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Abstract
The US public school system is administered by local school
districts. Each district comprises a set of schools mapped to
attendance zones which are annually assessed to meet en-
rollment objectives. To support school officials in redrawing
school boundaries, existing approaches have proven promis-
ing but still suffer from several challenges, including 1) in-
ability to scale to large school districts, 2) high computa-
tional cost of obtaining compact school attendance zones, and
3) lack of ethical considerations underlying the redrawing of
school boundaries. Motivated by these challenges, this paper
approaches the school redistricting problem from both com-
putational and ethical standpoints. First, we introduce a prac-
tical framework based on Markov Chain Monte Carlo meth-
ods to solve school redistricting as a graph partitioning prob-
lem. Next, the advantages of adopting a modified objective
function for optimizing discrete geometry to obtain compact
boundaries are examined. Lastly, alternative metrics to ad-
dress ethical considerations in real-world scenarios are for-
mally defined and thoroughly discussed. Our findings high-
light the inclusiveness and efficiency advantages of the de-
signed framework and depict how tradeoffs need to be made
to obtain qualitatively different school redistricting plans.

Introduction
In the United States, the public school system is oper-
ated locally by school districts. Each school district cov-
ers a geographical area usually coterminous with the county
or city boundaries administered by publicly elected school
boards (Sell 2006). For a given school district, the boundary
of a school attendance zone designates the geographical area
of students attending the same school. Each attendance zone
spans multiple smaller-sized geographical units called stu-
dent planning areas (Biswas et al. 2020b). Because school
districts witness the inflow and outflow of student popula-
tions regularly, school boundaries need to be redrawn on an
annual basis (Caro et al. 2004). This school redistricting pro-
cess is traditionally conducted by urban planners and school
officials with inputs from different stakeholders, such as par-
ents and teachers. School attendance boundary design is a
non-trivial task, not only due to the need to balance multiple
criteria but also due to the potential involvement of multiple,
overlapping, redistricting efforts.
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Redrawing school boundaries is an intensive process that
requires multiple levels of planning, inputs from the com-
munity, and tallying of different data sources (Kelly 2019).
Even though school planners today are equipped with state-
of-the-art geographic information system technologies like
ArcGIS (Law and Collins 2015), they could be overbur-
dened when a school district is involved in multiple school
redistricting efforts in a single year. One of the key chal-
lenges in the process is the construction of a new plan, which
remains largely manual despite significant advances in visu-
alization and computational toolkits (Ferland and Guénette
1990; Caro et al. 2004; Bulka et al. 2007). This manual
process is hard to scale, especially if the plan-making is to
be performed at the level of the entire school district. Be-
sides, consensuses among the stakeholders on what factors
are considered important during the process are themselves
difficult to reach (Gimpel and Harbridge-Yong 2020).

Existing work on school redistricting from the compu-
tational perspective usually approaches the task as a de-
rived transportation optimization or continuous linear pro-
gramming (LP) problem (Belford and Ratliff 1972; Liggett
1973; Caro et al. 2004; Bouzarth et al. 2018) so as to ob-
tain an optimal or a near-optimal solution. For those seeking
to address this issue, the major challenges can be summa-
rized as follows. 1) Scalability issues in large school dis-
tricts. Due to the discrete nature of geographical units, the
school redistricting problem suffers from a combinatorial
explosion. However, exact algorithms such as integer lin-
ear programming can only be used with small input. The
ability of these methods to generate desirable school atten-
dance zones, especially in large school districts, is limited.
2) Inefficient metrics for discrete geometry. As recognized
as a traditional redistricting principle, the compactness of
solution plans require precise definitions. For school redis-
tricting, the Polsby-Popper score (Polsby and Popper 1991)
is commonly used to measure the compactness of the gen-
erated plans. However, as a geographical measurement, the
Polsby-Popper score is typically sensitive to the projection
by the chosen coordinate system. More importantly, using
the Polsby-Popper score to optimize the compactness of a
given plan is very expensive because the perimeter and area
of each school attendance zone need to be recalculated in
each step. 3) Insufficiency of ethical considerations incor-
porated in the optimization process. In practice, the redis-



tricting process is primarily driven by school capacity uti-
lization, but serious considerations need to be given to the
number of students displaced, demographic makeup at each
school level, and related metrics (Bulka et al. 2007). Exist-
ing literature on automated school redistricting primarily fo-
cused on meeting school capacities and generating compact
solution plans (Biswas et al. 2019, 2020b,a). The potential
to incorporate ethical and fairness considerations to gener-
ate inclusive redistricting plans in a computational manner
has not yet been fully explored.

