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Abstract—Social media has become a significant surrogate for
spatial event forecasting. The accuracy and discernibility of a
spatial event forecasting model are two key concerns, which
respectively determine how accurate and how detailed the
model’s predictions could be. Existing work pays most atten-
tion on the accuracy alone, seldom considering the accuracy
and discernibility simultaneously, because this would requires
a considerably more sophisticated model while still suffering
from several challenges: 1) the precise formulation of the
trade-off between accuracy and discernibility, 2) the scarcity
of social media data with a high spatial resolution, and 3)
the characterization of spatial correlation and heterogeneity.
This paper proposes a novel feature learning model that
concurrently addresses all the above challenges by formulating
prediction tasks for different locations with different spatial
resolutions, allowing the heterogeneous relationships among
the tasks to be characterized. This characterization is then
integrated into our new model based on multitask learning,
whose parameters are optimized by our proposed algorithm
based on the Alternative Direction Method of Multipliers
(ADMM). Extensive experimental evaluations on 11 datasets
from different domains demonstrated the effectiveness of our
proposed approach.

1. Introduction

Social media like Twitter and Weibo have become pop-
ular platforms, serving as real-time “sensors” for social
trends and incidents [26]. Millions of Twitter users around
the globe broadcast their daily observations and sentiments
on an enormous variety of topics, e.g., crime, sports, and
politics. The collection of these observations and sentiments
could provide a useful window into emerging social trends.
For instance, expressions of discontent about gas price in-
creases could be a potential precursor to a more widespread
protest about government policies in general. Moreover,
people use social media to plan, advertise, and organize
future social events, such as the planned protests in the
“Arab Spring” and “Brazilian Spring” [18]. A great deal
of recent research has widely explored and demonstrated
the power of social media for spatial event forecasting for
topics such as crimes [23], civil unrest [22], and disease
outbreaks [1].

In spatial event forecasting, the accuracy and discerni-
bility of the forecasting model are the two core concerns
that determine how accurate and detailed the predictions
will be. There is typically a trade-off between the two: the
finer the granularity for discernment, the lower the accu-
racy for prediction. For example, a civil unrest event could
be discerned at a number of different spatial granularities
ranging from country-level down through state-level and
city-level to block-level. Suppose we know there will be
an event on a given day in a country, say Mexico, which
has 31 states and over 2000 cities, and we want to predict
the event location. With a random predictor, we can achieve
an expected accuracy of 1/31 at the state-level but less than
1/2000 at the city-level. Moreover, the discernibility is also
influenced by the capabilities of the sensors and labels. For
instance, we could not make a prediction at the street-level
if we only possess country-level observations or train a city-
level prediction model effectively if we only have state-level
labels. Social media is composed of such noisy data that it
provides social sensors with different geographical discerni-
bilities. For example, geo-tagged tweets provide pinpoint
geographical coordinates if their users enable this function
on their mobile device, but this is not a common situation;
other users may provide their city information while some
only provide information on their state, country, or nothing
at all, leaving their postings with different spatial resolutions
of city, state, country, or the planet earth, respectively.
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                              × ×√
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Figure 1: Spatial event forecasting performance. The qualities of
these 3 predictions are different because they achieve correct

prediction in different discernibilities

Existing work on spatial event forecasting in social
media typically only zeroes in on the prediction accuracy,
although the joint consideration of both discernibility and
accuracy is actually a crucial issue in practice [12], [18],
[24]. For those seeking to address this issue, the major



