, vi) pairs
and pass them to the Critic model to train the estimator. This
model is called on-policy AC, which refers to the fact that the
samples are collected at the current time to train the Critic
model. However, the samples that are passed to the Critic will
be correlated to each other which causes poor generalization
for the estimator. These methods could be turn to off-policy
by collecting training samples into a memory buffer and select
mini-batches from this memory buffer and train the Critic
network. Off-policy AC provides a better training due to
avoiding the correlation of samples that exists in the on-policy
methods. Therefore, most the models that we discuss in this
paper are primarily off-policy and use a memory buffer for
training the Critic model.

Algorithm 3 shows the batch Actor-Critic algorithm since
for training the Critic network, we use a batch of state-
rewards pair. In the online AC algorithm, the Critic network is
simply updated using just one sample and, as expected, online
AC algorithm has a higher variance due to reliance on one
sample for training the network. To alleviate this problem for
online AC, we can use Synchronous Advantage AC learning
or Asynchronous Advantage AC (A3C) learning [136]. In the
synchronous approach, N different threads are used to train
the model and each thread performs online AC for one sample
and at the end of the algorithm, the gradient of these N threads
is used to update the gradient of the Actor model. In the more
widely used A3C algorithm, as soon as a thread calculates
θ, it will send the update to other threads and other threads

Fig. 3: A simple Actor-Critic model with an attention-based
pointer-generation seq2seq model as the Actor. The Critic
model is shown on the right side of the picture with a purple
box. The purple box AΨ, which represents the Critic model,
takes as input the decoder output at time t = 2, i.e., s2, and
estimate the advantage values through either (value function
estimation, DQN, DDQN, or dueling net) for each action.

use the updated θ to train the model. A3C is an on-policy
method with multi-step returns while there are other methods
like Retrace [137], UNREAL [138], and Reactor [139] which
provide the off-policy variations of this model by using the
memory buffer. Also, ACER [140] mixes on-policy (from
current run) and off-policy (from memory) to train the Critic
network.

In general, AC models usually have low variance due to the
batch training and the use of critic as the baseline reward, but
they are not unbiased if the critic is erroneous and makes a
lot of mistakes. As mentioned in Section III-A, PG algorithm
has high variance but it provides an unbiased estimator. Now,
if the PG and AC model are combined, we will likely be
ending up with a model that has no bias and low variance.
This idea comes from the fact that, for deterministic policies
(like seq2seq models), a partially observable loss could be
driven by using the Q-function as follows [39], [141]:

Lθ = 1
N

∑N
i=1

∑
t log πθ(ŷi,t|ŷi,t−1, si,t, ci,t−1)×(

QΨ(si,t)− VΨ′(si,t)
) (25)

However, this model requires training two different networks
for QΨ function and VΨ′ function as the baseline. Note that
the same model cannot be used to estimate both Q function
and value function since the estimator will not be an unbiased
estimator anymore [142]. As yet another solution to create
a trade-off between the bias and variance in AC, Schulman
et al. [143] proposed the Generalized Advantage Estimation
(GAE) model as follows:

AGAEΨ (st, yt) =

T∑
i=t

(γλ)i−t
(
r(si, yi)+γVΨ(si+1)−VΨ(si)

)
(26)

11

Algorithm 3 Batch Actor-Critic Algorithm
Input: Input sequences (X), ground-truth output sequences (Y),
and (preferably) a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the Critic (ValueNet) model, VΨ.
while not converged do

Training Actor:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor.
model, πθ .
for n = 1, · · · , N do

for t = 1, · · · , T do
Calculate the true (discounted) reward-to-go:
vt =

∑T
t′=t γ

t′−tr(si,t′ , yi,t′).
Store training pairs for Critic: (st, vt).

end for
end for

Training Critic:
Select a batch of size Nc from the pool of state-rewards pairs.
collected from Actor.
for n = 1, · · · , Nc do

Collect the value estimates v̂n from VΨ for each
state-rewards pair.

end for
Minimize the Critic loss using Eq. (24).

Updating Actor:
Use the estimated value for VΨ(st) and VΨ(st′)
to calculate the loss using Eq. (22).
Update parameters of the model using θ ← θ + α∇θL(θ).

end while

where λ controls the trade-off between the bias and variance
such that large values of λ yield to larger variance and lower
bias, while small values of λ do the opposite.

C. Actor-Critic with Q-Learning

As mentioned in the previous section, the value function is
used to maximize the advantage function. As an alternative to
solve the maximization of advantage estimates, we can try to
solve the following objective function:

Maximizey Aπ(st, yt)→Maximizey Qπ(st, yt)− Vπ(st)︸ ︷︷ ︸
0
(27)

This is true since we are trying to find the actions that
maximize the advantage estimate and since value function
does not rely on the actions, we can simply remove them
from the maximization objective. Therefore, the advantage
maximization problem is simplified to Q function estimation
problem. This method is called Q-learning and it is one
of the most commonly used algorithms for RL problems.
The Q-learning is called to a family of off-policy algorithm
used to learn a Q-function. Similar to this method, SARSA
algorithm [144] is an on-policy algorithm for calculating the
Q-function. The major difference between SARSA and Q-
Learning, is that the maximum reward for the next state is
not necessarily used for updating the Q-values. In Q-learning,
the Critic tries to provide an estimation for the Q-function.
Therefore, given that the policy πθ is being used, our goal is

to maximize the following loss at each training step:

Lθ = 1
N

∑N
i=1

∑
t log πθ(ŷi,t|ŷi,t−1, si,t, ci,t−1)QΨ(si,t, yi,t)

(28)
Similar to the value network training, the Q-function esti-
mation is a regression problem and the Mean Squared Error
(MSE) is used for training it. However, one of the differences
between the Q-function training and value function training
is the way in which the true estimates are chosen. In value
function estimation, the ground-truth data is used to calculate
the true reward-to-go as vi =

∑T
t′=t r(si,t′ , yi,t′), however,

in Q-learning, the estimation from the network approximator
itself is used to train the regression model:

L(Ψ) = 1
2

∑
i ||QΨ(si, yi)− qi||2

qi = rt + γmaxy′QΨ(s′i, y
′
i)

(29)

where s′i and y′i are the state and action at the next time,
respectively. Although the Q-value estimation has no direct
relation to the true Q-values calculated using ground-truth
data, in practice, it is known to provide good estimation and
faster training due to not collecting ground-truth reward at
each step of the training. However, there are no rigorous
studies that analyze how far are these estimates from the true
Q-values. As shown in Eq. (29), the true Q estimations is
calculated using the estimation from network approximator
at time t + 1, i.e. max′yQΨ(s′i, y

′
i). Although, not relying

on the true ground-truth estimation and explicitly using the
reward function might seems to be a bad idea, however in
practice it is shown that these models provide better and
more robust estimators. Therefore, the training process in Q-
learning consists of first collecting a dataset of experiences
et = (st, yt, st′ , rt) during training our Actor model and
then use them to train the network approximator. This is the
standard way of training the Q-network and was frequently
used in earlier temporal-difference learning models. But, there
is a problem with this method. Generally, the Actor-Critic
models with neural network as function estimator are tricky to
train and unless there are guarantees that the estimator is good,
the model does not converge. Although the original Q-learning
method is proven to converge [145], [146], when a neural
networks is used to approximate the estimator, the convergence
guarantee no longer holds. Usually, since samples are coming
from a specific sets of sequences, there is a correlation between
the samples that are chosen to train the model. Thus, this may
cause any small updates to Q-network to significantly change
the data distribution, and ultimately affects the correlations
between Q and the target values. Recently, Mnih et al. [45]
proposed using an experience buffer [147]38 to store the
experiences from different sequences and then randomly select
a batch from this dataset and train the Q-network. Similar
to the off-policy AC model, one benefit of using this buffer
is the potential to increase efficiency of the model by re-
using the experiences in multiple updates and reducing the
variance of the model. Since, by sampling uniformly from
the buffer, the correlation of samples used in the updates is
reduced. As another improvement to the experience buffer, a
prioritized version of this buffer is used in which, to select

38In some literatures, it is called a replay buffer

12

Algorithm 4 Deep Q-Learning
Input: Input sequences (X), ground-truth output sequences (Y),
and preferably a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the Critic (Q-Net) model, QΨ.
while not converged do

Training Seq2seq Model:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor
model, πθ .
for n = 1, · · · , N do

for t = 1, · · · , T do
Collect experience et = (st, yt, st′ , rt) and
add them to the experience buffer.

end for
end for

Training Q-Net:
Select a batch of size Nq from the experience buffer.
based on the reward.
for n = 1, · · · , Nq do

Estimate q̂n = QΨ(sn, yn).
Calculate the true estimation:
qn =

{
rn s′n==EOS
rn + γmaxy′QΨ(s′n, y

′
n) otherwise.