To simultaneously overcome the aforementioned chal-
lenges, we introduce a practical framework to solve the
school redistricting problem through a computational and
ethical lens. The major contributions of this work can be
summarized as follows:
• We design a Markov Chain Monte Carlo (MCMC)-based

framework for solving the school redistricting problem.
The framework adopts a greedy approach by continually
searching for improved solutions one step further from
the incumbent solution.

• We use the retained edge ratio as a measure of compact-
ness instead of the classical Polsby-Popper score and the
efficiency improvements for multiple algorithms through
this modification are analyzed.

• We develop multiple ethical and fairness evaluation met-
rics and incorporate these considerations to support the
decision-making process. Besides the balance and com-
pactness scores in existing literature, we explore other
important metrics of solution plans and incorporate these
new metrics into the optimization process.

• We conduct extensive experiments on two US school
districts and analyze the performance of the proposed
framework w.r.t. balance, compactness, and ethical con-
siderations. A case study is conducted to examine the ap-
proach’s ability to obtain school redistricting plans with
desirable properties.

Related Work
Research in computational redistricting can be traced back
to the 1960s (Vickrey 1961; Hess et al. 1965). Since then,
the redistricting task has been approached as an optimiza-
tion problem (Duchin and Walch 2022), and a line of algo-
rithms (Duchin and Walch 2022) have been proposed, in-
cluding hill climbing and simulated-annealing (Altman and
McDonald 2011), local search (King, Jacobson, and Sewell
2015), spatial evolutionary algorithms (Liu, Cho, and Wang
2016), and Voronoi diagrams (Levin and Friedler 2019;
Gawrychowski et al. 2021). The second line of research
has explored generating a large ensemble of redistricting
plans with predefined desirable properties. These algorith-
mic approaches include Flood Fill (Cirincione, Darling, and
O’Rourke 2000; Magleby and Mosesson 2018), Column
Generation (Gurnee and Shmoys 2021), and Markov Chain
Monte Carlo simulation (Tam Cho and Liu 2016; Fifield
et al. 2020; DeFord, Duchin, and Solomon 2019; Procaccia
and Tucker-Foltz 2022). As the aforementioned methods are
primarily developed for political redistricting, they cannot
be directly applied to school redistricting because the soft

and hard constraints that capture the varied school capacity,
fixed facility locations, and other problem-specific consider-
ations are not easily satisfied in the computation.

As early attempts to solve the school redistricting prob-
lem, several studies formulated it as a continuous lin-
ear programming or derived transportation problem (Sut-
cliffe, Board, and Cheshire 1984; Belford and Ratliff 1972;
Liggett 1973). Among the few works that have been pub-
lished in this direction, Schoepfle and Church coined the
term Generic School Redistricting Problem (Schoepfle and
Church 1989) to generalize a series of school boundary
problems in which students are assigned to schools while
minimizing a proximity or cost function along with a set
of balancing constraints. Caro et al. formulated school re-
districting as a problem in integer programming that mini-
mizes the overall student travel distance (Caro et al. 2004).
This method was inspired by the sales territory alignment
model (Zoltners and Sinha 1983) and the spatial connectiv-
ity is considered. However, these methods suffer from scala-
bility issues and cannot perform on the whole school district.