challenges can be summarized as follows. 1) Trade-off
between accuracy and discernibility. Traditionally, we
focus on evaluating whether or not a prediction is correct
rather than “how correct” it actually needs to be for practical
purposes. For example, Figure 1 shows three event predic-
tions, A, B, and C, for a future date “August 13, 2016”.
Using traditional metrics, both B and C are identified as
“incorrect” and punished equally in training. However, for
real world applications it is more reasonable to evaluate B
as a better prediction than C since B is correct at the state-
level. 2) Insufficient location information in social media
data. Existing methods typically discard large amounts of
data that contains geo-information that is insufficient for
the forecasting task. For example, when performing street-
level event forecasting, tweets without street-level geocodes
are discarded. However, taking the Mexican Twitter data
as an instance, only around 3% of all the data possesses
spatial coordinates that include street-level geo-information
but 30%-50% contains city-level or state-level information.
In this case, only 3% of all the data would be used, hence
the model performance is limited by insufficient data. 3)
Interaction and heterogeneity of geographical locations.
Nearby locations could have regional correlation, such as
being influenced by the same regional epidemics, natural
disasters, and social events. In the meanwhile, locations
such as cities also have their own characteristics, including
population, climate, and culture. Hence, it is difficult to
impute basal levels of occurrence uniformly. Considering
civil unrest as an example, finding 1000 tweets mentioning
the keyword “protest” is not likely to be a strong signal of
an upcoming civil unrest event in a city with a population
of a few million users but could be a strong indicator in
a much smaller city with a population of only 10,000. In
addition, it is difficult to dynamically adjust such thresholds
effectively because of the data sparsity problem, especially
in the latter case.

In order to simultaneously overcome all the above-
mentioned challenges, we propose a novel model, Multi-
Resolution Spatial Event Forecasting (MREF), based on
multi-task learning that jointly reinforces the accuracy and
discernibility of event forecasting. In our MREF, each task
is treated as a model for each location with each spatial
resolution. Thus, when we minimize the model’s empirical
loss, not only the accuracy but also the granularity of the
prediction are evaluated and optimized. Moreover, by letting
the models (tasks) with different spatial resolutions learn
from each other, our framework provides better estimates
at the finest spatial resolution by learning knowledge from
coarser spatial resolutions. This capability is extremely ben-
eficial because usually in social media the great majority of
the data contains merely coarse-grained spatial information.
In addition, to characterize the geographical neighborhood
relationship among tasks, a tree-structure geographical hi-
erarchy is developed. The major contributions of this paper
are as follows:

1) Formulating a framework for multi-resolution spatial
event forecasting. Here, multi-resolution spatial event

forecasting is formulated as a multi-task learning prob-
lem, where a task is the model for each location in
each spatial resolution. The proposed framework jointly
optimizes the accuracy and discernibility of forecasting,
and is enhanced by utilizing the task relatedness across
different spatial resolutions and neighboring locations.

2) Proposing a multi-task model with heterogeneous
task relationships. In the proposed multi-task model,
three types of task relationships are considered, namely
the spatial neighborhood, spatial resolution, and spatial
parent-child relationships. All are characterized by dif-
ferent regularization terms and constraints.

3) Developing an efficient algorithm for a new variant
of overlapping group lasso problem. The optimiza-
tion of the proposed multi-task model is a non-smooth
inequality-constrained overlapping group lasso problem
which is challenging to solve. By introducing auxil-
iary variables, we develop an effective ADMM-based
algorithm to ensure the global optimal solution for this
problem.
The rest of this paper is organized as follows. Section

2 reviews existing work. Section 3 introduces the problem
setup. Section 4 elaborates our MREF model and its param-
eter optimization algorithm. In Section 5, extensive experi-
ments to evaluate the performance of MREF are conducted
and analyzed; the work is summarized and conclusions
drawn in Section 6.

2. Related Work

The related work of this paper is summarized by cate-
gories in the following.

Event detection: There is a large amount of work on the
identification of ongoing events, including disease outbreaks
[21], earthquakes [19] and various other types of events
[14]. Generally, for event detection, either classification or
clustering is utilized to extract tweets of interest and then
the spatial [19], temporal [20], or spatiotemporal burstiness
[10] of the extracted tweets is examined to identify the
potential occurrence of ongoing events. Utilizing retrospec-
tive analysis on tweets, Dong et al. proposed a wavelet-
based clustering method to extract the historical events with
different time durations and spatial sizes [10]. However,
instead of forecasting events in the future, these approaches
typically uncover them only after they have occurred.

