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Studying the Functional Genomics of Stress Responses in Loblolly Pine
with the Expresso Microarray Experiment Management System

Lenwood S.˚Heath, Naren Ramakrishnan, Ronald R.˚Sederoff, Ross W.˚Whetten,
Boris I.˚Chevone, Craig A.˚Struble, Vincent Y.˚Jouenne, Dawei Chen, Leonel van Zyl,

and Ruth G.˚Alscher

Abstract:

Conception, design, and implementation of cDNA microarray experiments present a variety
of bioinformatics challenges for biologists and computational scientists. The multiple
stages of data acquisition and analysis have motivated the design of Expresso, a system for
microarray experiment management. Salient aspects of Expresso include support for clone
replication and randomized placement; automatic gridding, extraction of expression data
from each spot, and quality monitoring; flexible methods of combining data from
individual spots into information about clones and functional categories; and the use of
inductive logic programming for higher-level data analysis and mining. The development
of Expresso is occurring in parallel with several generations of microarray experiments
aimed at elucidating genomic responses to drought stress in loblolly pine seedlings. The
current experimental design incorporates 384 pine cDNAs replicated and randomly placed
in two specific microarray layouts. We describe the design of Expresso as well as results of
analysis with Expresso that suggest the importance of molecular chaperones and membrane
transport proteins in mechanisms conferring successful adaptation to long-term drought
stress.

Introduction
Microarray technology makes possible the measurement of levels and patterns of gene
expression important in growth, metabolism, development, behavior, and adaptation of
living systems. A single microarray hybridization can provide information about the
expression of hundreds or thousands of genes. The complexity of devising an appropriate
microarray design, as well as the complexity of analyzing large amounts of resulting data,
are well beyond human capabilities. The design of a microarray must address several
interrelated issues: selection of cDNAs; replication of each cloned cDNA fragment; and
placement of each replicate. A sophisticated computational approach to design is clearly
needed. A typical hybridization yields two images with thousands of visible spots
conveying information about relative levels of expression. However, the reliable capture of
the expression information from images is an ill-specified problem that must be addressed
with flexible techniques that adapt to the particular parameters of the experiment, as well as
the presence of noise and artifacts in the images.



Choreography of Gene Expression Patterns

Microarrays provide a means of determining the transcript profiles of entire genomes under
a given set of experimental conditions, where an entire genomic sequence is known. When
sequencing is still in progress (e.g., maize, loblolly pine), there is the added potential for
gene discovery. A cDNA microarray experiment increases our ability to find genes that are
expressed in similar patterns over time or under particular conditions and to find patterns in
expression data. Powerful tools for inferring function also come from the assignment of
common responses to multiple environmental stresses. Much functional genomic
information remains buried in the data already accumulated [Bard, 1999]. New
computational tools for mining this hidden information are needed, as are tools for
analyzing gene expression patterns to reveal unknown cellular regulatory networks and
signal transduction pathways. Accomplishments brought about through the use of
microarrays are already considerable [Epstein and Butow, 2000, Somerville and
Somerville, 1999, Cushman and Bohnert, 2000]. Microarrays have been used to identify
transcript profiles characteristic of particular human tumor types˚[Khan et˚al., 1999,Yang
et˚al., 1999, Perou et˚al., 1999, Golub et˚al., 1999, Monni et˚al., 2001, Kannan et˚al., 2001];
cell cycle regulatory mechanisms [Cho et˚al., 1998, Chu et˚al., 1998]; salt stress [Kawasaki
et˚al., 2001]; hypoxia [Gracey et˚al., 2001]; apoptosis [Brachat et˚al., 2000]; and oxidative
stress responses [Jelinsky et˚al., 2000, Alexandre et˚al., 2001].

In plants, microarray experiments with Arabidopsis cDNAs [Schaffer et˚al., 2000] have
revealed differential effects of wounding compared to insect feeding [Reymond et˚al.,
2000]; induction of novel potential regulatory genes in response to nitrate [Wang et˚al.,
2000]; differential responses to cold and drought stress [Seki et˚al., 2001]; potential
regulatory sequences in developing seeds [White et˚al., 2000]; and differential expression
among leaves, flowers, and roots [Ruan et˚al., 1998]. Aharoni at al. [Aharoni et˚al., 2000]
discovered a novel strawberry gene that plays a crucial role in flavor biogenesis in ripening
fruit.

Complex gene expression patterns are being revealed with this new technology, involving
large numbers of genes and unexpected components of cellular function in regulation and
metabolism. As the complexity of microarray experiments increases, more sophisticated
kinds of biological information can be extracted from microarray data. Enhanced
exploitation of microarray technology requires more powerful and subtle data analysis and
mining technology.

Microarray Data Analysis

Several algorithms from data mining, machine learning, and parametric and non-parametric
statistics have entered microarray data analysis˚[Aharoni et˚al., 2000,Seki et˚al., 2001,Wang
et˚al., 1999,White et˚al., 2000]. Analysis techniques such as k-means clustering, clustering
by principal components, average linkage clustering [Jain and Dubes, 1988], self-
organizing maps [Golub et˚al., 1999], agglomerative and hierarchical algorithms [Eisen



et˚al., 1998,Reymond et˚al., 2000], Bayesian methods [Smyth, 1996], plaid models
[Lazzeroni and Owen, 2000], and support vector machines [Brown et˚al., 2000] have been
featured in a majority of published research. A commonly accepted dichotomy of analysis
techniques distinguishes between supervised and unsupervised methods.

From a probabilistic viewpoint, unsupervised methods model the unconditional distribution
(e.g., via densities) of gene expression data, as revealed by microarray experiments [Jordan
and Bishop, 1997]. For example, the set of genes responding positively can be modeled by
a functional form such as a Gaussian or as a mixture of functional forms (called a mixture
model [Yeung et al., 2001]). k-means clustering, average linkage clustering, clustering by
principal components, self-organizing maps, agglomerative and hierarchical algorithms are
examples of this unsupervised mode of investigation. Supervised methods, on the other
hand, can be viewed as modeling conditional distributions. For example, in addition to
capturing the similarity between a set of positively-responding genes, supervised
techniques can relate this gene expression to putative functional categorizations of the
genes or other a priori knowledge. Support vector machines˚[Brown et˚al., 2000], decision
trees˚[Garofalakis et˚al., 2000], regression˚[Vapnik, 1998], discriminant analysis˚[Sullivan,
2001], and backpropagation neural networks˚[Gallant, 1993] are examples of supervised
techniques.