Store (q̂n, qn).
end for
Updating Q-Net:
Minimize the loss using Eq. (29).
Update the parameters of network, Ψ.

Updating Seq2seq Model:
Use the estimated Q values for q̂n = QΨ(sn, yn).
to calculate the loss using Eq. (28).
Update parameters of the model using θ ← θ + α∇θL(θ).

end while

the mini-batches during training, only samples that have low
temporal difference error are selected [148]. Algorithm 4
provides the pseudo-code for a Q-learning algorithm called
Deep Q-Network or DQN.

D. Advanced Q-Learning

1) Double Q-Learning: One of the problems with the
Deep Q-Network (DQN) is the overestimation of Q-values
as discussed in [149], [150]. Specifically, the problem lies
in the fact that the ground-truth reward is not used to train
these models and the same network is used to calculate both
the estimation of network QΨ(si, yi) and true values for
regression training, qi. To alleviate this problem, one could
use two different networks in which the first one chooses
the best action when calculating maxy′QΨ(s′n, y

′
n) and the

other calculate the estimation of Q value, i.e., QΨ(si, yi).
In practice, a modified version of the current DQN network
is used as the second network in which the current network
freezes its parameters for a certain period of time and updates
the second network, periodically. Let us call the second
network as the target network with parameters Ψ′. We know
that maxy′QΨ(s′n, y

′
n) is the same as choosing the best action

according to the network QΨ. Therefore, this equation can
be re-written as QΨ(s′t, arg maxy′t QΨ(s′t, y

′
t)). As shown in

this equation, QΨ is used for both calculating the Q-value
and finding the best action. Given a target network, the best
action is chosen using our target network and the Q-value is

Algorithm 5 Double Deep Q-Learning
Input: Input sequences (X), ground-truth output sequences (Y),
and preferably a pre-trained Actor model (πθ).
Output: Trained Actor and Critic models.
Training Steps:
Initialize the Actor (Seq2seq) model, πθ .
Initialize the two Critic models:
current Q-Net, QΨ, and target Q-net, QΨ′ : QΨ′ ← QΨ.
while not converged do

Training Seq2seq Model:
Select a batch of size N from X and Y .
Sample N full sequences of actions based on the Actor
model, πθ .
for n = 1, · · · , N do

for t = 1, · · · , T do
Collect experience et = (st, yt, st′ , rt) and
add them to the experience buffer.

end for
end for

Training Q-Net:
Select a batch of size Nq from the experience buffer
based on the reward.
for n = 1, · · · , Nq do

Estimate q̂n = QΨ(sn, yn)
Calculate the true estimation:
qn =

{
rn s′n==EOS
rn + γQΨ(s′n, arg maxy′t

QΨ′ (s
′
t, y
′
t)) otherwise.

Store (q̂n, qn).
end for
Updating current Q-Net:
Minimize the loss using Eq. (29).
Update the parameters of network, Ψ.

Updating target Q-Net every Nu iterations:
Ψ′ ← Ψ or using Polyak averaging:
Ψ′ ← τΨ′ + (1− τ)Ψ, τ =

1000−(Current Step%1000)
1000

.

Updating Seq2seq Model:
Use the estimated Q-values for q̂n = QΨ(sn, yn)
to calculate the loss using Eq. (28).
Update parameters of the model using θ ← θ + α∇θL(θ).

end while

estimated using the current network. Hence, using the target
network, QΨ′ , the Q-estimation will be given as follows:

qt =

{
rt s′n==EOS
rt + γQΨ(s′t, arg maxy′t QΨ′(s

′
t, y
′
t)) otherwise.

(30)
where EOS stands for the End-Of-Sequence action. This
method is called Double DQN (DDQN) [149], [151] and is
shown to resolve the problem of overestimation in DQN and
provides more realistic estimations. However, even this model
suffers from the fact that there is no relation between the
true Q-values and the estimation provided by the network.
Algorithm 5 shows the pseudocode for this model.

2) Dueling Networks: DDQN tried to solve one of the
problems with DQN model by using two networks in which
the target network selects the next best action while the current
network estimates the Q-values given the action selected by
the target. However, in most applications, it is unnecessary to
estimate the value of each action choice. This is especially
important in discrete problems with a large sets of possible
actions where only a small portion of actions are suitable. For
instance, in text summarization the output of the model is a
vector of the distribution over the vocabulary and therefore, the
output has the same dimension as the vocabulary size which

13

is usually selected to be between 50K to 150K. In most of
the applications that use DDQN, the action space is limited
to less than a few hundred. For instance, in an Atari game,
the possible actions could be to move left, right, up, down,
and shoot. Therefore, using DDQN would be easy for these
types of applications. Recently, Wang et al. [152] proposed
the idea of using a dueling net to overcome this problem. In
their proposed method, rather than estimating the Q-values
directly from the Q-net, two different values are estimated for
the value function and advantage function as follows:

QΨ(st, yt) = VΨ(st) +AΨ(st, yt) (31)

In order to be able to calculate the VΨ(st), the value estimates
is replicated |A| times. However, as discussed in [152], using
Eq. (33) to calculate the Q is bad and can potentially yield
poor performance since Eq. (33) is unidentifiable in the sense
that a constant can be added to VΨ(st) and subtracted the same
constant from AΨ(st, yt). To solve this problem, the authors
suggested to force the advantage estimator to have a zero at
the selected action:

QΨ(st, yt) = VΨ(st) +
(
AΨ(st, yt)−max

y
AΨ(st, y)

)
(32)

This way, for the action y∗ = arg maxy QΨ(st, y) =
arg maxy AΨ(st, y), QΨ(st, y

∗) = VΨ(st) is obtained. As an
alternative to Eq. (32) and to make the model more stable, the
author suggested to replace the max operator with average:

QΨ(st, yt) = VΨ(st) +
(
AΨ(st, yt)−

1

|A|
∑
y

AΨ(st, y)
)

(33)
Note that the dueling net will not decrease the number of
actions but will provide a better normalization over the target
distribution. Similar to DQN and DDQN, this model also
suffers from the fact that there is no relation between the
true values of Q-function and the estimation provided by the
network. In Section V, we propose a simple and effective
solution to overcome this problem by doing schedule sampling
between the Q-value estimations and true Q-values to pre-
train our function approximator. Fig. 4 summarizes some of
the strengths and weaknesses of these different RL methods.