Event forecasting: Currently, most research in this area
focuses solely on temporal events, although some of the
models developed are also able to handle spatial informa-
tion. The research on temporal events includes the forecast-
ing of elections [22], stock market movements [7], disease
outbreaks [25], box office ticket sales [5], and crimes [23].
These studies can be classified into three categorizes: 1)
Linear regression models [7]; 2) Nonlinear models [23]; and
3) Time series-based methods [1]. However, few existing
approaches are able to characterize the information in a
spatial dimension in order to forecast spatial events. Gerber
utilized a logistic regression model for spatiotemporal events
forecasting [12]. Zhao et al. [27] developed a multi-level



model to characterize the hierarchical features from multi-
ple data sources and predict spatio-temporal social events.
Ramakrishnan et al. [18] built separate LASSO models
for different locations to predict their occurrence. Zhao
et al. [24] proposed a multi-task learning framework for
event forecasting that jointly learns multiple related spatial
locations. However, existing methods typically only consider
events using a single geographical granularity and do not
jointly optimize the discernibility and accuracy.

Multi-task learning: In multi-task learning (MTL),
multiple related tasks are learned simultaneously to improve
generalization performance [26]. Many MTL approaches
have been proposed in the past [28]. Evgeniou et al. pro-
posed a regularized MTL that constrained the models of all
the tasks to be close to each other [11]. This task relatedness
can also be characterized by constraining multiple tasks to
share a common underlying structure, such as a common
set of features [4], a common subspace [3], or using a
tree-structured model [15]. For example, Kim et al. [15]
proposed a multi-task learning model which leverges a tree-
structured relationship among the tasks. MTL approaches
have been applied in many domains, including computer
vision and biomedical informatics. To the best of our knowl-
edge, however, ours is the first work that applies MTL for
multi-resolution spatial civil unrest forecasting.

Multi-resolution sensing: Multi-resolution sensing ap-
proaches have been typically applied in domains such as
computer vision and satellite remote sensing [13]. To an-
alyze the rates of advertisements’ responses in websites,
Agarwal et al. [2] developed a method that can estimate
predictions for fine-grained geo-locations. Aiming at a ret-
rospective analysis of historical events, Jiang et al. [13]
designed a framework to extract and summarize events from
different views with different resolutions. Currently, few
researchers are utilizing multi-resolution in spatial event
forecasting. To our knowledge, we are the first to apply
multiple geographical resolutions for civil unrest forecast-
ing.

3. Problem Setup

The problem setup for this paper is presented in this
section.

Denote X = {Xt}Tt as a collection of time-indexed
Twitter data, where Xt ∈ X represents the sub-collection
of tweets at tth time interval and T is the set of time
intervals. According to the granularity of geo-information,
tweets can be geocoded into different spatial resolutions
corresponding to different levels of administrative divisions,
such as country-level, state-level, and city-level. Before for-
mally stating the problem, we first introduce two definitions
related to geographical hierarchy.

Definition 1 (Spatial Subregion) Given two locations qi and
sj under ith and jth (i > j) spatial resolutions, respectively,
if the whole spatial area of location qi is included within
location sj , we say qi is a spatial subregion of sj , denoted
as qi v sj or equally sj w qi (i > j).

USA

California Texas

Los Angeles San Francisco Dallas

(USA, California, Los Angeles) (USA, Texas, Dallas)(USA, California, San Francisco)