Expresso s design recognizes that different analysis methods are suited for different
purposes; its software architecture is thus not meant to preferentially support one method
over another. Rather, the goal of Expresso is to enable multiple modes of analysis and
provide a high-level interface for managing microarray experiments. Support for data
mining as a key mode of computational investigation is one of the hallmarks of our system.
We show how this is achieved using inductive logic programming (ILP), used here as an
exploratory data analysis technique subsuming both supervised and unsupervised
techniques.

Our specific focus is on using Expresso for the physiological and molecular study of effects
of drought stress on loblolly pine. We now review some pertinent research in this respect.

Environmental Effects on Tree Growth and Wood Properties

Forest trees are in the earliest stages of domestication. Both tree breeding and fundamental
genetic studies have been greatly hindered by the long generation times and large size of
forest trees. The technology of genomics and microarrays allows insights into the molecular
basis of growth and specific wood properties without the need for extensive breeding
experiments over many generations, and can be carried out on existing material or on
young seedlings. Genomics allows insights into the physiology of otherwise intractable
systems and allows us to benefit greatly from comparisons to model systems based on
sequence information. The identification, functional analysis, and location of expressed
genes in forest trees has many applications. One area of specific interest is the identification
of the effects of abiotic stress on wood formation, particularly water stress, because of the



effect of water stress on tree growth and on wood properties˚[Lev-Yadun and Sederoff,
2000,Costa et˚al., 1998,Costa and Plomion, 1999]. Growth and wood properties are
important commercial factors because they affect the yield and quality of commercial
forests.

A major motivation for the development of microarrays for forest trees is the potential for
the analysis of environmental effects on trees in natural populations. The microarray system
is potentially able to monitor acute and chronic environmental effects based upon the
specificity and level of expression observed for a large suite of genes. The microarray
method has great inherent accuracy and precision, but there is a great deal of development
needed for this potential to be realized. One of the major barriers at present is the lack of
appropriate computational tools for analyzing and interpreting the specific and the
correlated effects on gene expression during development of adaptation to abiotic or biotic
stress. Microarray technology can contribute greatly to studies of adaptation and response
to climate change.

Short- and Long-Term Adaptational Responses of Plants to Environmental
Stress

The ability of a plant to protect itself against environmental stress is essential to its survival
[Alscher et˚al., 1997]. Acclimation of plants to extreme environmental conditions or to
rapid changes in growth conditions requires a global cellular response and changes in the
expression of many genes. Exposure to extremes of light intensity and temperature,
drought, and some herbicides can cause the downstream formation of reactive oxygen
species (ROS). ROS may be present in the form of superoxide (O2

—), hydrogen peroxide
(H2O2), or the hydroxyl ion (OH—). ROS, especially OH—, are toxic because they can oxidize
any macromolecule in the cell [Scandalios˚(ed.), 1997]. This potential threat to cellular
function can cause protein unfolding, the inactivation of enzymes, DNA damage, mutation,
lipid peroxidation, and consequent disruption of cell membrane function.

In animals, injury due to unchecked ROS damage has been linked to cancer and aging
[Gilchrest and Bohr, 1997]. ROS have also been implicated as links in stress-responsive
signal transduction mechanisms [May et˚al., 1998]. There is a suggested role for hydrogen
peroxide in the signaling events leading to the activation of the defense-
response˚[Mullineaux et˚al., 2000]. In some instances, the plant successfully adapts to its
changed environment. Both short- and long-term effects occur. Shinozaki et al. [Shinozaki
and Yamaguchi-Shinozaki, 2000] distinguish between rapid, emergency responses, and
slower, adaptive responses associated with successfully attaining a new steady state under
stress conditions.

Our understanding of genome-wide mechanisms contributing to successful adaptation in
plant cells is incomplete. A coordinated global shift in gene expression in plant cells is
expected to be involved in adjustment to unfavorable conditions. There is growing evidence
that while the mechanism whereby a plant perceives and transduces a particular adverse



environmental change is specific to that change, that there is considerable overlap among
the mechanisms that respond to the class of adverse environmental changes [Uno et˚al.,
2000] (see also Fig.˚2). Genes controlling osmotic adjustment, protein stabilization, ROS
detoxification, ion transport, membrane fluidity, gene activation, and signal transduction
have all been implicated in stress adjustment responses in higher plants in separate
experimental systems [Cushman and Bohnert, 2000, Shinozaki and Yamaguchi-Shinozaki,
1997]. Specifically, dehydrins have been shown to be associated with dehydration tolerance
[Zhu et˚al., 2000]; proteases with signal perception and transduction [Callis and Vierstra,
2000]; calmodulin-mediated processes and membrane transport with salt tolerance [Geisler
et˚al., 2000]; cell wall extensibility events (extensins, proline-rich proteins) with adaptation
to drought stress [Wu and Cosgrove, 2000]; and lignin production (laccases,
phenylpropanoid pathway enzymes) with growth under multiple stress conditions, including
salt stress [Degenhardt and Gimmler, 2000] (see Fig.˚6 and 7).

A Search for Molecular Adaptation Mechanisms in Plants

Little information has been gathered for any experimental system that documents global
changes in gene expression associated with successful, long-term adaptation to stress. This
is in sharp contrast to the available data that documents response to short-term exposures.
Although there are several molecular defense systems that respond to environmental stress
in plants (Fig.˚2), their relative importance for long-term stress resistance is not known. It is
likely that the coordination, identity, timing, and level of induction or suppression of stress-
responsive genes is critical for effective and sustained removal of toxic ROS. Redox
sensing appears to play a central role in environmental stress responses. The effective repair
and renewal of individual, stress-susceptible, macromolecules and associated cellular and
physiological processes is essential for cell, tissue, and organism survival (see Fig.˚2).
Gasch et al.˚[Gasch et˚al., 2000] used microarray technology to investigate adaptive
responses of the entire yeast genome to a series of abiotic stresses. They interpreted
increases in transcript abundance in genes associated with signal transduction, chaperones,
ROS detoxification, and bioenergetics as events involving essential processes to ensure
cellular survival in the face of long-term oxidative stress.