IV. COMBINING RL WITH SEQ2SEQ MODELS

In this section, we will provide some of the recent models
that combined the seq2seq training with reinforcement learn-
ing techniques. For most of these models, the main goal is to
solve the train/test evaluation mismatch problem which exists
in all previously described seq2seq models. This is usually
done by adding a reward function to the training objective.
There are a growing number of research works that used
the REINFORCE algorithm to improve the current state-of-
the-art seq2seq models. However, more advanced techniques
such as Actor-Critic models, DQN and DDQN, have not been
used often for these tasks. As mentioned earlier, one the
main difficulties of using Q-Learning and its derivatives is
the large action space for seq2seq models. For instance, in
text summarization, the model should provide estimates for
each word in the vocabulary and therefore the estimation

could be inferior even with a well trained model. Due to
these reasons, researchers mostly focused on the easier yet
problematic approaches such as REINFORCE algorithm to
train the seq2seq model. Therefore, combining the power of
Q-Learning training with seq2seq model is still considered
to be an open area of research. Table III shows the policy,
action, and reward function for each seq2seq task and Table IV
summarizes these models along with the respective seq2seq
application and specific RL algorithm they used to improve
that application.

A. Policy Gradient and REINFORCE Algorithm

As mentioned in Section III-A, in Policy Gradient (PG),
the reward of the sampled sequence is observed at the end of
the sequence generation and back-propagate that error equally
to all the decoding steps according to Eq. (15). Also, we
talked about the exposure bias problem that exists in seq2seq
models during training the decoder because of using the Cross-
Entropy (CE) error. The idea of improving generation by
letting the model use its own predictions at training time
was first proposed by Daume III et al. [153]. Based on their
proposed method, SEARN, the structured prediction problems
can be cast as a particular instance of reinforcement learning.
The basic idea is to let the model use its own predictions
at training time to produce a sequence of actions (e.g., the
choice of the next word). Then, a greedy search algorithm is
run to determine the optimal action at each time step, and the
policy is trained to predict that action. An imitation learning
framework was proposed by Ross et al. [154] in a method
called DAGGER, where an oracle of the target word given the
current predicted word is required. However, for tasks such as
text summarization, computing the oracle is infeasible due to
the large action space. This problem was later addressed by
the ‘Data As Demonstrator (DAD)’ model [155] where the
target action at step k is the kth action taken by the optimal
policy. One drawback of DAD is that at every time step the
target label is always selected from the ground-truth data and
if the generated summaries are shorter than the ground-truth
summaries, the model still forces to generate outputs that could
already exist in the model. One way to avoid this problem
in DAD is to use a method called End2EndBackProp [28]
in which, at each step t, the top-k actions are retrieved
from the model and the normalized probabilities of these
actions are used as weights (of importance) and the normalized
combination of their representation is fed to the next decoding
step.

Finally, REINFORCE algorithm [41] tries to overcome
all these problems by using the PG rewarding function and
avoiding the CE loss by using the sampled sequence as
the ground-truth to train the seq2seq model, Eq. (18). In
real-world applications, the training is usually started with
the CE loss and a pre-trained model is acquired. Then, the
REINFORCE algorithm is used to train the model. Some of
the earliest adoptions of REINFORCE algorithm for training
seq2seq models are in computer vision [89], [156], image
captioning [19], and speech recognition [85]. Recently, other
researchers showed that using a combination of CE loss and

14

Fig. 4: A list of advantages and drawbacks of different RL models. The advantages are listed such that each method covers all
the strengths of its previous methods and drawbacks are listed such that each method have all the weaknesses of the previous
ones. For instance, Actor-Critic w. Dueling Net have all the pros of the previous models listed above it and Actor-Critic w.
Value Function Estimation suffers from all the cons of the methods listed below it. The features that are also model-dependent
are shown with ‘∗’ and those features do not exist in any other model. Each ‘?’ shows how hard it is to implement these
models in a real-world application.

TABLE III: Policy, Action, and Reward function for different seq2seq tasks.

Seq2seq Task Policy Action Reward
Text Summarization
Headline Generation
Machine Translation
Question Generation

Attention-based models,
pointer-generators, etc.

Selecting the next token
for summary, headline,
and translation

ROUGE, BLEU

Question Answering Seq2seq model

Selecting the answer from
a vocabulary or selecting the
start and end index of the
answer in the input document

F1 Score

Image Captioning
Video Captioning seq2seq model Selecting the next token for

the caption CIDEr, SPICE, METEOR

Speech Recognition Seq2seq model Selecting the next token for
the speech

Connectionist Temporal
Classification (CTC)

Dialog Generation Seq2seq model Dialogue utterance to generate
BLEU
Length of dialogue
Diversity of dialogue

REINFORCE loss could yield a better result than just simply
performing the pre-training. In these models, the training is
started by using the CE loss and is slowly switched from
CE loss to REINFORCE loss to train the model. There are
various ways in which one can do the transition from CE loss
to REINFORCE loss. Ranzato et al. [28] used an incremental
scheduling algorithm called ‘MIXER’ which combines DAG-
GER [154] with DAD [155] methods. In this method, the RNN
is trained with the cross-entropy loss for NCE epochs using
the ground-truth sequences. This ensures that the model starts
off with a much better policy than random because now the
model can focus on promising regions of the search space.
Then, they use an annealing schedule in order to gradually
teach the model to produce stable sequences. Therefore, after
the initial NCE epochs, they continue training the model for

NCE+NR epochs, such that, for every sequence, they use the
LCE for the first (T−δ) steps, and the REINFORCE algorithm
for the remaining δ steps. The MIXER model was successfully
used on a variety of tasks such as text summarization, image
captioning, and machine translation.

Another way to handle the transition from using CE loss to
REINFORCE loss is to use the following combined loss:

Lmixed = ηLREINFORCE + (1− η)LCE (34)

where η ∈ (0, 1) is the parameter that controls the transition
from CE to REINFORCE loss. In the beginning of the training,
η = 0 and the model completely relies on CE loss, while as the
training progresses, the η value is increased in order to slowly
reduce the effect of CE loss. By the end of the training process
(where η = 1), the model completely uses the REINFORCE

15

loss for training. This mixed training loss was used in many
of the recent works on text summarization [13], [46], [157],
[158], paraphrase generation [159], image captioning [40],
video captioning [160], speech recognition [161], dialogue
generation [162], question answering [163], and question
generation [62].

B. Actor-Critic Models

One of the problems with the PG model is that we need to
sample the full sequences of actions and observe the reward at
the end of the generation. This, in general, will be problematic
since the error of generation accumulates over time and usually
for long sequences of actions, the final sequence is so far
away from the ground-truth sequence. Thus, the reward of the
final sequence would be small and model would take a lot of
time to converge. To avoid this problem, Actor-Critic models
observe the reward at each decoding step using the Critic
model and fix the sequence of future actions that the Actor is
going to take. The Critic model usually tries to maximize the
advantage function through the estimation of value function or
Q-function. As one of the early attempts of using AC models,
Bahdanau et al. [39] and He et al. [164] used this model
for the problem of machine translation. In [39], the author
used temporal-difference (TD) learning for advantage function
estimation by considering the Q-value for the next action, i.e.,
Q(st, yt+1), as a surrogate for the its true value at time t,
i.e., VΨ(st). We mentioned that for a deterministic policy,
y∗ = arg maxy Q(s, y), it follows that Q(s, y∗) = V (s).
Therefore, the Q-value for the next action could be used as
the true estimates of the value function at current time. To
accommodate for the large action space, they also use the
shrinking estimation trick that was used in dueling net to
push the estimate to be closer to their means. Additionally, the
Critic training is done through the following mixed objective
function:

L(Ψ) = 1
2

∑
i ||QΨ(si, yi)− qi||2 + ηQ̄i

Q̄i =
∑
y

(
QΨ(y, si)− 1

|A|
∑
y′ QΨ(y′, si)

) (35)

where qi is the true estimation of Q from a delayed Actor.
The idea of using delayed Actor is similar to the idea used in
Double Q-Learning where a delayed target network is used to
get the estimation of the best action. Later, Zhang et al. [165]
used a similar model on image captioning task.