To overcome the salable bottleneck of exact methods,
Bulka et al. presented a heuristic search approach and infor-
mation visualization techniques to generate and assess re-
districting plans (Bulka et al. 2007). Along the same line of
heuristics methods, the REGAL framework (Biswas et al.
2019) was proposed to tackle the school redistricting prob-
lem. Following an initial assignment of clusters, REGAL at-
tempted to swap the boundary spatial units between clus-
ters for an improved plan. GeoKM (Biswas et al. 2020b)
is a spatial clustering method that handles the problem in
a constrained setting through a hybrid strategy to assign
polygons to clusters. As the assignment starts from scratch
and geodesic distance is adopted as its selection criterion,
the balance and compactness of generated plans by the
algorithm cannot be guaranteed. The current state-of-the-
art approach to the school redistricting problem is SPA-
TIAL (Biswas et al. 2020a), a population-based metaheuris-
tics method for solving spatial optimization problems. By
leveraging domain knowledge in spatially-aware search, this
algorithm facilitated the look for an optimal solution in dis-
crete search space while satisfying the spatial constraints.
However, the ability of these algorithms to achieve compact
school attendance zones, especially in large school districts
is limited due to the large computational cost of updating
the compactness measure at each iteration. As balance and
compactness are the primary focus of the methods, the in-
corporation of other important criteria is not fully discussed.

In this work, we expand the standard view of school re-
districting as partitioning a planar graph on spatial units
into contiguous, compact, balanced, and inclusive school at-
tendance zones. Our goal is to introduce a flexible frame-
work that could incorporate different objectives including
ethical metrics and specific constraints to facilitate efficient
and inclusive automatic school redistricting. Specifically,
we explore a scalable MCMC-based approach to improve
the quality and efficiency of generating school redistricting
plans and assess the reduced computational cost of adopt-
ing a refined objective function for measuring the discrete
geometry of the obtained school district.
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Figure 1: Transform a school district into a planar graph.

The School Redistricting Problem
Designing school boundaries can be understood as divid-
ing a connected geographical area into a given number of
contiguous school attendance zones. Figure 1 illustrates this
basic idea through a small school district example. In such
a planar graph, a node is a student planning area (SPA)
and edges between two nodes imply their spatial contiguity.
Thus, partitioning a school district into k school attendance
zones (SAZs) is equivalent to removing sets of edges from a
connected graph and forming k subgraphs.

Let G = (V,E) denotes an undirected graph, and V =
{1, 2, . . . , v} is the set of nodes. Anchor nodes refer to a
subset of spatial units, each of which contains one and only
one school. The nodes in graph G have features including
student population, area/perimeter of the spatial unit, and so
forth. E is the set of undirected edges. Ei,j ∈ E denotes the
edge between the corresponding nodes of two contiguous
spatial units i and j. In context of graph partitioning prob-
lem (Bichot and Siarry 2013), a school district G is parti-
tioned into k school attendance zones ξ = {V1, V2, . . . , Vk},
and each zone Vs is a nonempty subset of V . The partition
ξ induces a subgraph Gs(ξ) = (Vs, Es(ξ)) ⊆ G where an
edge Ei,j ∈ E(ξ) if the connected nodes i and j are assigned
to the same partition Vs:

E(ξ) = {Ei,j ∈ E : ∃Vs ∈ ξ s.t. i, j ∈ Vs} . (1)

In a school district graph G, SAZs are obtained by re-
moving edges from the set of edges E. In this work, we for-
mulate the school redistricting problem as a modified graph
partitioning function F(ξ) : E(ξ) → E′(ξ) to generate par-
titions(in each solution plan) of desired quality.

Framework
In this section, we introduce an automated school redistrict-
ing framework as illustrated in Figure 2. The subsections
detail our design of the modules, including seeding and re-
pairing phases to construct valid initial plans, MCMC phase
comprised of state transition and acceptance criteria, and the
objective function for efficient and inclusive concerns.

Seeding
Different from other redistricting problems (Ricca and
Simeone 2008; Ricca, Scozzari, and Simeone 2013), school
redistricting is required to assign an anchor node and only
to one partition. To satisfy this hard constraint, the seeding
phase aims to identify the anchor nodes corresponding to
the spatial units that contain schools and assign capacity as
a node feature merely to those anchor nodes. A seed’s corre-
sponding school-level capacity Cs should be positive, and a
partition should contain only one anchor node (Biswas et al.
2019). In addition, other hard constraints that each node is
exclusively assigned to a partition should be satisfied.