Choice of Experimental System

Comparison of the transcriptional responses of higher plants to environmental stresses is a
powerful tool for understanding the functions of individual genes in the responses as well
as the adaptative response of the genome as a system. The use of comparative functional
genomics to study responses to environmental stress in forest trees enables new and
different investigations of mechanisms of adaptation. Information on gene function related
to environmental adaptation is far from complete even in the model plant Arabidopsis.
Many genes have important interactions that may not be apparent from their primary
function. Even when a homolog has been identified by comparative sequence analysis and a
specific function has been implicated, many genes may have additional functions and
interactions in a woody plant that might not be inferred from studies of Arabidopsis.



Expresso: A Microarray Experiment Management System

Our research group has recognized the need to address all phases of a microarray
experiment as a coherent whole and to fashion a computational system that integrates the
design, analysis, and data management tasks as well as the laboratory and computational
components. The Expresso system [Alscher et˚al., 2001] is designed to support all
microarray activities including experiment design, data acquisition, image processing,
statistical analysis, and data mining. Currently, the latter three stages are completely
automated and integrated within our implementation. The data and physical flows realized
using Expresso are shown in Fig.˚1. As mentioned earlier, Expresso is meant to support
multiple modes of analysis and a variety of computational methods.

The design of Expresso underscores the importance of modeling both physical and
computational flows through a pipeline to aid in biological model refinement and
hypothesis generation. It provides for a constantly changing scenario (in terms of data,
schema, and the nature of experiments conducted). The design, analysis, and data mining
activities in microarray analysis are strongly interactive and iterative. Expresso thus utilizes
a lightweight data model to intelligently close the loop  and address both experiment
design and data analysis. Data mining techniques, especially ILP, are used to model
interactions among genes and to evaluate and refine hypothesized gene regulatory
networks. We refer the reader to [Alscher et˚al., 2001] for a more detailed exposition of the
computational, algorithmic, and system implementation issues underlying the design of
Expresso.

Modeling With Expresso

The first step in modeling with Expresso entails defining semi-structured data records
corresponding to information about material selection, PCR, randomization, spotting,
hybridization, gridding, data extraction, and data analysis. An instance of all of these
records thus represents a pipeline of stages involved in a single microarray experiment (a
partial example is given in Fig.˚3).

These self-describing descriptions serve several useful purposes. First, since they can be
stored in a database and queried, programmatic descriptions of new experiments can be
automatically created by writing queries. For example, a high-level specification such as
Design a new experiment using the layouts from 1999, the dye concentrations used by

Mark, and the conditions of mild drought stress,  or Use the same experimental setup as
EXPT-99-Pine-Drought, but with a signal threshold of 0.60  can be realized by writing
database queries in languages like SQL and XQL. In addition, biologists are able to interact
with Expresso using abstractions such as stress experiments and expression levels, instead
of the current emphasis on tedious details such as wells in microtitre plates or measured
fluorescence in a tiff image. This is facilitated by an interface that masks how individual
records are composed to arrive at full-fledged descriptions of experiments. Second, such
descriptions can (optionally) be then used to manage the physical and computational



execution environment (e.g., pipetting robots, image readers, and data mining software).
For instance, it is possible to transform an Expresso description into the low-level
programming code for controlling and driving laboratory instruments that have
programmable interfaces supporting laboratory automation and management. Together,
these features help us store descriptions, run  the descriptions to obtain data, record the
data back in the database, and associate the data with the description that corresponds to its
experimental setup. Finally, having descriptions of experiments allows us to provide
sophisticated services such as change management. For example, consider that two students
configure Expresso independently with different choices for various stages in the pipeline
and arrive at contradictory results. They could then query the database for What is
different between the experiments that produced data in directory A from the ones in
directory B?  - providing responses such as While the same analysis technique was used
in both, a calibration threshold of 0.84 was used in B instead of 0.96 for A,  which are
obtained by automatically analyzing the descriptions.

In contrast to the variety of standards (many, XML-based) available for describing
microarray data, our data model is thus aimed at capturing representations of experiments,
not just experimental data. We posit that the description of an experiment is a more
persistent representation of the data (it produces) than the data itself. As technology
matures and evolves, recording how specific data was obtained is important for the
purposes of ensuring repeatability and reliability. For example, if gridding technology
improves, then running  the same (stored) description with the new setup can be used to
obtain new results.

One of the hallmarks of Expresso and its semi-structured representation is that the data
model is lightweight and can elegantly adapt to changes in schema over time. There is
nothing in our language design that commits us, for instance, to describing DYEs by two
attributes (ref. Fig.˚3). As new forms of DYEs are introduced into Expresso, the data model
can expand  to accommodate new fields and attributes, that were not applicable in older
records. The design of the semi-structured language is beyond the scope of this article; a
preliminary description is available in ˚[Alscher et˚al., 2001]. Here, we specifically
concentrate on using Expresso to understand stress responses in Loblolly Pine.

In particular, we investigate the use of Expresso to mine global patterns of gene expression
in order to uncover regulatory mechanisms that are essential for long-term adaptation to
stress in woody species. Our main focus is especially on gene expression associated with
adaptation to drought stress over one growing season in loblolly pine.



Materials and Methods
Plant Material

Rooted cuttings of loblolly pine equivalent in size to one-year-old seedlings were obtained
from Dr. Barry Goldfarb at NCSU and were cloned from two unrelated genotypes (clones
C and D) from the Atlantic Coastal Plain provenance.

Choice of Target cDNAs

A substantial number of expressed genes (approximately 15,000) have now been identified
from loblolly pine as part of the Pine Genome Sequencing Project˚[NCSU Forest
Biotechnology Group, 2001]. The predominant source of these expressed genes is from
wood forming tissues. These tissues are rich in expressed genes involved in cell wall
biosynthesis and in intracellular signalling. Microarrays have been used with a small subset
of these expressed genes to examine gene expression during development and under
environmental stress. The long term goals of this project are to identify the genes expressed
during wood formation, to identify the time and place of their expression at the cellular
level, and to correlate the effects of their expression with variation in wood properties. This
approach depends on genetic mapping of expressed genes and the correlation of the map
positions of loci affecting quantitative variation in wood properties with the location of
specific expressed genes.