He et al. [164] proposed a value network that uses a
semantic matching and a context-coverage module and passed
them through a dense layer to estimate the value function.
However, their model requires a fully-trained seq2seq model to
train the value network. Once the value network is trained, they
use the trained seq2seq model and trained value estimation
model to do the beam search during translation. Therefore, the
value network is not used during the training of the seq2seq
model. During inference, however, similar to the AlphaGo
model [166], rather multiplying the advantage estimates (value
or Q estimates) to the policy probabilities (like in Eq. (23)),
they combine the output of the seq2seq model and the value
network as follows:

η × 1

T
log π(ŷ1···T |X) + (1− η)× log VΨ(ŷ1···T) (36)

where VΨ(ŷ1···T) is the output of the value network and η
controls the effect of each score.

In a different model, Li et al. [167] proposed a model that
controls the length of seq2seq model using RL-based ideas.
They train a Q-value function approximator which estimates
the future outcome of taking an action yt in the present and
then incorporate it into a score S(yt) at each decoding step as
follows:

S(yt) = log π(yt|yt−1, st) + ηQ(X, y1···t) (37)

Specifically, the Q function, in this work, takes only the hidden
state at time t and estimates the length of the remaining
sequence. While decoding, they suggest an inference method
that controls the length of the generated sequence as follows:

ŷt = arg max
y

log π(y|ŷ1···t−1, X)− η||(T − t)−QΨ(st)||2

(38)
Recently, Li et al. [46] proposed an AC model which uses a

binary classifier as the Critic. In this specific model, the Critic
tries to distinguish between the generated summary and the
human-written summary via a neural network binary classifier.
Once they pre-trained the Actor using CE loss, they start
training the AC model alternatively using PG and the classifier
score is considered as a surrogate for the value function. AC
and PG were used also in the work of Liu et al. [135] where
they combined AC and PG learning along with importance
sampling to train a seq2seq model for image captioning.
In this method, they used two different neural networks for
Q-function estimation, i.e., QΨ, and value estimation, i.e.,
VΨ′ . They also used a mixed reward function that combines
a weighted sum of ROUGE, BLEU , METEOR, and
CIDEr measures to achieve a higher performance on this
task.

C. Current RL-Based Model Issues

Throughout this paper, we discussed about various situations
where using RL provides a better solution than traditional
methods. However, utilizing RL methods creates its own
training challenges and in most of the cases the improvement
received from these models are not significant. In this section,
we will discuss some of the issues that exist in current RL tech-
niques used for seq2seq problems. As discussed in Section III,
sample efficiency and high variance in RL models is one the
of the main issues in applying them to seq2seq problems.
Therefore, models such as RAML [173] and SPG [174] are
proposed to provide a middle ground between the MLE and
RL training. In RAML [173], a reward-aware perturbation is
added to MLE while in SPG [174], the reward distribution
is utilized for effective sampling of policy gradient. Recently,
Tan et al. [175] provided a general formulation that connects
the MLE and RL training through Entropy Regularized Policy
Optimization (ERPO). However, even these solutions suffer
from their own problems. RAML arguably suffers from the
exposure bias while SPG requires a lot of engineering to work
on a specific problem and, as shown in Table III, that is why
REINFORCE-based models such as MIXER [28] are preferred
in most of the current seq2seq problems.

16

TABLE IV: A summary of seq2seq applications that used various RL methods.

Reference Suffers From
Exposure Bias

Mismatch on
Train/Test Measure

Observe Full
Reward

RL
Algorithm

Seq2seq
Application

Policy Gradient Based Models

SEARN [153] No Yes No Reward PG Sequence Labeling
Syntactic Chunking

DAD [155] No Yes No Reward PG Time-Series Modeling
Qin et al. [104] No Yes Yes PG Relation Extraction
Yin et al. [108] No Yes Yes PG Pronoun Resolution

MIXER [28] No No Yes PG w. REINFORCE
Machine Translation
Text Summarization
Image Captioning

Wu et al. [168] No No Yes PG w. REINFORCE Text Summarization
Narayan et al. [158] No No Yes PG w. REINFORCE Text Summarization

Kreutzer et al. [169] No No Yes PG w. REINFORCE Machine Translation w.
Human Bandit Feedback

Pan et al. [97] No No Yes PG w. REINFORCE Natural Language Inference
Liang et al. [170] No No Yes PG w. REINFORCE Semantic Parsing

Li et al. [162] No No Yes PG w. REINFORCE Dialogue Generation
Yuan et al. [62] No No Yes PG w. REINFORCE Question Generation

Mnih et al. [156] Yes No Yes PG w. REINFORCE Computer Vision
Ba et al. [89] Yes No Yes PG w. REINFORCE Computer Vision
Xu et al. [19] Yes No Yes PG w. REINFORCE Image Captioning

Self-Critic Models with REINFORCE Algorithm
Rennie et al. [40] Yes No Yes SC w. REINFORCE Image Captioning
Paulus et al. [13] No No Yes SC w. REINFORCE Text Summarization
Wang et al. [157] No No Yes SC w. REINFORCE Text Summarization

Pasunuru et al. [160] No No Yes SC w. REINFORCE Video Captioning
Yeung et al. [171] No No Yes SC w. REINFORCE Action Detection in Video
Zhou et al. [161] No No Yes SC w. REINFORCE Speech Recognition
Hu et al. [163] No No Yes SC w. REINFORCE Question Answering

Actor-Critic Models with Policy Gradient and Q-Learning
He et al. [164] Yes No No AC Machine Translation

Li et al. [167] Yes No No AC Machine Translation
Text Summarization

Bahdanau et al. [39] Yes No No PG w. AC Machine Translation
Li et al. [46] Yes No No PG w. AC Text Summarization

Chen et al. [55] Yes No Yes PG w. AC Text Summarization
Zhang et al. [165] Yes No No PG w. AC Image Captioning

Liu et al. [135] Yes No No PG w. AC Image Captioning
DARLA [172] Yes No No AC Domain Adaptation

Although REINFORCE-based models are simple to imple-
ment and provide better results, training these models is time-
consuming and the improvement over baselines is usually
marginal. This is why in most of the current works, these
models are only used for fine-tuning purposes.

Aside from these issues, there are problems inherent to
specific applications that make it hard for researchers to com-
bine RL techniques with current seq2seq models. For instance,
in most of the NLP problems, the output or action space
is massive comparing to the size of actions in a robotic or
game-playing problems. This is mostly due to the fact that in
applications such as machine translation, text summarization,
and image captioning the size of the output is equal the size
of the vocabulary used during training. Now, compare this
to an agent that plays a simple Atari game which requires
deciding on usually less than 20 actions [176]. This will show
the severity of this problem and the reward sparsity issue that
exist in these applications.

Moreover, most of the current seq2seq models which use
RL training, rely on well-defined reward function such as
BLEU or ROUGE for providing feedback for the model.
Although these are the standard metrics for evaluating various
seq2seq models, relying on them creates a different set of

problems. For instance, in abstractive text summarization,
ROUGE and BLEU scores are being used as the standard
metric for evaluation of summarization models. However, a
good abstractive summary will definitely have a low ROUGE
and BLEU score. This problem could be further investigated
and possibly improved by Inverse Reinforcement Learning
(IRL) [177] by forcing the model to learn its own rewarding
function. However, to the best of our knowledge, no work has
been done in this area.

Recently, new methods are introduced for game playing
using RL algorithm which combine the best performing
models in this area and apply some of the best practices
used in previous models to achieve state-of-the-art results.
Rainbow [178] and Quantile Nets [179] are among such
frameworks. In Rainbow [178], the authors combine DDQN,
prioritized experience buffer, dueling net, multi-step learning
(using step-based reward rather than general reward), and
distributional RL to achieve state-of-the-art in 57 games in
the Atari 2600 framework. A similar ensembling method could
also be useful to be applied for seq2seq tasks but this is also
left for future works.