Repairing
Spatial contiguity is another important requirement in de-
signing school boundaries, so we need to ensure each sub-
graph is connected in initialization. Since we are focusing on
improving the current school attendance zones, ideally, start-
ing from the existing plan should satisfy all the constraints.
However, we noticed that, in some school districts, the exist-
ing plan failed to satisfy the spatial contiguity constraint due
to special real-world cases or geospatial data quality issues.
Hence, we have to fix that plan to obtain a new valid plan
only a few hops away from the starting plan. To achieve the
goal, we adopt a path-linking method that helps to repair the
solutions if they fall into the infeasible search space (Glover,
Laguna, and Marti 2003; Biswas et al. 2020a). Upon repair-
ment is finished, the initial plan is valid in regards to the
aforementioned constraints and thus leads to an efficient ex-
ploration of the search space through the MCMC process.

State Transition
The state transition in a Markov chain starts from a given
state(a full set of subgraphs), then determine the set S of all
pairs (E(ξ), E′(ξ)) where E(ξ) refers to the current graph
partitions, and E′(ξ) refers to the modified partitions ob-
tained by choosing one pair (E(ξ), E′(ξ)) uniformly at ran-
dom from the set S within the predefined transition space.
The transition E(ξ) → E′(ξ) is conducted if E′(ξ) satisfies
the acceptance criteria which is explained in a later subsec-
tion. The transition space is completely determined by the
design of transition proposals. To examine the potential of
the proposed framework for school redistricting, two transi-
tion proposals, flip and recombination, are explored.

Flip. For the design of the flip transition proposal, we fol-
low the simplest version, in which the assignment of a sin-
gle boundary node is modified at each step in the chain
under the contiguity constraint. To ensure spatial contigu-
ity, it is intuitive to start by choosing an arbitrary boundary
node, but this may potentially introduce non-uniformity to
the process due to the varying degrees. Inspired by (Chik-
ina, Frieze, and Pegden 2017), we sample uniformly from
the set of (node, subgraph) pairs (i, Vs) where the node i re-
sides on the boundary of subgraph Vs and there exists a cut
edge Ei,v ∈ ξ with ξ(v) = Vs to enable a reversible chain.
This can be understood as a simple random walk on the plan
ξ, in which two states are connected if they are varied at one
single boundary node.
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Figure 2: Proposed automated school redistricting framework.

Recombination. The second variant transition proposal is
recombination which adopts a spanning tree approach to bi-
partition a merged graph (DeFord, Duchin, and Solomon
2019). The first step is to construct a spanning tree uniformly
on the area merged by two randomly picked adjacent parti-
tions of a graph. This form of recombination merely com-
bines two adjacent partitions. Our experiments with Recom-
Chain employ the loop-erased random walk approach, and
the details can be referred to Wilson’s algorithm (Wilson
1996). The next step is to cut the merged graph to form two
new subgraphs. The target is to find an edge cut in the con-
structed spanning tree to ensure the complementary partition
is within the predefined tolerance of the population beyond
or below the capacity of the affected school attendance zone
within a certain number of node repeats. More than one edge
that could be cut to generate new partitions with the pre-
defined tolerance exists, so we perform uniform sampling
among those potential cut edges.

Acceptance Criteria
In view of the school redistricting problem, spatial conti-
guity and each school attendance zone containing one and
only one school are both hard constraints. The contiguity-
based rejection sampling is instantiated through a function
that checks the contiguity of the generated plan at each step.
It returns True if the newly generated plan is contiguous,
otherwise, it returns False. To incorporate the one anchor
node for a SAZ constraint, we only assign the anchor nodes
with positive capacity and 0 for the other nodes. This crite-
rion can be satisfied by checking the accumulated capacity
of each subgraph, and rejecting the transition if the capacity
of any subgraph drops to 0 in the state transition phase.

In addition, we propose an objective function that returns
a higher score to those redistricting plans that better ad-
here to the design criteria. The function is used to define
the search space of generating redistricting plans during the
MCMC process.

Balance. As one of the most important objectives in
school redistricting, a school district’s balance is defined as:

BAL (ξ) =
1

k

s=k∑
s=1

∣∣∣∣∣
∑

vi∈Vs
pop(vi)∑

vi∈Vs
cap(vi)

∣∣∣∣∣ , (2)

where pop(vi) and cap(vi) represent the population and ca-
pacity of node vi, respectively.