Of the ESTs sequenced by the Pine Genome Sequencing Project, many have a proposed
functional annotation derived from a BLAST search of protein databases. From this
annotation, we selected 384 ESTs from differentiating xylem or shoot tips representing
genes of annotated function. We grouped the 384 pine ESTs into four major functional
categories (as shown in Fig.˚6) - gene expression, signal transduction, protective processes,
and protected processes. A complete list of our functional categories and groupings is
available at

http://bioinformatics.cs.vt.edu/~ralscher/functional_categories.html,

and a detailed list, including annotations for individual clones, at

    http://bioinformatics.cs.vt.edu/~ralscher/clones_annotation.html.

Our selection of clones includes genes involved in proposed resistance processes and signal
transduction mechanisms, as well as genes associated with processes expected to be
vulnerable to drought stress such as those associated with carbon metabolism,
photosynthesis, and respiration. Genes associated with ROS detoxification, cell wall
extension, lignin biosynthesis, and chaperone function as well as stress specific genes, such
as aquaporins and dehydrins were included in the protective processes category (see Fig.˚7).
We also included genes known to respond to other stresses, such as UV irradiation,



pathogen invasion, and sulfur stress (‘isoflavone reductase-like’)˚[Gang et˚al., 1999] and
xenobiotic stress (glutathione-S-transferases) (see Figs.˚6 and˚7).

PCR Amplification

384 ESTs from differentiating xylem or shoot tips˚[NCSU Forest Biotechnology Group,
2001] with putative functions of interest were selected and PCR amplified using M13
forward and reverse universal primers. PCR was performed in a 50 µl reaction containing
39.1 µl ddH2O, 5 µl 10x PCR buffer, 1.5 µl MgCl2 (50mM), 1 µl dNTPs (lOmM each), 1 µl
M13 forward primer (10 µM), 1 µl M13 reverse primer (10 µM), 0.4 µl TAQ polymerase
(5U/µl), and 1 µ l cDNA diluent. Amplifications were carried out in a MJ Research
thermocycler (Waltham, MA, USA). Denaturation was performed at 94¡ C for 30 sec,
followed by primer annealing at 57¡ C for 1 min. Chain elongation took place at 72¡ C for 4
min. These steps were repeated for 35 cycles. Final chain elongation took place at 72¡ C for
10 min. PCR products were then electrophoresed in 1.5% agarose gels, stained with
ethidium bromide, and visualized using UV light. This step was necessary to confirm both
quantity and quality of the PCR reactants.

Microarray Design and Layout

The 384 ESTs were organized in 4 microtitre source plates after PCR amplification.
Expresso generated a design for printing two types of microarrays that replicated each
clone four times in each microarray type and that placed the replicates at random locations
in a microarray so that any systematic errors due to location can be analyzed and corrected
(see Fig.˚8). Implementing a replicated, randomized design required the use of two robots.
First, the contents of the 4 source plates were re-pipetted into 8 sets of 4 microtitre printing
plates, using a TECAN Genesis 2 robot; each set was an independent randomization of the
4 source plates. Second, slides were printed using a Stanford-type arrayer (see
http://cmgm.stanford.edu/pbrown/mguide) built in-house at NCSU. The randomized
design guaranteed that every EST was represented once in each set of 4 microtitre plates
and that each set was a different physical arrangement (permutation) of the 384 ESTs. Two
types of microarrays, A and B, were printed; each had 4 replicates of the 384 ESTs, but the
random arrangement of clones differed in the two microarrays. Consequently, each array
type has 4 replicates of each EST, randomly placed, and a total of 1536 spots. Each glass
slide contained 2 identical arrays (either type A or type B); therefore, each slide had a total
of 8 replicates of each EST.

Slide Preparation

After printing, slides were processed according to the manufacturer’s instructions
(Telechem International, Sunnyvale, CA), with some modifications. In the first step, slides
were first rinsed in 0.2% SDS twice for two minutes, with vigorous agitation; were then
rinsed in distilled water twice for two minutes; and were finally transferred to boiling water
for two minutes and cooled to room temperature for five minutes. In the second step, 1.5 g



sodium borohydride was dissolved in 450 ml phosphate buffered saline to which 133 ml of
100% ethanol was added immediately prior to use. In the third step, the slides were first
transferred to the sodium borohydride solution for five minutes; were then rinsed in 0.2%
SDS for one minute three times; and were finally rinsed once in distilled water for one
minute. Array boundaries were marked with a diamond-tipped pen. In the final step, the
slides were dried by centrifugation and stored in the dark in a dessicator at room
temperature.

Hybridization

Each comparison of treatments (control versus mild drought stress; control versus severe
drought stress; and mild versus severe drought stress) was done with hybridizations
involving 4 microarrays on 2 slides of different types, comprising a total of 16 replicates of
each EST. Total RNA was isolated from 11 separate needle samples harvested at the end of
the growing season by the method of Chang et al.˚[Chang et˚al., 1993], and was the source
of cDNA to probe the microarrays, after processing using the Genisphere Gene
MicroExpression Kit. The two arrays present on each slide were hybridized with probe
pairs labeled reciprocally with Cy3 and Cy5 dyes. A ScanArray 4000 was used to scan the
slides after hybridization (Packard BioScience). The resultant TIFF images were analyzed
initially using MicroArray Suite (Scanalytics, Fairfax, VA).