17

V. RLSEQ2SEQ: AN OPEN-SOURCE LIBRARY FOR
TRAINING SEQ2SEQ MODELS WITH RL METHODS

As part of this comprehensive study, we developed an open-
source library which implements various RL techniques for
the problem of abstractive text summarization. This library is
made available at www.github.com/yaserkl/RLSeq2Seq/ . Since
experimenting each specific configuration of these models,
even requires few days of training on GPUs, we encourage
researchers, who use this library to build and enhance their
own models, to also share their trained model at this website.
In this section, we explain some of the important features of
our library. As mentioned before, this library provides modules
for abstractive text summarization. The core of our library
is based on a model called pointer-generator 39 [12] which
itself is based on Google TextSum model 40. We also provide
a similar imitation learning used in training REINFORCE
algorithm to train the function approximator. This way, we
propose training our DQN (DDQN, Dueling Net) using a
schedule sampling in which we start training the model in
the beginning based on ground-truth Q-values while as we
move on with the training process, we completely rely on the
function estimator to train the network. This could be seen as
a pre-training step for the function approximator. Therefore,
the model is guaranteed to start by using better ground-truth
data since it is exposed to the true ground-truth values versus
the random estimation it receives from the model itself. In
summary, our library implements the following features:
• Adding temporal attention and intra-decoder attention that

was proposed in [13].
• Adding scheduled sampling along with its differentiable

relaxation proposed in [31] and E2EBackProb [28] for
solving exposure bias problem.

• Adding adaptive training of REINFORCE algorithm by
minimizing the mixed objective loss in Eq. (34).

• Providing Self-Critic training by adding the greedy reward
as the baseline.

• Providing Actor-Critic training options for training the
model using asynchronous training of Value Network, DQN,
DDQN, and Dueling Net.

• Providing options for scheduled sampling for training of the
Q-Function in DQN, DDQN, and Dueling Net.

A. Experiments

To test the power of some of the studied models in this
paper, we have done a range of various experiments using
our open-source library. As mentioned in Section IV, most
of the RL-based models play as a fine-tuning technique in
seq2seq applications. Thus, we first pre-train our model for
15 epochs using only cross-entropy loss and then add the RL
training for another 10 epochs. Our experiments follows the
same setup as to the pointer-generator model [12] and we
only show the results after activating the coverage mechanism.
We activate the coverage mechanism only for the last epoch
and select the best model using the evaluation data. We use

39https://github.com/abisee/pointer-generator
40https://github.com/tensorflow/models/tree/master/research/textsum

a linear scheduling probability as ε = step/totalsteps and
we use ε = 1 after activating the coverage so that the model
completely relies on its own output for the rest of training and
for E2EBackPropagation model, K is set to 4. All experiments
are done using two NVIDIA P100 GPUs one used for training
the model and the other for select the best trained model based
on the evaluation data.

1) Analysis of the results: Table V shows the results of
our experiments based on ROUGE score on this dataset. All
our ROUGE scores have a 95% confidence interval of at
most ±0.25 as reported by the official ROUGE script. In
this table, PG stands for Pointer-Generation and SS stands for
Scheduled Sampling. As shown in this table, both scheduled
sampling model and E2E model are superior to the pointer-
generator. We have also used our framework to train the
Self-Critic Policy Gradient (SCPG) based model proposed by
Paulus et al. [13]. However, as shown in this table, although
the SCPG improves the performance of the pointer-generator
model, this improvement is very marginal. This result is totally
in contrast with the result in the original paper [13] and
shows that SCPG, as claimed by the authors, will not greatly
improve the performance of the pointer-generator model. One
of the main reason for this difference in the result of our
experiment with the Paulus et al. [13] paper is that they
use a completely different set of hyperparameters for training
their model. For instance, the input for their encoder is 800
words while in our default setting, for all our experiments, it
is set to 400. Also, the vocabulary size is set to 150K and
50K for input and output while our default is set to 50K for
both input and output. Moreover, the size of hidden layers for
encoder and decoder in their work is larger that our default
values and they also use a pre-trained GloVe [180] word-
embedding for training their model. Finally, we are comparing
all these policy-gradient based models with an Actor-Critic
model proposed by Chen et al. [55] which holds the state-of-
the-art result in text summarization in CNN/DM dataset. As
shown in Table V, this model is superior to any of the policy-
gradient based models according to the ROUGE scores.

2) Analysis of the training time: In general, the pointer-
generator framework requires more than 3 days of training for
an effective results, while this time will also be expanded after
adding the self-critic policy gradient. On average, each batch
of training during MLE training will take 2-3 seconds while
once we add the SCPG loss this time will be increased to 5-6
seconds which means the whole training time will be double
after activation of the RL loss. On the other hand, the whole
training time for the Actor-Critic model before and after RL
activation is only a few hours which shows that not only it has
superiority in the ROUGE score results but also the training
process converges much faster than the other models.

VI. CONCLUSION

In this paper, we provided a general overview of a specific
type of deep learning models called sequence-to-sequence
(seq2seq) models and discussed some of the recent advances
in combining training of these models with Reinforcement
Learning (RL) techniques. Seq2seq models are common in a

www.github.com/yaserkl/RLSeq2Seq/
https://github.com/abisee/pointer-generator
https://github.com/tensorflow/models/tree/master/research/textsum

18

TABLE V: Analysis of ROUGE F1-Score after coverage and
approximate amount of training time for various RL-based
techniques.

Method ROUGE Training Time1 2 L
PG 38.21 16.46 34.79 3-4 days

PG w. E2E 38.24 16.48 34.97 3-4 days
PG w. SS

Argmax-Sampling 38.29 16.51 35.02 3-4 days

PG w. SS
Argmax-Greedy 38.65 16.77 35.37 3-4 days

PG w. SCPG 38.77 16.98 35.32 6-7 days
Actor-Critic

(Q-Learning) [55] 40.88 17.80 38.54 3-4 hours

wide range of applications from machine translation to speech
recognition. However, traditional models in this field usually
suffer from various problems during model training, such
as inconsistency between the training objective and testing
objective and exposure bias. Recently, with advances in deep
reinforcement learning, researchers offered various types of
solutions to combine the RL training with seq2seq training for
alleviating the problems and challenges of training seq2seq
models. In this paper, we summarized some of the most
important works that tried to combine these two different tech-
niques and provided an open-source library for the problem
of abstractive text summarization that shows how one could
train a seq2seq model using different RL techniques.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation grants IIS-1619028, IIS-1707498 and IIS-
1838730.

REFERENCES

[1] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NeurIPS, 2014, pp. 3104–3112.

[2] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in NeurIPS,
2015, pp. 1171–1179.

[3] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in EMNLP, 2015, pp.
1412–1421.

[4] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[5] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws,
L. Jones, Ł. Kaiser, N. Kalchbrenner, N. Parmar et al., “Tensor2tensor
for neural machine translation,” arXiv preprint arXiv:1803.07416,
2018.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[8] S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu,
“Minimum risk training for neural machine translation,” in ACL, vol. 1,
2016, pp. 1683–1692.

[9] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” in EMNLP, 2015, pp. (379–389.

[10] S. Chopra, M. Auli, A. M. Rush, and S. Harvard, “Abstractive sentence
summarization with attentive recurrent neural networks,” in NAACL-
HLT, 2016, pp. 93–98.

[11] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre, and B. Xiang,
“Abstractive text summarization using sequence-to-sequence rnns and
beyond,” in SIGNLL, 2016, pp. 280–290.

[12] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in ACL, vol. 1, 2017, pp. 1073–1083.

[13] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” arXiv preprint arXiv:1705.04304, 2017.

[14] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent
neural network based sequence model for extractive summarization of
documents.” in AAAI, 2017, pp. 3075–3081.

[15] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP. IEEE, 2013, pp. 6645–
6649.

[16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
ICASSP. IEEE, 2016, pp. 4945–4949.

[17] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
ICML, 2016, pp. 173–182.