Country-level

State-level

City-level

Geographical Hierarchy

Figure 2: The location tuples based on geographical hierarchy

Definition 2 (Location Tuple) As shown in Figure 2, the
location of a tweet or an event is denoted by a location tuple
s = (s1, s2, · · · , sN ), which is an array that configures each
location sn in each spatial resolution n by a parent-child
hierarchy such that sn v sn−1(n = 2, · · · , N); and sn−1 is
called the parent of sn while sn is called the child of sn−1.
A tweet sub-collection Xt can be spatially distributed in N
different ways based on the N different spatial resolutions
such that {Xt,sn}Sn

sn ⊆ Xt, where Sn is the location set
under the nth spatial resolution, n = 1, · · · , N . Xt,sn ∈
NK×1 is a feature vector for the tweets in location sn ∈
Sn at time t, where the elements could be, for instance,
the keyword counts and the number of retweets. K is the
number of features. Also, define S = {Sn}Nn as the set
of all the locations. Because not all of the tweets possess
location information under the finest spatial resolution, we
know that {Xt,sn}Sn

sn ⊆ {Xt,sn−1
}Sn−1
sn−1 , n = 2, · · · , N . In

addition, for each location sn with spatial resolution n at
time τ , we denote the actual occurrence (‘yes’=1 or ‘no’=0)
of a future event as a binary variable Yτ,sn ∈ {0, 1}, where
Yτ,sn = 0 means no event occurs; otherwise Yτ,sn = 1.
According to the definition of the location tuple, we also
have Yτ,s = (Yτ,s1 , · · · , Yτ,sN

). The problem of this paper
can thus be formulated as follows:

Problem Formulation: Given the tweets data Xt in
N different spatial resolutions, the goal is to predict the
occurrence of a future event for location s = (s1, · · · , sN )
at time interval τ , where sn (n = 1, · · · , N) is the location
name for the nth spatial resolution. In addition, τ = t+ p,
where p > 0 is the lead time. Formally, this problem
is formulated as learning a mapping from tweets data to
future event predictions f : Xt,s → {Yτ,s1 , · · · , Yτ,sN } for
locations s at N spatial resolutions.

Definition 3 (Multi-resolution Event Forecasting Error)
The multi-resolution event forecasting error L(W ) is defined
as the summation of errors in all the spatial resolutions
against the labels of actual event occurrence:

L(W ) =
∑N

n

∑Sn

sn
L(Wsn)

where W = {{Wsn}Sn
sn }

N
nis the parameter of the forecasting

model and Wsn ∈ R1×K .L(Wsn) is the sum of the empiri-
cal errors of the prediction f(Xt,sn ,Wsn) against the labels
Yτ,sn for all the time intervals T . L(Wsn) can be a logistic
loss [28] where f(Xt,sn ,Wsn) = 1/(1 + e−Wsn ·Xt,sn ).

Due to the different characteristics of different locations
and in different spatial resolutions, it is unfeasible to build
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Figure 3: A schematic view of the proposed model

a single model to characterize them all simultaneously. To
address this issue, a simple approach is to learn corre-
sponding models for different locations and different spatial
resolutions. However, this creates several challenges: 1)
Data scarcity. Small locations typically lack sufficient data
to train models adequately. Moreover, due to the scarcity of
tweet data with high spatial resolution, prediction tasks that
involve high resolution are also more challenging. 2) Spatial
neighborhood. Forecasting tasks have regional relatedness
such that nearby locations could be influenced by inter-
related events. 3) Multi-resolution event forecasting para-
dox. Contradictory predictions at different spatial resolutions
could also happen. For example, a model that predicts there
will be an event in “Los Angelas” could also predict that
there will be no event in “California”. To address these
three challenges, in the next section, we propose a novel
multi-task learning model named MREF based on mixed-
structured task relatedness and a non-smooth constraint.

4. Multi-Resolution Spatial Event Forecasting

In this section we propose a new model, named Multi-
Resolution Spatial Event Forecasting (MREF), based on
multi-task feature learning. In Section 4.1, the multiple types
of task relatedness are characterized mathematically, and
these are then integrated into the new multi-task feature
learning framework in Section 4.2. In Section 4.3, an ef-
fective algorithm based on ADMM is proposed that ensures
the global optima.