Image Processing

For each cDNA spot, a calibrated ratio of intensities in the Cy3 and Cy5 channels was
calculated and subsequently analyzed. We used Microarray Suite by Scanalytics to
calculate these calibrated ratios. The techniques used by Microarray Suite are described in
Chen et al.˚[Chen et˚al., 1997]. In general, we applied the default values used by
Microarray Suite during our processing. A grid was placed manually on the TIFF images,
identifying the locations of cDNA spots. For each grid location, the pixels comprising the
spot contained within were determined using the Mann-Whitney statistical test at 99%
confidence level. All remaining pixels comprise the background surrounding the spot. The
mean intensities of the spot pixels and background pixels are calculated for each channel,
from which a background-corrected ratio is computed. Finally, a calibrated ratio for each
spot is computed used the iterative method described by Chen et al.˚[Chen et˚al., 1997].

Detection of Gene Expression Changes

The inevitable presence of experimental errors complicates the determination, for each
clone (cDNA) represented on a set of microarrays, whether that clone shows clear changes
in transcript levels under the experimental conditions considered. Various statistical tests
suggested in the literature do not fully utilize the available information or make
assumptions that are probably too strong and unrealistic. Chen et al. [Chen et˚al., 1997]
derive a probability density of transcription ratios under strong (and highly unrealistic)
distributional assumptions. They investigate neither the effects of deviations from their



strong assumptions nor all possible sources of variation (e.g., due to background
estimation). Some authors (e.g., Claverie [Claverie, 1999]) have suggested the use of t-tests
applied to intensity values. This approach requires replication of the same gene on one or
more arrays and the use of paired t-tests or non-parametric paired tests such as the sign test.
These tests are expected to have poor efficiency with few replications. Hilsenbeck et al.
[Hilsenbeck et˚al., 1999] uses prediction regions from principal components, while Greller
and Tobin [Greller and Tobin, 1999] describe a decision function using a statistical
discordancy test. Several approaches involving Bayesian methods have also been proposed.
One is the Hierarchical Generalized Linear Model (see Daniels et al. [Daniels and Gatsonis,
1999] for general methodology and Lee et al. [Lee et˚al., 2000] for application to activity
data), which can model and estimate noise variance components if replication is available.

The methodology followed in Expresso is qualitatively different; we obtain multiple
(typically 16) log-calibrated-ratios for a single replicated clone; by observation, we find
that the log-calibrated-ratios for a single clone do not follow a normal distribution. Far
from it, each distribution is spread relatively evenly over a large range. Statistical analysis
based on mean and standard deviation will thus be overly pessimistic in identifying clones
that are up- or down-expressed. Given this observation, we make a much weaker
probabilistic assumption on the distribution; we assume that a clone whose expression is
not different between a probe pair will show a distribution centered at a mean log ratio of
0.0. Our assumption of a zero-centered distribution is more general than the assumption of
a particular distribution, such as a normal distribution, and hence is more likely to hold in a
real experiment. In a zero-centered distribution, the probability that any particular log ratio
is positive (or negative) is 0.5. The number of positive (or negative) log ratios follows a
binomial distribution with parameters 16 and 0.5. The probability of 12 positive log ratios
(or 12 negative log ratios), out of 16, for a clone whose expression was unaffected by
drought stress is 0.0384064. Consequently, a clone with 12 or more positive log ratios is
up-expressed with a probability of 0.96. Our more general assumption avoids the trap of
having to classify the response of each spot; rather we classify the response of each EST as
one of: up-regulated, down-regulated; or no clear change. Our three-way response
classification allows us to develop meaningful relationships among genes and among
treatments and also provides sufficient results for the use of sophisticated data mining
techniques (see below).

Inductive Logic Programming

The primary analysis technique used in this set of experiments is inductive logic
programming (ILP) and is motivated by the need to connect functional categorizations of
genes with systematic variations in expression levels. This aspect of data analysis has been
recognized by many others, especially Sherlock [Sherock, 2000] and Golub et al. [Golub et
al., 1999]. They consider the question Is the overlap between the genes in a functional
class and the genes in a particular cluster greater than would be expected by chance?



In his review of expression data analysis, Sherlock˚[Sherlock, 2000] discusses two
techniques for correlating biological information with expression data. The first technique
builds a two-way classification predictor based on weighted votes provided by gene
expression from tissues in each of the two classifications. Golub, et al.˚[Golub et˚al., 1999]
successfully apply the technique to classifying leukemia type from human tissues. The
second technique first organizes genes into clusters using k-means clustering of expression
data and then computes statistical correlations between each cluster and each of a set of
functional categories. Our analysis methodology is fundamentally different from the
techniques discussed by Sherlock˚[Sherlock, 2000]. We use the inductive logic
programming (ILP) approach [Muggleton and Feng, 1990, Muggleton, 1999, Dzeroski,
1996] as an exploratory data analysis methodology to address questions such as above.
Note that ILP is a computationally costly technique and is presented here merely as a
framework to explore the integration of supervised and unsupervised modes of analysis.
From our increased understanding of the problem domain (via ILP results), we aim to
develop more customized algorithms for mining gene expression data.

ILP is used here as a technique that provides, in one integrated procedure, a way to
correlate output variables (gene expression) with input variables (functional
categorizations, for instance); a richer representational basis (allowing the incorporation of
expressive a priori biological knowledge, not limited to functional categories); and a
methodology of hypothesis formation (that can involve finding coordinated sets of gene
expression data).

ILP takes input data expressed as gene expression levels in particular experiments,
relationships between experiments, functional categories, and any biological knowledge
that is available. As output, it provides rules of the form

level(A,CvsS,negative) :- level(A,CvsM,positive).

where C, M, and S represent control, mild drought stress, and severe drought stress
conditions, respectively. This rule states: If a clone (represented in the rule as A ) was
positively expressed in the control versus mild drought stress comparison (CvsM), then it
was negatively expressed in the control versus severe drought stress (CvsS) comparison.’
The restated rule is easily understood and can be used in later diagnostics and what-if
analyses. ILP algorithms do not require explicit invocation or instructions to mine rules
across comparisons. Rules are produced as the result of a process of systematic search for
succinct, conceptual clusters of data. ILP can thus be used to find patterns within a given
comparison, across comparisons, and across functional categories. In contrast, a purely
unsupervised method may recognize a particular group of clones in the control versus mild
drought stress comparison that exhibit a positive response and also recognize another group
of clones in the control versus severe drought stress comparison that exhibit a negative
response. However, it cannot model the connection between these two comparisons (unless
we know beforehand that this kind of connection is what we are looking for). A purely
supervised technique can make such a connection only after the above clusters are modeled



(recognized and given as input). The ability to produce rules that subsume both
supervised and unsupervised modes of analysis, without explicit direction, is the
hallmark of ILP as an exploratory data analysis technique.