[18] S. Ö. Arık, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice: Real-
time neural text-to-speech,” in ICML, 2017, pp. 195–204.

[19] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” in ICML, 2015, pp. 2048–2057.

[20] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR. IEEE, 2015, pp. 3156–
3164.

[21] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in CVPR, 2015, pp. 3128–3137.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[24] C.-Y. LIN, “Rouge: A package for automatic evaluation of summaries,”
in Proc. of Workshop on Text Summarization Branches Out, 2004.

[25] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in ACL, 2002, pp.
311–318.

[26] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the ACL workshop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization, 2005, pp. 65–72.

[27] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-
based image description evaluation,” in CVPR, 2015, pp. 4566–4575.

[28] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence
level training with recurrent neural networks,” arXiv preprint
arXiv:1511.06732, 2015.

[29] J. Su, J. Xu, X. Qiu, and X. Huang, “Incorporating discriminator
in sentence generation: a gibbs sampling method,” arXiv preprint
arXiv:1802.08970, 2018.

[30] F. Huszár, “How (not) to train your generative model: Scheduled
sampling, likelihood, adversary?” arXiv preprint arXiv:1511.05101,
2015.

[31] K. Goyal, C. Dyer, and T. Berg-Kirkpatrick, “Differentiable scheduled
sampling for credit assignment,” in ACL, vol. 2, 2017, pp. 366–371.

[32] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: sequence generative
adversarial nets with policy gradient,” in AAAI, vol. 31, 2017, pp. 2852–
2858.

[33] K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun, “Adversarial ranking
for language generation,” in NeurIPS, 2017, pp. 3155–3165.

[34] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” arXiv
preprint arXiv:1709.08624, 2017.

[35] T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song, and Y. Ben-
gio, “Maximum-likelihood augmented discrete generative adversarial
networks,” arXiv preprint arXiv:1702.07983, 2017.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in NeurIPS, 2014, pp. 2672–2680.

[37] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial feature matching for text generation,” in ICML, 2017, pp.
4006–4015.

[38] Z. Shi, X. Chen, X. Qiu, and X. Huang, “Towards diverse text
generation with inverse reinforcement learning,” arXiv preprint
arXiv:1804.11258, 2018.

19

[39] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,
A. Courville, and Y. Bengio, “An actor-critic algorithm for sequence
prediction,” in ICLR, 2017.

[40] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in CVPR, 2017, pp.
7008–7024.

[41] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Reinforcement Learning.
Springer, 1992, pp. 5–32.

[42] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” Cambridge: MIT press, vol. 1, no. 1, 1998.

[43] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[44] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[46] P. Li, L. Bing, and W. Lam, “Actor-critic based training framework for
abstractive summarization,” arXiv preprint arXiv:1803.11070, 2018.

[47] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint
arXiv:1708.05866, 2017.

[48] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[49] S. Team, “Deep learning for siri’s voice: On-device deep mixture
density networks for hybrid unit selection synthesis,” Apple Machine
Learning Journal, vol. 1, no. 4, 2017.

[50] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “Opennmt: Open-
source toolkit for neural machine translation,” Proceedings of ACL,
System Demonstrations, pp. 67–72, 2017.

[51] M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster,
L. Jones, N. Parmar, M. Schuster, Z. Chen et al., “The best of both
worlds: Combining recent advances in neural machine translation,” in
ACL, 2018, pp. 76–86.

[52] J. Ling and A. Rush, “Coarse-to-fine attention models for document
summarization,” in Proceedings of the Workshop on New Frontiers in
Summarization, 2017, pp. 33–42.

[53] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Selective encoding for
abstractive sentence summarization,” in ACL, vol. 1, 2017, pp. 1095–
1104.

[54] J. Tan, X. Wan, and J. Xiao, “Abstractive document summarization
with a graph-based attentional neural model,” in ACL, vol. 1, 2017,
pp. 1171–1181.

[55] Y.-C. Chen and M. Bansal, “Fast abstractive summarization with
reinforce-selected sentence rewriting,” in ACL, vol. 1, 2018, pp. 675–
686.

[56] J. Lin, X. Sun, S. Ma, and Q. Su, “Global encoding for abstractive
summarization,” in ACL, 2018, pp. 163–169.

[57] W.-T. Hsu, C.-K. Lin, M.-Y. Lee, K. Min, J. Tang, and M. Sun,
“A unified model for extractive and abstractive summarization using
inconsistency loss,” in ACL, 2018, pp. 132–141.

[58] Y. Xia, F. Tian, L. Wu, J. Lin, T. Qin, N. Yu, and T.-Y. Liu, “Delib-
eration networks: Sequence generation beyond one-pass decoding,” in
NeurIPS, 2017, pp. 1782–1792.

[59] I. V. Serban, A. Garcı́a-Durán, C. Gulcehre, S. Ahn, S. Chandar,
A. Courville, and Y. Bengio, “Generating factoid questions with
recurrent neural networks: The 30m factoid question-answer corpus,”
in ACL, vol. 1, 2016, pp. 588–598.

[60] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, and L. Van-
derwende, “Generating natural questions about an image,” in ACL,
vol. 1, 2016, pp. 1802–1813.

[61] Z. Yang, J. Hu, R. Salakhutdinov, and W. Cohen, “Semi-supervised
qa with generative domain-adaptive nets,” in ACL, vol. 1, 2017, pp.
1040–1050.

[62] X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Zhang,
S. Subramanian, and A. Trischler, “Machine comprehension by text-to-
text neural question generation,” in Proceedings of the 2nd Workshop
on Representation Learning for NLP, 2017, pp. 15–25.

[63] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zit-
nick, and D. Parikh, “VQA: Visual question answering,” in ICCV, 2015,
pp. 2425–2433.

[64] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks
for question answering,” in ICLR, 2016.

[65] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention
networks for image question answering,” in CVPR, 2016, pp. 21–29.

[66] O. Vinyals and Q. Le, “A neural conversational model,” arXiv preprint
arXiv:1506.05869, 2015.

[67] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan, “A diversity-
promoting objective function for neural conversation models,” in
NAACL-HLT, 2016, pp. 110–119.

[68] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau,
“Building end-to-end dialogue systems using generative hierarchical
neural network models.” in AAAI, vol. 16, 2016, pp. 3776–3784.

[69] A. Bordes, Y.-L. Boureau, and J. Weston, “Learning end-to-end goal-
oriented dialog,” arXiv preprint arXiv:1605.07683, 2016.

[70] V. Zhong, C. Xiong, and R. Socher, “Seq2SQL: Generating structured
queries from natural language using reinforcement learning,” 2018.
[Online]. Available: https://openreview.net/forum?id=Syx6bz-Ab

[71] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured queries
from natural language without reinforcement learning,” arXiv preprint
arXiv:1711.04436, 2017.

[72] R. Kiros, R. Salakhutdinov, and R. Zemel, “Multimodal neural lan-
guage models,” in ICML, 2014, pp. 595–603.

[73] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic
embeddings with multimodal neural language models,” arXiv preprint
arXiv:1411.2539, 2014.

[74] X. Chen and C. L. Zitnick, “Mind’s eye: A recurrent visual repre-
sentation for image caption generation,” in CVPR. IEEE, 2015, pp.
2422–2431.

[75] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-rnn),” arXiv
preprint arXiv:1412.6632, 2014.

[76] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár,
J. Gao, X. He, M. Mitchell, J. C. Platt et al., “From captions to visual
concepts and back,” in CVPR. IEEE, 2015, pp. 1473–1482.

[77] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015, pp.
2625–2634.

[78] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko, “Translating videos to natural language using deep recurrent
neural networks,” in NAACL-HLT, 2015, pp. 1494–1504.

[79] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence-video to text,” in ICCV, 2015, pp.
4534–4542.