4.1. Heterogeneous Relatedness of Tasks

The forecasting models for all the locations are built
simultaneously by characterizing the structural relationships
and utilizing appropriate shared information across tasks.
Figure 3 illustrates the proposed multi-task learning frame-
work that characterizes all three major aspects of relatedness

among all the locations (tasks) for the problem of multi-
resolution spatial event forecasting: 1) Spatial neighbor-
hood relationships, 2) Spatial resolution relationships, and
3) Parent-child relationships, which are elaborated in turn
below.
1. Spatial neighborhood relationships. Events that occur
at neighboring locations at around the same time could well
involve similar topics, so the tweets from different locations
may share a number of common keywords that are related
to the events. To take this into account, the geographical
hierarchy among locations is leveraged, which is shown as
a tree in top right of Figure 3; the location (task) nodes in
a sub-tree are within a spatial neighborhood.

As illustrated in top right of Figure 3, a geographical
hierarchy is a tree whose nodes consist of all the spatial
locations and the links are the parent-child relationships
among them. In this tree of geographical hierarchy, denote
T = {Ti}i as the set of sub-trees that are defined as
Ti = {sn} ∪ {s′n+1|s′n+1 v sn, n < N}, which means
a sub-tree contains a location sn and all of its children.
Denote Psn,k as the spatial neighborhood relationship model
parameter for location sn and feature k. Define PTi,k as the
set of model parameters for the subtree Ti for feature k such
that:

PTi,k =
⋃

sn∈Ti
Psn,k (1)

To incorporate the spatial neighborhood relationship, the
model needs to enforce a similar feature selection pattern
across the prediction tasks for locations in the subtree Ti.
2. Spatial resolution relationships. Tasks for locations
with the same spatial resolution have a closer spatial-scale,
so tweets from these locations may share a closer scale
of keyword counts and retweet counts. To encompass this
notion, we denote Qsn,k as the spatial resolution relationship
model parameter for location sn and feature k. Denote Q(n)

·,k
as the model parameters for feature k for all the locations
in n spatial resolution such that:

Q
(n)
·,k =

⋃
sn∈Sn

Qsn,k (2)

where Sn is the set of all the locations at the nth spatial res-
olution. When considering spatial resolution relationships,
the model needs to enforce a similar feature selection pattern
across the prediction tasks for locations with the same spatial
resolution.
3. Parent-child relationships. The situation of an event
occurrence in a location indicates and constrains the possible
situations for its child locations, and vice versa. When we
learn a model for a specific location with a specific spatial
resolution, we also “borrow” information from the other
locations with different spatial resolutions, so learning multi-
ple related tasks simultaneously increases the sample size for
each location. The parent-child relationship among locations
within different spatial resolutions can be characterized in
the following lemma and theorem.

Lemma 1 If there is no event in a location, then there is no
event in all of its subregions. Formally, without loss of gen-



erality, assume i > j, then ∀qi v sj ∧ Yτ,sj = 0 : Yτ,qi = 0,
which is equal to ∃sj w qi ∧ Yτ,qi = 1 : Yτ,sj = 1.

Theorem 1 According to the definition of Y such that Yτ,s ∈
{0, 1}, the sufficient and necessary condition of Lemma 1 is
Yτ,sj ≥ max({Yτ,qi |qi v sj , i > j}).

Proof 1 Sufficiency. Given Yτ,sj ≥ max({Yτ,qi |qi v sj , i >
j}) and Yτ,sj ∈ {0, 1}, if Yτ,sj = 0, it is clear that
max(Yτ,qi) = 0, which is equal to Yτ,qi = 0 for any qi v sj .
The sufficiency is proved.

Necessity. If Yτ,sj = 1, then Yτ,sj ≥ max ({Y (i)
τ,qi |qi v

sj}) is satisfied based on the definition of Y . On the other
hand, when Yτ,sj = 0, according to Lemma 1, we know
max(Yτ,qi) = 0. Thus the necessity is proved.