ILP techniques can incorporate prior biological knowledge; for example, if the biologist
knows that there is a possible connection between protective processes such as ROS
detoxification and protected processes such as the reductive pentose phosphate pathway, an
ILP execution can be modeled to exploit such knowledge. In many cases, such prior
knowledge is also helpful in speeding up ILP. In addition, ILP rules can be recursive, a
feature that makes them amenable to discovery of complex relationships involving
hierarchies of functional categories [Muggleton, 1999] (see results below).

Data preparation for ILP

ILP systems typically take a database of positive examples (correct gene expression data),
negative examples (information known not to represent correct gene expression data) and
background knowledge (functional categories, for example) and attempt to construct a
predicate logic formula (such as level(A,B,C)) so that all (most) positive examples can be
logically derived from the background knowledge and no (few) negative examples can be
logically derived. The need for negative examples can be seen by observing that ILP
algorithms conduct mining by searching through a space of possible patterns. Such a space
is typically organized as a specialization-generalization hierarchy. The more specific
patterns are at the bottom of the subsumption lattice and the most general patterns are at the
top of the lattice. While ILP algorithms differ in how they navigate, prune, or focus on this
space of patterns, all of them require a way to evaluate any specific pattern encountered in
such a search. One useful form of such evaluation pertains to how accurately the pattern fits
the positive examples and how accurately it fails to fit the negative examples. The more
negative examples that are covered by a pattern, the less likely that it will be a good
representation (or predictor) for the underlying data distribution. Hence negative examples
are important to ensure that the mining does not produce overly general patterns. For
instance, suppose that the only clones presented to ILP are from the heat  category and
that they all responded positively in a certain comparison. Mining that all clones respond
positively in that comparison would certainly be a valid (from the data distribution
viewpoint) but dangerous (from the biological viewpoint) conclusion to make. If additional
clones (from other categories) are presented that do not respond positively in the given
comparison, then data mining can correctly infer that it is the membership in the heat
category that co-occurs with the positive expression. Similarly, negative examples help
produce valid patterns by defining the boundaries of generalization without any truly
additional  information.

A partial listing of our database tuples is shown in Fig.˚5. Negative examples are
automatically generated by invoking the closed-world assumption, which states that all
relevant facts are stored in the tables and facts not recorded can be taken to be false. For
tables that have a large number of columns (high arity), this might cause us to generate a



huge number of negative examples. The typical solutions are to (i) place restrictions on
how variables are coupled in an ILP rule (allowing us to use them to generate negative
examples), (ii) perform a probabilistic analysis by constructing so-called stochastic logic
programs. In our experiments, negative examples are easy to generate since the only
variability allowed in the level table is in the Expression column. Thus, if a clone was
positive for a particular comparison, we can declare two negative examples, namely that it
was negative and unchanged for the (same) comparison. For our experiments, we made use
of the Aleph ILP software [Srinivasan, 2001] from the Oxford University Machine
Learning Laboratory.

Results
In June 1999, drought stress was developed by withholding water from rooted cuttings of
two unrelated loblolly genotypes from the Atlantic Coastal Plain, while control plants were
watered normally. Mild and severe drought stress constituted pre-dawn water potentials
(pressure bomb technique) of —10 to —12 bars, and —16 to —18 bars, respectively. Rooted
cuttings were subjected to mild or severe drought stress for four (mild) or three (severe)
cycles Plants were watered to field capacity once these pressure potentials were attained.
Needles were harvested after the drought cycles were completed (adaptation). Mild stress
produced little effect on growth with new flushes as in control trees. Imposition of severe
stress resulted in growth retardation with markedly fewer new flushes compared to
controls. Using RNA harvested from individual trees and different treatments we have
determined global patterns of gene expression on microarrays. With algorithms
incorporated into Expresso, we have identified genes and groups of genes involved in stress
responses.

Effect of Mild and Severe Stress on Gene Expression

Data were obtained for the control versus mild stress condition and for the control versus
severe, non-adaptive, condition for Genotype D and for the control versus mild condition
alone for Genotype C. We performed preliminary statistical analysis on both genotypes but
applied the inductive logic programming technique only to data from Genotype D. The
reason for this restriction involves the theoretical model of machine learning assumed by
typical ILP implementations. All expression data are distilled within Expresso into a single
metric of up-expressed, down-expressed, or unchanged. Inclusion of Genotype C into our
study would imply that the probability distribution from which examples (instances of gene
expression data) are picked is nonuniform (ref. the control versus mild condition).
However, currently available ILP systems do not provide systematic ways to incorporate
this prior knowledge (of the distribution of examples) as learning parameters. While
theoretical analyses are definitely feasible, our goal was to ensure the biological validity of
the hypotheses generated. A total of 37 rules were mined by ILP for Genotype D.



Using Expresso, we determined that 72 of the 384 cDNAs present on the microarray
showed an increase in transcript abundance relative to controls at the end of four repeated
cycles of exposure to mild stress in Genotype D. Of those 72 cDNAs, 69 showed either a
decrease or no change in the control versus severe comparison. Expresso mined this
observation as the rule:

~level(A,CvsS,positive) :- level(A,CvsM,positive). (1)

In rules, the notation ‘~’ means logical negation or ‘not’. Hence, this rule means that if a
clone (A) is up-expressed in the CvsM (control versus mild drought stress) comparison, then
it was not up-expressed in the CvsS (control versus severe drought stress) comparison. This
rule is supported by observations of transcript abundance of 69 out of 72 relevant cDNAs.
This gives a confidence level of 69/72 (about 96%).