[80] S. Venugopalan, L. A. Hendricks, R. Mooney, and K. Saenko, “Im-
proving lstm-based video description with linguistic knowledge mined
from text,” in EMNLP, 2016, pp. 1961–1966.

[81] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun,
“Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in ICLR, 2014.

[82] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in CVPR, 2014, pp. 2147–2154.

[83] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.
[84] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in NeurIPS, 2015, pp.
91–99.

[85] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in ICML, 2014, pp. 1764–1772.

[86] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding,” in
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU). IEEE, 2015, pp. 167–174.

[87] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” in ICASSP. IEEE, 2013, pp.
7962–7966.

[88] Y. Fan, Y. Qian, F.-L. Xie, and F. K. Soong, “Tts synthesis with
bidirectional lstm based recurrent neural networks,” in ISCA, 2014.

[89] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with
visual attention,” arXiv preprint arXiv:1412.7755, 2014.

[90] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in NeurIPS,
2015, pp. 2692–2700.

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
NeurIPS, 2017, pp. 6000–6010.

[92] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate
reviews and discovering sentiment,” arXiv preprint arXiv:1704.01444,
2017.

[93] C. dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in COLING, 2014, pp. 69–78.

https://openreview.net/forum?id=Syx6bz-Ab

20

[94] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over
a sentiment treebank,” in EMNLP, 2013, pp. 1631–1642.

[95] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” in EMNLP, 2017, pp. 670–680.

[96] S. Kim, J.-H. Hong, I. Kang, and N. Kwak, “Semantic sentence match-
ing with densely-connected recurrent and co-attentive information,”
arXiv preprint arXiv:1805.11360, 2018.

[97] B. Pan, Y. Yang, Z. Zhao, Y. Zhuang, D. Cai, and X. He, “Discourse
marker augmented network with reinforcement learning for natural
language inference,” in ACL, vol. 1, 2018, pp. 989–999.

[98] N. FitzGerald, O. Täckström, K. Ganchev, and D. Das, “Semantic role
labeling with neural network factors,” in EMNLP, 2015, pp. 960–970.

[99] L. He, M. Lewis, and L. Zettlemoyer, “Question-answer driven seman-
tic role labeling: Using natural language to annotate natural language,”
in EMNLP, 2015, pp. 643–653.

[100] D. Marcheggiani, A. Frolov, and I. Titov, “A simple and accurate
syntax-agnostic neural model for dependency-based semantic role
labeling,” in CoNLL, 2017, pp. 411–420.

[101] D. Marcheggiani and I. Titov, “Encoding sentences with graph con-
volutional networks for semantic role labeling,” in EMNLP, 2017, pp.
1506–1515.

[102] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in ACL, 2009, pp. 1003–1011.

[103] X. Huang et al., “Attention-based convolutional neural network for
semantic relation extraction,” in ICLR, 2016, pp. 2526–2536.

[104] P. Qin, W. Xu, and W. Y. Wang, “Robust distant supervision relation
extraction via deep reinforcement learning,” in ACL, vol. 1, 2018, pp.
2137–2147.

[105] C. Chen and V. Ng, “Chinese zero pronoun resolution with deep neural
networks,” in ACL, vol. 1, 2016, pp. 778–788.

[106] Q. Yin, Y. Zhang, W. Zhang, and T. Liu, “Chinese zero pronoun
resolution with deep memory network,” in EMNLP, 2017, pp. 1309–
1318.

[107] T. H. Trinh and Q. V. Le, “A simple method for commonsense
reasoning,” arXiv preprint arXiv:1806.02847, 2018.

[108] Q. Yin, Y. Zhang, W. Zhang, T. Liu, and W. Y. Wang, “Deep
reinforcement learning for chinese zero pronoun resolution,” in ACL,
2018, pp. 569–578.

[109] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in ECCV, 2016.

[110] A. Axelrod, X. He, and J. Gao, “Domain adaptation via pseudo in-
domain data selection,” in EMNLP, 2011, pp. 355–362.

[111] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay,
M. Suleyman, and P. Blunsom, “Teaching machines to read and
comprehend,” in NeurIPS, 2015, pp. 1693–1701.

[112] M. Grusky, M. Naaman, and Y. Artzi, “Newsroom: A dataset
of 1.3 million summaries with diverse extractive strategies,” in
NAACL-HLT, New Orleans, Louisiana, June 2018. [Online]. Available:
https://summari.es/newsroom.pdf

[113] D. Graff, J. Kong, K. Chen, and K. Maeda, “English gigaword,”
Linguistic Data Consortium, Philadelphia, vol. 4, p. 1, 2003.

[114] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[115] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for squad,” arXiv preprint arXiv:1806.03822,
2018.

[116] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehen-
sion,” in ACL, vol. 1, 2017, pp. 1601–1611.

[117] J. Tiedemann, “News from opusa collection of multilingual parallel
corpora with tools and interfaces 1 index of subjects and terms 13.”
[Online]. Available: http://opus.nlpl.eu/

[118] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller,
A. Szlam, and J. Weston, “Evaluating prerequisite qualities for learning
end-to-end dialog systems,” arXiv preprint arXiv:1511.06931, 2015.

[119] C. Danescu-Niculescu-Mizil and L. Lee, “Chameleons in imagined
conversations: A new approach to understanding coordination of lin-
guistic style in dialogs,” in Proceedings of the 2nd Workshop on
Cognitive Modeling and Computational Linguistics, 2011, pp. 76–87.

[120] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-
structured tables,” in ACL, 2015, pp. 1470–1480.

[121] Y. Wang, J. Berant, and P. Liang, “Building a semantic parser
overnight,” in ACL, vol. 1, 2015, pp. 1332–1342.

[122] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of
substitutable and complementary products,” in KDD. ACM, 2015,
pp. 785–794.

[123] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large
annotated corpus for learning natural language inference,” in EMNLP,
2015.

[124] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge
corpus for sentence understanding through inference,” in NAACL-HLT,
vol. 1, 2018, pp. 1112–1122.

[125] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Computational linguistics, vol. 31,
no. 1, pp. 71–106, 2005.

[126] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
ACL, 2005, pp. 363–370.

[127] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[128] V. Ordonez, G. Kulkarni, and T. L. Berg, “Im2text: Describing images
using 1 million captioned photographs,” in NeurIPS, 2011, pp. 1143–
1151.

[129] J. Xu, T. Mei, T. Yao, and Y. Rui, “Msr-vtt: A large video description
dataset for bridging video and language,” in CVPR. IEEE, 2016, pp.
5288–5296.

[130] D. L. Chen and W. B. Dolan, “Collecting highly parallel data for
paraphrase evaluation,” in ACL, 2011, pp. 190–200.

[131] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[132] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in ICASSP. IEEE,
2015, pp. 5206–5210.

[133] W. Zaremba and I. Sutskever, “Reinforcement learning neural turing
machines-revised,” arXiv preprint arXiv:1505.00521, 2015.

[134] T. Jie and P. Abbeel, “On a connection between importance sampling
and the likelihood ratio policy gradient,” in NeurIPS, 2010, pp. 1000–
1008.

[135] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved
image captioning via policy gradient optimization of spider,” in ICCV,
vol. 3, 2017.

[136] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[137] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in NeurIPS, 2016, pp.
1054–1062.

[138] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016.

[139] A. Gruslys, M. G. Azar, M. G. Bellemare, and R. Munos, “The
reactor: A sample-efficient actor-critic architecture,” arXiv preprint
arXiv:1704.04651, 2017.

[140] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” in
ICLR, 2017.

[141] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in NeurIPS, 2000, pp. 1057–1063.

[142] G. Tucker, S. Bhupatiraju, S. Gu, R. E. Turner, Z. Ghahramani, and
S. Levine, “The mirage of action-dependent baselines in reinforcement
learning,” ICLR Workshop, 2018.