4.2. Objective Function

The above consideration of the heterogeneous related-
ness of forecasting tasks leads to a new multi-task feature
learning framework by applying a general paradigm of
multi-task learning, namely to minimizing the penalized
empirical loss:

min
W
L(W ) + Ω(W ) (3)

where L(W ) is the forecasting error on the training set,
as defined in Definition 3, and Ω(W ) is the regularization
term that encodes structured task relatedness for both spatial
neighborhood relationships and spatial resolution relation-
ships. To achieve this, we decompose the model parameter
W into two components: a tree-structured component P for
spatial neighborhood relationships and a grouping-structured
component Q for spatial resolution relationships such that
W = P + Q. To take into account the parent-child rela-
tionship, a constraint is also added based on Theorem 1. In
all, the objective function for our multi-task feature learning
model is as follows:

min
W
L(W ) + γP

∑K,T

k,Ti
‖PTi,k‖F + γQ

∑K,N

k,n
‖Q(n)
·,k ‖F

s.t. W = P +Q, (4)
f(Xt,sn ,Wsn) ≥ max({f(Xt,s′n+1

,Ws′n+1
)|s′n+1 v sn})

where the Frobenius Norm ‖ · ‖F is utilized in∑K
k

∑T
Ti ‖PTi,k‖

2
F to enforce a similar feature se-

lection among tasks with the spatial neighborhood.∑
k

∑n
i ‖Q

(i)
·,k‖2F enforces similar feature selection among

tasks in the same spatial resolution. The inequality constraint
is introduced from Theorem 1 by considering the mapping
f : Xt,sn → Yτ,sn . γ1 and γ2 are regularization parameters
such that γP = γ/

∑T
Ti

√
|Ti| and γQ = γ/

∑N
n

√
|Sn|

where γ is the regularization parameter that balances the
trade off between the loss function L(W ) and the regular-
ization terms.

The objective function in Equation (4) encompasses the
joint consideration of the heterogeneous task relationships.
However, to solve this objective function two challenges
must first be overcome: 1) non-smooth inequality constraint,

and 2) overlapping among the coupled sub-trees, which are
discussed and addressed in the following.
1. Non-smooth inequality constraint.

The non-smooth function max(·) in the inequality con-
straint in Equation 4 makes the objective function difficult to
solve. To address this challenge, we propose to replace this
term with an alternative constraint that applies a sufficiency
condition to the original constraint:

f(Xsn,t,Wsn) ≥ f(Xs′n+1,t
,Ws′n+1

), s′n+1 v sn (5)

which is both linear and smooth and thus ensures the
accurate solution of the original objective function.
2. Overlapping among the coupled sub-trees.

It can be seen from Figure 3 that a node in the geo-
graphical hierarchy tree could belong to two sub-trees. For
example, state-level nodes belong to a sub-tree whose root
is a country-level node, but they can also be the root of
another sub-tree whose leaves are city-level nodes. This
issue prevents an easy solution because a model parameter
could be regularized by different Frobenius-Norm terms. To
solve this, we propose an efficient optimization solution by
introducing two auxiliary variables, U and V . U is the model
parameter set for the set of sub-trees TO with roots in odd-
number (i.e., n = 1, 3, 5, · · · ) spatial resolutions, while V
represents the set of sub-trees TE with roots in even-number
(i.e., n = 2, 4, 6, · · · ) levels. Thus, neither U nor V contain
overlapping sub-trees. We also know that TO ∪TE = T and
TO ∩ TE = ∅.

Therefore, the objective function becomes:

min
W
L(W )+γ0

∑K

k

∑TO

Ti
‖UTi,k‖F +γ1

∑K

k

∑TE

Ti
‖VTi,k‖F

+ γ2
∑K

k

∑N

n
‖Q(n)
·,k ‖F

s.t. W = P +Q, P = U, P = V, (6)
g(X,W ) + β = 0, β = β+, β+ ≥ 0

where g(X,W ) = {g(Xsn,t,Wsn)}S
′,T

sn,t is a matrix of
which each element g(Xsn,t,Wsn) = f(Xs′n+1,t

,Ws′n+1
) −

f(Xsn,t,Wsn) and S′ =
⋃N−1
n=1 Sn. Two auxiliary matrix

variables β and β+ are added, which have the same size
of g(X,W ). γ0, γ1, and γ2 are regularization parameters
such that γ0 = γ/

∑TO
Ti

√
|Ti|, γ1 = γ/

∑TE
Ti

√
|Ti|, and

γ2 = γ/
∑N

n

√
|Sn| where γ is the regularization parameter

that balances the trade off between the loss function L(W )
and the regularization terms.