These clones, and their associated functional categories, are candidates for drought stress
adaptation genes and for participation in associated mechanisms. The functional categories
of the positive responders in the protective processes  grouping are shown in Fig.˚7. The
remaining 257 cDNAs were either unaffected (204), or showed a decrease relative to the
controls (43). Among the positive responders were genes already associated with water
stress responses such as the dehydrins and water channel proteins or aquaporins. The class
of transport proteins, into which the aquaporins fall, showed a negative response in the mild
versus severe stress comparison, and a positive in the control versus mild contrast. This was
indicated by the next two rules (confidences 63.63% and 66.67% respectively):

level(A,CvsM,positive) :- category(A,membranetransportprotein). (2)
level(A,MvsS,negative) :- category(A,membranetransportprotein). (3)

In the case of both dehydrins and aquaporins, different cDNAs responded to probes from
the two genotypes. Aquaporins associated with both the tonoplast and the plasma
membrane were present on the array. cDNAs representing both subcellular locations
responded positively in the control versus mild stress comparison, suggesting the
importance of water channel proteins in the tonoplast and the plasma membrane for
adaptation to mild drought stress. Genes encoding heat shock proteins (HSPs) -- HSP70
(chloroplast-associated chaperone function [Rial et˚al., 2000]), HSP23 (LEA-like genes
[Dong and Dunstan, 1996]), and HSP100 (thermotolerance [Hong and Vierling, 2000]) --
also responded positively to mild drought stress (confidence 83.33%):

level(A,CvsM,positive) :- category(A,heat). (4)



In contrast, HSP80s (thought to be involved in chromatin organization [Schnaider et˚al.,
1999]) did not respond in either genotype. In some cases, different cDNAs responded to
probes from the two genotypes (see Fig.˚4 and Table˚1 for a summary of results obtained
for HSPs). Several HSPs (Clone 226, an HSP 101; clone 228, an HSP 23.5; and clone 296,
an HSP 70) showed a positive response in the control versus mild stress comparison and a
negative in the control versus severe stress comparison, making them strong candidates for
drought stress adaptation genes. Rubisco-binding proteins were also among the positive
responders in the control versus mild drought stress comparison. In contrast, Rubisco-
binding proteins were unchanged in the mild versus severe comparison, suggesting that
these genes may not be among the class of candidates for stress adaptation. LP-3, an
established water-stress inducible gene in loblolly pine, responded positively to probes
from both genotypes. No difference in expression level of LP-3 was detected in the control
versus severe contrast in Genotype D. LP-3, a protein with a chaperone function, therefore
falls into the class of candidate genes associated with resistance to mild drought stress.
There was no detectable difference among the thiol-utilizing enzymes for the control versus
mild, or the control versus severe stress comparisons. There is much documentation
demonstrating the involvement of thiol-utilizing enzymes in short term responses to
oxidative stress, but little to document events associated with long-term adaptation.

The class of genes categorized very loosely as isoflavone reductases,  of which four
separate ESTs were included on the array, exhibited positive responses in both genotypes in
the control versus mild drought stress comparison, with two ESTs with greatest
resemblance to phenylcoumarinbenzylic ether reductases responding in Genotype C, and
two ESTs corresponding to the closely related pinoresinol-lariciresinol reductases in
Genotype D. On the other hand, the IFR homologs showed no detectable change in the mild
versus severe comparison, suggesting a response to stress, but no correlation with
successful adaptation to mild drought conditions. Genes associated with lignin biosynthesis
also responded positively, as did GST, proteases, and receptor-like protein kinases. In the
case of cell wall associated genes, positive change was detected in the control versus mild
comparison (confidence: 81.25%)

level(A,CvsM,positive) :- category(A,cellwallrelated). (5)

and a negative response for lignin biosynthesis genes in the control versus severe contrast
(confidence: 81.81%)

level(A,CvsS,negative) :- category(A,ligninbiosynthesis). (6)

suggesting a role for lignin biosynthesis in drought stress adaptation.



Discussion
Using cDNA microarrays, we have investigated expression patterns of genes in needles of
loblolly rooted cuttings (equivalent in size and development to one-year-old seedlings, but
of identical genotype) from two different unrelated genotypes from the Atlantic Coast Plain
that had successfully adapted to cycles of mild drought conditions over a growing season.
We have compared those results with results obtained from rooted cuttings of one of the
genotypes exposed to more severe, non-adaptive, conditions over the same time period.

The expression data reported here reflect the adaptational adjustments made by loblolly
pine needles to long-term and intermittent drought stress. The control versus mild stress
comparison for two unrelated genotypes identifies candidate functional categories for
drought stress tolerance and resistance. The positive response of LP3 in the control versus
mild stress comparison, a known water-stress inducible gene in Pinus taeda, serves as a
positive control for our data. Dehydrins and aquaporins are among the responders, as would
be expected from their established physiological roles. There were many aquaporin ESTs in
our microarray group. However, we cannot definitively distinguish between ESTs from one
gene or from closely related members of a multi-gene family. The aquaporins were divided
among tonoplast and cell membrane-associated groups; thus we are dealing with at least
two different genes. The genes from the heat shock proteins that responded fell into three
groups. Of these three, two -- the HSP70s and the HSP23s -- have known chaperone
functions, not necessarily related to heat shock responses, and can perhaps be regarded as
fulfilling a maintenance or repair role in cells that are coping with mild drought stress on an
ongoing basis. The positive response of the HSP70s, which fulfill a chaperone or targeting
function for proteins synthesized in the cytosol and destined for the chloroplast, is in
agreement with the increases in transcript abundance of photosynthesis-associated genes.
These HSPs showed no difference, or were negative in the control versus severe stress
comparison. Thus, the HSPs are candidate genes for drought resistance.

The HSP100s, which also showed a positive response in the control versus mild stress
comparison, are more definitively associated with heat shock itself. Their response may
indicate the existence of a common core of genes that respond to a range of different
stresses; a result that is in agreement with many others in the literature. The IFR homologs
that responded positively in both genotypes, as well as the GSTs, may also fall into the
class of a core of stress responsive genes, although not in the class of stress resistance genes
per se. Both the IFR homologs and the GSTs are most commonly associated with responses
to biotic and xenobiotic stress and not to the abiotic challenge presented by drought stress.
Response to increased ROS levels may be the common denominator for these changes in
the various functional categories.