Compactness. How tightly the area of a polygon shape
is packed into its boundary is another criterion in assessing
redistricting plans. Here, we discuss a widely used metric
and a modified alternative metric based on graph theory.

Polsby-Popper. As the most popularly used compactness
metric (Polsby and Popper 1991), the PP score of a school
district is defined as:

PP (ξ) =
1

k

s=k∑
s=1

∣∣∣∣4π · Area (Gs(ξ))

Peri (Gs(ξ))
2

∣∣∣∣ , (3)

where Area (Gs(ξ)) and Peri (Gs(ξ)) correspond to the area
and perimeter of partition s. This score asymptotically ap-
proaches 1 as the partition shape approaches that of a circle.

Retained edge ratio. From a graph-theoretic standpoint, a
less number of edges removed, the more will be the over-
all compactness of the plan (West et al. 2001; Becker and
Solomon 2020). To incorporate this knowledge, we refined
a retained edges ratio metric to compute the ratio of edges
maintained to obtain a solution plan ξ as:

RER (ξ) =

∑s=k
s=1 count (Es (ξ))

count (E)
, (4)

where plans with higher values of RER (ξ) can be inter-
preted as plans with more compact partitions.

Ethical consideration. Besides balance and compactness,
other metrics are also prevalent in the assessment of school
redistricting plans. Through our discussion with urban plan-
ners and existing literature, we propose additional metrics
which evaluate a plan from an ethical perspective.

Student diversity. To capture the racial/ethnic diversity of
the student population, we consider employing the Shannon
diversity index (White 1986). Another widely adopted diver-
sity metric, Simpson’s diversity index (Tóthmérész 1995),
accounts primarily for the balanced proportion of the partic-
ular population in a sample. The Shannon diversity index is
based on randomness present in an area and considers both
population richness and balance in the distribution of a sam-
ple (Kim et al. 2017). In our case, the student population
of racial/ethnic groups is inherently imbalanced. Hence, the
inclusiveness of different racial/ethnic groups is our main fo-
cus. The normalized version of the Shannon diversity index
at the partition level is defined as:

SD (Gs(ξ)) = −
∑c

j=1 pj · ln (pj)
ln(c)

, (5)



#SPA #ES #MS #HS

School District A 453 57 17 16
School District B 1,313 138 26 24

Table 1: Summary statistics of the two school districts.

where c is the number of racial/ethnic student groups,
which is 5 corresponding to ASIAN, BLACK, HISPANIC,
WHITE, and OTHERS in our case. pj denotes a particular
racial/ethnic group’s proportion of the student population.
The student diversity at the plan level, addressing the diver-
sity among the student population can be calculated as:

SD (ξ) =
1

k

s=k∑
s=1

SD (Gs(ξ)) , (6)

where a large value of SD (ξ) indicates the presence of high
student diversity across the school district.

Retained student ratio. In school redistricting, a number
of students may get reassigned to new schools. In such a sit-
uation, students may lose social connections with their aca-
demic cohort. The impact of this reassignment can be cap-
tured by a quantitative comparison of the modified plan ξ
with the existing plan ζ as:

RSR (ξ) =

∑s=k
s=1

∑
v∈Vs

I (ζ(v) == ξ(v)) · pop(v)∑s=k
s=1

∑
v∈Vs

pop(v)
, (7)

where I(x) is an indicator function which evaluates to 1 if x
is true, else it is 0.

Objective function. In this work, we examine the trade-
offs in improving the aforementioned considerations of the
existing school district plan, and the objective function is
defined as a weighted sum of three considerations:

F(ξ) = α · BAL (ξ)︸ ︷︷ ︸
population balance

+ β · COM (ξ)︸ ︷︷ ︸
boundary compactness

+ γ · ETH (ξ)︸ ︷︷ ︸
ethical consideration

,

(8)
where α, β, and γ are positive weights with their sum as 1.
COM(ξ) is calculated by either PP(ξ) or RER(ξ). ETH(ξ)
can be composed of SD(ξ) or RSR(ξ) or a weighted sum
of them. Potentially, other objectives such as student com-
mute distance, test score distributions, and future enrollment
projections at each school level can be easily incorporated
into the proposed framework with data available and metric
scales defined in the range from 0 to 1.