4.3. Parameter Optimization of MREF

The objective function in Equation (6) is convex because
the loss function, regularization terms, and constraints are
all convex. To solve the convex optimization problem with
constraints, the alternating direction method of multipliers
(ADMM) has begun to be widely utilized as an efficient
algorithm that first breaks the original large problem into
smaller subproblems that can be solved easily and fast. Here
we propose a ADMM-based framework that solves Equation



(6) by first obtaining its augmented Lagrangian format as
follows:

min
Θ
L(W ) + γ0

∑K,TO

k,Ti
‖UTi,k‖F + γ1

∑K,TE

k,Ti
‖VTi,k‖F

+ γ2

∑
k

∑N

n
‖Q(n)
·,k ‖F + 〈α1,W − P −Q〉

+
ρ

2
‖W − P −Q‖2F + 〈α2, P − U〉+

ρ

2
‖P − U‖2F

+ 〈α3, P − V 〉+
ρ

2
‖P − V ‖2F + 〈α4, g(W ) + β〉

+
ρ

2
‖g(W ) + β‖2F + 〈α5, β − β+〉+

ρ

2
‖β − β+‖2F (7)

where Θ = {W,P,U, V, α, β, β+} are the parameters to be
optimized. α = {αi}5i=1 is the set of Lagrangian mulipliers
that are the dual variables of ADMM and ρ is the step size
of the dual step. The parameters Θ = {W,P,U, V, α, β, β+}
are alternately solved by the proposed algorithm, called
mixed-structured multi-task learning, as shown in Algorithm
1. It alternately optimizes each of the parameters in Θ until
convergence is achieved. Lines 4-5 show the alternating
optimization of each of the parameters. The calculation of
the primal and dual residuals are illustrated in Line 6. Lines
7-13 describe the updating of the penalty parameter ρ, which
follows the updating strategy proposed by Boyd et al. [8].
The detailed optimization steps are described in more detail
below.

Algorithm 1 Mixed-structured Multi-task Learning
Input: X , Y , γ
Output: solution W

1: Initialize ρ = 1, W,U, V, P,Q, αi, β, β+ = 0, i = 1, · · · , 5.
2: Choose εp > 0, εd > 0.
3: repeat
4: Update W,U, V, P,Q by Equations (8), (9), and (10).
5: Update {αi}5i=1, β, β

+ by Equations (11)and (13).
6: Update primal and dual residuals p and d.
7: if r > 10s then
8: ρ← 2ρ # Update penalty parameter
9: else if 10r < s then

10: ρ← ρ/2 # Update penalty parameter
11: else
12: ρ← ρ # Update penalty parameter
13: end if
14: until p < εp and d < εd # Convergence criterion

1. Update W , fix others.
The optimization of the parameter W is a generalized

linear regression with least squares loss functions:

W ← argmin
W

L(W ) + 〈α2, g(W ) + β〉+ ρ

2
‖g(W ) + β‖2F

+ 〈α1,W − P −Q〉+
ρ

2
‖W − P −Q‖2F (8)

In order to solve this problem, a second-order Taylor expan-
sion is performed, where we approximate the Hessian using
a multiple of the identity with an upper bound of (1/4)I .
2. Update P , fix others.

The optimization of P can be formulated as the follow-
ing least squares problem:

P ← argmin
P

〈α1,W−P−Q〉+ 〈α2, P−U〉+
ρ

2
‖P−U‖2F

+
ρ

2
‖W − P −Q‖2F + 〈α3, P − V 〉+

ρ

2
‖P − V ‖2F (9)

where the solution is: 1
3 (W+U+V −Q)+ 1

3ρ (α1−α2−α3).
3. Update U, V,Q, fix others.