[143] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in ICLR, 2016.

[144] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” MIT press, 2018.

[145] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[146] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-
learning,” Machine learning, vol. 16, no. 3, pp. 185–202, 1994.

[147] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8, no. 3-4,
pp. 293–321, 1992.

[148] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[149] H. V. Hasselt, “Double q-learning,” in NeurIPS, 2010, pp. 2613–2621.

https://summari.es/newsroom.pdf
http://opus.nlpl.eu/

21

[150] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Proceedings of the 1993 Connectionist
Models Summer School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[151] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, 2016.

[152] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
ICML, 2016, pp. 1995–2003.

[153] H. Daumé, J. Langford, and D. Marcu, “Search-based structured
prediction,” Machine learning, vol. 75, no. 3, pp. 297–325, 2009.

[154] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[155] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving multi-step
prediction of learned time series models.” in AAAI, 2015, pp. 3024–
3030.

[156] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in NeurIPS, 2014, pp. 2204–2212.

[157] L. Wang, J. Yao, Y. Tao, L. Zhong, W. Liu, and Q. Du, “A reinforced
topic-aware convolutional sequence-to-sequence model for abstractive
text summarization,” arXiv preprint arXiv:1805.03616, 2018.

[158] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for
extractive summarization with reinforcement learning,” in NAACL-
HLT, vol. 1, 2018, pp. 1747–1759.

[159] Z. Li, X. Jiang, L. Shang, and H. Li, “Paraphrase generation with deep
reinforcement learning,” arXiv preprint arXiv:1711.00279, 2017.

[160] R. Pasunuru and M. Bansal, “Reinforced video captioning with entail-
ment rewards,” in EMNLP, 2017, pp. 979–985.

[161] Y. Zhou, C. Xiong, and R. Socher, “Improving end-to-end speech
recognition with policy learning,” arXiv preprint arXiv:1712.07101,
2017.

[162] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao, “Deep
reinforcement learning for dialogue generation,” in EMNLP, 2016, pp.
1192–1202.

[163] M. Hu, Y. Peng, and X. Qiu, “Reinforced mnemonic reader for machine
comprehension,” CoRR, abs/1705.02798, 2017.

[164] D. He, H. Lu, Y. Xia, T. Qin, L. Wang, and T. Liu, “Decoding with
value networks for neural machine translation,” in NeurIPS, 2017, pp.
177–186.

[165] L. Zhang, F. Sung, F. Liu, T. Xiang, S. Gong, Y. Yang, and T. M.
Hospedales, “Actor-critic sequence training for image captioning,”
arXiv preprint arXiv:1706.09601, 2017.

[166] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[167] J. Li, W. Monroe, and D. Jurafsky, “Learning to decode for future
success,” arXiv preprint arXiv:1701.06549, 2017.

[168] Y. Wu and B. Hu, “Learning to Extract Coherent Summary via Deep
Reinforcement Learning,” arXiv preprint arXiv:1804.07036, 2018.

[169] J. Kreutzer, J. Uyheng, and S. Riezler, “Reliability and learnability
of human bandit feedback for sequence-to-sequence reinforcement
learning,” in ACL, vol. 1, 2018, pp. 1777–1788.

[170] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao, “Neural
symbolic machines: Learning semantic parsers on freebase with weak
supervision,” in ACL, vol. 1, 2017, pp. 23–33.

[171] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei, “End-to-end
learning of action detection from frame glimpses in videos,” in CVPR,
2016, pp. 2678–2687.

[172] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-
shot transfer in reinforcement learning,” in International Conference
on Machine Learning, 2017, pp. 1480–1490.

[173] M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D. Schuurmans
et al., “Reward augmented maximum likelihood for neural structured
prediction,” in NeurIPS, 2016, pp. 1723–1731.

[174] N. Ding and R. Soricut, “Cold-start reinforcement learning with
softmax policy gradient,” in NeurIPS, 2017, pp. 2817–2826.

[175] B. Tan, Z. Hu, Z. Yang, R. Salakhutdinov, and E. Xing, “Connecting
the dots between mle and rl for sequence generation,” arXiv preprint
arXiv:1811.09740, 2018.

[176] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[177] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI. AAAI Press, 2008,
pp. 1433–1438.

[178] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rain-
bow: Combining improvements in deep reinforcement learning,” arXiv
preprint arXiv:1710.02298, 2017.

[179] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile
networks for distributional reinforcement learning,” arXiv preprint
arXiv:1806.06923, 2018.

[180] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014, pp. 1532–1543.

Yaser Keneshloo received his Masters degree in
Computer Engineering from Iran University of Sci-
ence and Technology in 2012. Currently, he is a Ph.D
candidate in the Department of Computer Science
at Virginia Tech. His research interests includes
machine learning, data mining, and deep learning.

Tian Shi Tian Shi received the Ph.D. degree in
Physical Chemistry from Wayne State University in
2016. He is working toward the Ph.D. degree in the
Department of Computer Science, Virginia Tech. His
research interests include data mining, deep learning,
topic modeling, and text summarization.

Naren Ramakrishnan is the Thomas L. Phillips
Professor of Engineering at Virginia Tech. He directs
the Discovery Analytics Center, a university-wide
effort that brings together researchers from computer
science, statistics, mathematics, and electrical and
computer engineering to tackle knowledge discovery
problems in important areas of national interest. His
work has been featured in the Wall Street Jour-
nal, Newsweek, Smithsonian Magazine, PBS/NoVA
Next, Chronicle of Higher Education, and Popular
Science, among other venues. Ramakrishnan serves

on the editorial boards of IEEE Computer, ACM Transactions on Knowledge
Discovery from Data, Data Mining and Knowledge Discovery, IEEE Trans-
actions on Knowledge and Data Engineering, and other journals. He received
his PhD in Computer Sciences from Purdue University.

22

Chandan K. Reddy is an Associate Professor in the
Department of Computer Science at Virginia Tech.
He received his Ph.D. from Cornell University and
M.S. from Michigan State University. His primary
research interests are Data Mining and Machine
Learning with applications to Healthcare Analytics
and Social Network Analysis. His research is funded
by the National Science Foundation, the National In-
stitutes of Health, the Department of Transportation,
and the Susan G. Komen for the Cure Foundation.
He has published over 95 peer-reviewed articles

in leading conferences and journals. He received several awards for his
research work including the Best Application Paper Award at ACM SIGKDD
conference in 2010, Best Poster Award at IEEE VAST conference in 2014,
Best Student Paper Award at IEEE ICDM conference in 2016, and was a
finalist of the INFORMS Franz Edelman Award Competition in 2011. He is
an associate editor of the ACM Transactions on Knowledge Discovery and
Data Mining and PC Co-Chair of ASONAM 2018. He is a senior member of
the IEEE and life member of the ACM.

	I Introduction
	I-A Seq2seq Framework
	I-B Problems with Seq2seq Models
	I-C Reinforcement Learning
	I-D Paper Organization

	II Seq2seq Models and their Applications
	II-A Evaluation Measures
	II-B Datasets

	III Reinforcement Learning Methods
	III-A Policy Gradient
	III-B Actor-Critic Model
	III-B1 Training Critic Model

	III-C Actor-Critic with Q-Learning
	III-D Advanced Q-Learning
	III-D1 Double Q-Learning
	III-D2 Dueling Networks

	IV Combining RL with Seq2seq Models
	IV-A Policy Gradient and REINFORCE Algorithm
	IV-B Actor-Critic Models
	IV-C Current RL-Based Model Issues

	V RLSeq2Seq: An Open-Source Library for Training Seq2seq Models with RL Methods
	V-A Experiments
	V-A1 Analysis of the results
	V-A2 Analysis of the training time

	VI Conclusion
	References
	Biographies
	Yaser Keneshloo
	Tian Shi
	Naren Ramakrishnan
	Chandan K. Reddy