Experimentation
In this section, we evaluated the performance of our frame-
work on two school district datasets and tradeoffs in incor-
porating alternative metrics in the objective function.

Experimental Setup
Datasets. The experiments were conducted on two US
school districts, and the enrollment data for the school year
2020-21 was used for this study. The statistics of the two
datasets are summarized in Table 1.

Figure 3: Study of different weight parameters.

Comparison models. We compared our framework with
the following baselines that consider balance and compact-
ness in their optimization objective, including: (1) Stochas-
tic Hill Climbing (SHC) (Juels and Wattenberg 1995), (2)
Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi
1983), (3) Tabu Search (TS) (Glover and Laguna 1998), and
(4) SPATIAL (Biswas et al. 2020a). Our framework was built
on top of the GerryChain library1. For FlipChain, we set the
number of steps to 10, 000, 000. For RecomChain, we set the
number of steps to 1, 000, 000 with 10 node repeats in one
step. To ensure a fair comparison, all the algorithms were
made 25 runs with the same random seeds.

Tradeoff of Balance and Compactness
School redistricting performance. In this experiment,
we primarily focus on the population balance and boundary
compactness measured by retained edge ratio as the weight
γ for ethical consideration in Equation 8 is set to 0. To ap-
propriately choose the weight parameters α and β, we con-
ducted a weight study as shown in Figure 3. Based on the
plot, a higher share of balance in the objective results in a
lower retained edge ratio. Also, the changing trend of the
Polsby-Popper score mostly aligns with the retained edge
ratio, which justifies our rationale for using retained edge ra-
tio as an efficient compactness metric. We can also observe
that beyond a specific setting of weight parameters, the gain
of increase in balance is negligible, but the drop in retained
edge ratio is significant. Hence, an appropriate setting of
weight α is important. The light blue shaded area illustrates
the desired range of weight setting in which the balance, re-
tained edge ratio, and PP score are all above those of the
existing plan. We choose 0.5 as the weights α and β in the
objective function that combines balance and retained edge

1Available at https://github.com/mggg/GerryChain



School District A

Models
School Elementary Middle High

BAL RER PP BAL RER PP BAL RER PP
existing 83.50 (0.00) 50.80 (0.00) 32.53 (0.00) 89.74 (0.00) 75.44 (0.00) 26.77 (0.00) 87.07 (0.00) 76.88 (0.00) 27.35 (0.00)

SHC 86.00 (0.60) 56.52 (0.46) 34.82 (0.75) 92.61 (0.07) 79.82 (0.54) 32.65 (1.92) 96.25 (0.74) 79.45 (0.76) 29.93 (1.53)
SA 86.23 (0.87) 56.83 (1.16) 35.21 (1.45) 92.65 (0.15) 80.55 (1.06) 33.48 (2.57) 96.29 (1.18) 78.82 (0.89) 29.02 (1.53)
TS 84.50 (0.43) 56.57 (0.56) 34.99 (0.40) 92.60 (0.03) 79.99 (0.20) 32.33 (0.28) 96.79 (0.00) 78.74 (0.03) 29.07 (0.32)

SPATIAL 86.56 (0.58) 56.53 (0.62) 35.05 (0.75) 92.71 (0.05) 81.17 (0.29) 35.76 (1.00) 97.42 (0.79) 80.43 (0.72) 30.68 (1.25)
FlipChain 87.60 (0.50) 58.80 (0.54) 37.68 (1.43) 92.72 (0.05) 80.19 (0.46) 36.20 (1.74) 96.61 (0.77) 79.52 (0.85) 31.64 (1.16)

RecomChain 88.05 (0.47) 60.43 (0.62) 40.22 (1.29) 92.67 (0.86) 82.08 (0.50) 39.38 (1.94) 97.36 (0.56) 81.16 (0.45) 35.16 (1.43)
School District B

Models
School Elementary Middle High

BAL RER PP BAL RER PP BAL RER PP
existing 82.11 (0.00) 56.35 (0.00) 35.92 (0.00) 84.23 (0.00) 81.27 (0.00) 27.71 (0.00) 86.95 (0.00) 81.80 (0.00) 26.80 (0.00)