Our results present a snapshot of the state of gene expression in loblolly needle tissue that
has adapted to mild drought stress. A detailed time course study is needed to identify events
in gene expression that lead to adaptation. Many, transitory, stages in signal perception and
transduction can only be captured by sampling early on in the adaptation process. We plan



to set up a sampling scheme to glean evidence for the physiological changes that underlie
short-term emergency adjustments and to identify those changes that are essential for
subsequent, long-term adaptation.

These requirements point to the future directions in the development of Expresso. We are
now extending Expresso to intelligently integrate experiment design and data analysis. This
will provide us the ability to use run-time information from the results of data mining to
make recommendations about the earlier stages in experimentation, such as layout,
randomization, and choice of clones for the next iteration of studies.

Some comments about the use of ILP in Expresso are also in order. ILP is a relational
learning technique, distinguishing its representational basis from those of attribute-value
based techniques (that have been typically used in microarray data analysis). Formally, ILP
uses a representation of (a proper subset of) first-order predicate logic, whereas attribute-
value techniques work at the level of propositional logic. Its expressiveness makes it a
highly desirable tool in structured domains (such as microarray data analysis) where
comprehension and interpretation of patterns is important.

In hindsight, the results presented above might make ILP seem like an overkill,  i.e., the
answers could easily have been obtained by cheaper techniques. For instance, one of the
rules we mined could be viewed as doing clustering of expression levels (unsupervised) and
the rest as correlating functional categories with expression data (supervised). Such a data
mining problem can be formulated in terms of a combination of attribute-value learning
[Lavrac and Flach, 2001] and confirmation-guided discovery of (unsupervised) rules [Flach
and Lachiche, 2001]. In particular, our data model confirms to the schema of deductive
hieararchical databases as studied in [Lavrac and Flach, 2001]. However, as mentioned
earlier, we are using ILP merely as an exploraty tool; in future we plan to develop
customized data mining algorithms that are tailored to mining in the Expresso context. In
addition, ILP techniques are not effective at handling numeric data; studying information
loss due to discretization, and closer linkage with statistical significance testing will be
necessary for validation of the mined rules. There has been some recent steps in this
direction in the machine learning community [Flach and Lachiche, 2001]. We aim to use
the ideas presented there to more accurately study the dependence of ILP results on the
nature of statistical testing employed in earlier stages of Expresso. This will also help us
clarify the roles that ILP can play in mining gene expression data (inc. information from
time-course experiments and other forms of a priori biological knowledge).

A long-term biological goal is the modeling of the dynamics of adaptation to environmental
changes. Understanding the qualitative and quantitative responses of metabolic pathways to
external and internal signals implies the need to integrate biological knowledge drawn from
gene expression studies together with information from proteomics and metabolic profiling.
The data management architecture of Expresso is designed to have the flexibility to support
this aspect of inquiry.
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Figure 1: Execution and flows in Expresso. The solid lines indicate computational flows;
the dashed lines indicate realizations of the pipeline in devices such as robots and image
readers.

Figure 2: A Scenario for Specific and General Stress Responses in Plant Cells. Upon
imposition of oxidative stress, ROS levels increase, and cellular redox-sensing mechanisms
are activated. General downstream events include the activation of ROS detoxification
mechanisms, such as the ascorbate glutathione scavenging cycle. Events specific to
individual stresses include the activation of aquaporins in response to drought stress, and
the activation of isoflavone reductase-like genes in response to pathogen invasion or UV-
irradiation.



EXPERIMENT PINE_DROUGHT_GROWTH May-August,2000 "384 clones"
...
DYE CY3 "Genisphere Kit"
DYE CY5 "Genisphere Kit"
...
PRINTING_ROBOT NCSU_FBC "Brown-type robot at NCSU"
...
PRINTING_CONFIGURATION Stanford4x16x24  4 16 24 QUADRANTS
PRINTING_CONFIGURATION Stanford4x22x24  4 22 24 QUADRANTS
...
TISSUE D4M      D4      Needles Unstressed (Control)
TISSUE D4I      D4      Needles Intermediate Stressed
...

Figure 3: Example description of a microarray experiment in Expresso which includes the
name of the experiment, the dyes used, description of the printing robot, printing formats,
and the tissue configurations. The lines are in a self-describing format where the start field
identifies the nature of information modeled.

Figure 4: A dendrogram obtained using Expresso, ClustalW, and njplot showing the
relationship of known HSP proteins of cDNAs among the EST stress set. ESTs are
identified on the dendrogram by their origin and the number assigned to them in the
microarray project. The corresponding Arabidopsis HSP sequence is included in each case.



level      category
CloneID Comparison Expression CloneID Category Name

4 CvsM positive 5 RPPP
5 CvsM positive 5 Carbon Metabolism

 20 CvsM negative 7 Thiol-Utilizing Enzymes
8 Heat

7 CvsS positive 20 Drought Stress Responsive
8 CvsS negative

category(X,Environment) :- category(X,Heat).
category(X,Carbon Metabolism) :-

category(X,RPPP).

Figure 5: Input database design for inductive logic programming (ILP). The level table
contains information about the expression levels of individual clones, for all comparisons.
It constitutes the positive examples. The category table records available functional
classifications of all clones. Background knowledge consists of category containment
relations, e.g., ‘‘any clone that is classified under the ‘heat’ category also belongs to the
‘environment’ category.’’ The negative examples are not shown. RPPP is the reductive
pentose phosphate pathway.



Figure 6: Categories and Groupings in Development and Metabolism.



Figure 7: Categories and Groupings within Protective Processes.



Figure 8: Design of Microarrays in Expresso. Slides containing the selected 384 cDNAs
were printed as indicated above.

Table 1: Heat Shock Protein Responses Among the EST Stress Set in Genotypes C and D.
Control versus Mild Drought Stress Comparison.

HSP Type EST Origin Genotype C Genotype D

HSP 23 Xylem #8 + 0

˚ Shoot Tip #228 + +

HSP80 Shoot Tip #213 0 0

˚ Shoot Tip #229 0 0

HSP70 Shoot Tip #206 + -

˚ Xylem #67 0 +

˚ Shoot Tip #227 0 0

˚ Xylem #296 + +

HSP100 Shoot Tip #226 0 +

˚ Xylem #64 + +