SHC 86.22 (0.86) 59.97 (0.26) 37.63 (0.43) 88.23 (1.34) 84.63 (0.35) 29.44 (0.83) 86.87 (2.19) 85.57 (0.32) 29.76 (0.81)
SA 87.14 (1.35) 59.87 (0.31) 37.04 (0.53) 90.93 (0.70) 84.98 (0.41) 30.04 (1.03) 90.97 (1.88) 86.13 (0.41) 29.73 (1.22)
TS 84.61 (0.54) 59.99 (0.16) 38.07 (0.32) 87.50 (1.11) 84.64 (0.19) 30.03 (0.83) 85.94 (1.83) 85.83 (0.14) 30.16 (0.32)

SPATIAL 90.85 (0.61) 59.24 (0.39) 36.09 (0.54) 91.68 (0.11) 84.56 (0.22) 29.94 (1.12) 91.47 (0.10) 86.47 (0.17) 30.51 (0.49)
FlipChain 93.67 (0.52) 59.50 (0.28) 35.52 (0.58) 91.56 (0.28) 83.71 (0.51) 30.36 (1.49) 91.40 (0.14) 85.37 (0.28) 31.69 (1.53)

RecomChain 94.25 (0.54) 61.18 (0.30) 38.27 (0.68) 92.20 (0.12) 85.25 (0.47) 32.54 (0.92) 92.47 (0.10) 86.53 (0.33) 34.55 (1.04)

Table 2: A comparison of the automated plan generated and the existing plan (all metrics reported in %).

Objective
Model Elementary Middle High

SPATIAL FlipChain RecomChain SPATIAL FlipChain RecomChain SPATIAL FlipChain RecomChain
Retained Edge Ratio 175.36 50.07 70.45 102.66 60.35 1770.82 65.04 63.65 1891.97
Polsby-Popper score 443.80 66.19 87.82 228.67 67.40 2194.94 119.31 70.51 2266.06

Table 3: A comparison of the computational time (minute/run) of methods with varied compactness measures.

ratio across three school levels. The PP score is reported for
analytical purposes. Under this setting of weights, the per-
formance metrics are tabulated in Table 2.

We observe that both FlipChain and RecomChain achieve
better performance compared to the baseline methods. In
the comparison with the SPATIAL algorithm, while the im-
provement is marginal in terms of balance, there is a no-
ticeable improvement in the retained edge ratio and PP
score by the proposed framework. The recombination pro-
posal adopted in RecomChain results in more compact par-
titions as compared to FlipChain. The performance superior-
ity of the proposed framework is more obvious in elementary
schools, in which the number of school attendance zones is
much more than that of the other two levels of schools.

Runtime efficiency. To examine the efficiency of the alter-
native compactness metric, the computational time for the
top three methods and their variants of adopting retained
edge ratio instead of the Polsby-Popper score on School Dis-
trict B was studied. Based on Table 3, FlipChain is the most
efficient approach in regards to the time cost per one run and
minimal difference on different levels of schools with both
of the compactness measures in the combined optimization
objective. Although RecomChain obtains the best perfor-
mance reported in Table 2, its computational time is com-
paratively long, especially in the high and middle schools.
The main bottleneck is that the construction of a spanning
tree grows exponentially with an increased number of spa-
tial units per partition. RecomChain is comparatively effi-
cient with FlipChain and SPATIAL in redrawing elemen-
tary school boundaries because the number of spatial units

per partition is much smaller as the number of elementary
schools is much larger than the other two school levels. In
addition, the average running time of all the methods was
greatly reduced by adopting retained edge ratio as an al-
ternative metric to optimize compactness. The efficiency of
the SPATIAL approach also received a huge improvement
with the proposed metric compared to the traditional Polsby-
Popper score with an average 119.75% improvement across
three school level. It also brings an average 20.51% effi-
ciency enhancement for FlipChain and RecomChain.

Ethical considerations. The promise of automated plan
generating entails ethical considerations of the process it-
self. A plan that displaces a higher proportion of students is
likely to cause dissent amongst parents and students alike.
Similarly, a plan that decreases student diversity is not pre-
ferred. To this effect, we analyze the automated plans in
terms of two metrics that have strong implications for the
stakeholders. We compare the ethical metrics of baselines
with FlipChain (FC) and RecomChain (RC) in Figure 4.

On closer inspection, we notice that the plans produced
by FlipChain displace a lower number of students, espe-
cially for high and middle schools. It is thus desirable when
planners aim to minimize student displacements. It is worth
mentioning that even though RecomChain achieves the best
balance, retained edge ratio, and PP score, as reported by Ta-
ble 2, its retained student ratio is the worst due to the recom-
bination proposal that has the potential to make lots of as-
signment modifications at each step. Also, all the algorithms
achieve close student diversity scores, which indicates that
good diversity might be difficult to obtain.
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Figure 4: A comparison of automated plans in terms of eth-
ical metrics−retained student ratio and student diversity.

Tradeoff of Balance and Retained Student Ratio
We also explored the feasibility to find a balance between the
population balance and retained students ratio. To do this,
we varied the value of weight α in intervals of 0.1, and sim-
ulated 25 runs for each value for school district B. Besides
our defined metrics, we also kept showing the existing plan
to serve as a reference. The results are shown in Figure 5.
It is observed that when the weight of the balance objective
is set close to 0, the plans are generated by maximizing the
retained student ratio. As the weight increases, we hardly
observe a change in any of the metrics until it reaches the
value of 0.3. Along with a gradual increase of weight α, we
can observe a noticeable deterioration in metrics including
the retained student ratio, retained edge ratio, and PP score,
while balance receives a slight improvement. This changes
when the weight α goes beyond 0.7, where the retained stu-
dent ratio witnesses a sharp decrease, which denotes dimin-
ishing returns on prioritizing balance over student displace-
ment above a certain threshold. Similarly, decreasing com-
pactness scores are also observed. Comparatively, no obvi-
ous variation is observed in the student diversity across the
varied weight parameters. Additional considerations such as
socioeconomic factors can also be included depending on
the design criteria of school attendance boundaries.

Case Study
In a real-world scenario, both a balanced capacity and a di-
verse student population are desirable in a school district.
As a case study, we explored the feasibility of using the pro-
posed FlipChain to improve balance and student diversity
(with both α and γ set to 0.5 and β set to 0 in Equation 8)
with the lower bound of retained student ratio set to 85% in
School District B. We used a color ramp to show the dif-
ferent assignments of SPAs in the existing and automated
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Figure 5: Tradeoff plot of the different performance metrics
corresponding to the plans with varied weights.

Figure 6: A comparison of the existing plans and automated
plans generated by FlipChain.

plans across three school levels in Figure 6. In each distribu-
tion plot, the x-axis is the value of balance/diversity scores,
and the y-axis shows the count of school attendance zones
with certain values. Since we define both of the scores in
the range from 0 to 1 and formulate the school redistrict-
ing as a maximization problem, a plan is more desirable
as more zones at each school level obtain balance/diversity
scores close to 1. The distribution plots reflect improved bal-
ance and student diversity in the automated plans. However,
the automated approach results in more arbitrarily shaped
school boundaries as compactness is not optimized in this
case. This case study demonstrates the potential of using the
proposed framework to generate multiple qualitatively dif-
ferent school redistricting plans. Due to the multi-faceted na-
ture of the process, school redistricting can also be thought
of as a multi-objective optimization problem where multiple
varying (often conflicting) criteria need to be balanced. In
such instances, the set of solutions produced by the frame-
work can be used to approximate the Pareto-optimal front.

Conclusion
In this paper, we have discussed a framework for automated
school redistricting and analyzed multiple considerations
that go into this process. As such, we have introduced an
MCMC-based redistricting framework and investigated how
it can improve the automated generation of school atten-
dance zones. Further, we have demonstrated the advantages
of replacing a widely used compactness measurement with
an alternative metric. In addition, we have designed addi-
tional metrics motivated by ethical considerations. We hope
this research can aid urban planners and school officials
in finding multiple qualitatively different redistricting plans
that represent different tradeoffs in decision-making and fa-
cilitating better utilization of resources in schools by pro-
moting better student-teacher ratio and classroom climate.
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