The optimization of U , V , and Q are all problems of
least squares loss functions with `2,1 norms:

U ← argmin
U

γ0

∑K,TO

k,Ti
‖UTi,k‖F+〈α2, P−U〉+

ρ

2
‖P−U‖2F

V ← argmin
V

γ0

∑K,TE

k,Ti
‖VTi,k‖F+〈α2, P−V 〉+

ρ

2
‖P−V ‖2F

Q← argmin
Q

γ2

∑
k

∑N

n
‖Q(n)
·,k ‖F + 〈α1,W − P −Q〉

+
ρ

2
‖W − P −Q‖2F (10)

where all 3 problems can be efficiently solved by using
proximal operators [6].
4. Update β, fix others.

The optimization of β can be formulated as the following
least squares problem:

β ← argmin
β

〈α4, g(W ) + β〉+ ρ

2
‖g(W ) + β‖2F

+ 〈α5, β − β+〉+
ρ

2
‖β − β+‖2F (11)

where the solution is: β = 1
2 (β+ − g(W ))− 1

2ρ (α4 + α5).
5. Update β+, fix others.

The optimization of β+ can be formulated as a least
squares problem with linear inequality constraint:

β+ ← argmin
β+≥0

〈α5, β − β+〉+
ρ

2
‖β − β+‖2F (12)

To eliminate inequality constraint, first let c2 = β+, c ∈ R
and we get the following equivalent problem:

β+ ← argmin
c2
〈α5, β − c2〉+

ρ

2
‖β − c2‖2F

It can be easily seen that β+ has two solutions: β+ = c2 =
β + α5/ρ and β+ = c2 = 0. Therefore, the solution is
β+ = max(β + α5/ρ, 0).
6. Update αi(i = 1, · · · , 5)

The updating of the dual variables αi is as follows:

α1 ← α1 + ρ · (W − P −Q)

α2 ← α2 + ρ · (P − U), α3 ← α3 + ρ · (P − V ) (13)
α4 ← α4 + ρ · (F + β), α5 ← α5 + ρ · (β − β+)

5. Experiments

In this section, the proposed model MREF is evaluated
on 11 real-world datasets from two different domains. After
the experiment setup has been introduced in Section 5.1,
the effectiveness of the methods is evaluated against several
existing methods on different spatial resolutions, along with
an analysis of the performances on precision-recall curves
for all the comparison methods, in Section 5.2.



Table 1: Datasets and Labels
Dataset #Tweets Label sources 1 #Events
Argentina 160,564,890 Cları́n; La Nación; Infobae 1427

Brazil 185,286,958 O Globo; O Estado de São
Paulo; Jornal do Brasil 3417

Chile 97,781,414 La Tercera; Las Últimas
Notı́cias; El Mercurio 776

Colombia 158,332,002 El Espectador; El Tiempo; El
Colombiano 1287

Ecuador 50,289,195 El Universo; El Comercio; Hoy 511

El Salvador 21,992,962 El Diáro de Hoy; La Prensa
Gráfica; El Mundo 730

Mexico 197,550,208 La Jornada; Reforma; Milenio 5907

Paraguay 30,891,602 ABC Color; Ultima Hora; La
Nacı́on 2114

Uruguay 10,310,514 El Paı́; El Observador 664

Venezuela 167,411,358 El Universal; El Nacional;
Ultimas Notı́cias 3320

U.S. 11,993,211,616 CDC Flu Activity Map 1027

5.1. Experimental Setup

5.1.1. Datasets and Labels. The experimental evaluations
in this study are based on 11 datasets on different domains.
Of these, 10 datasets are used for event forecasting under
the civil unrest domain while the other is applied to the
influenza outbreaks domain. For the civil unrest domain
datasets, Table 2 shows the specific country from which
the Twitter data was gathered for each dataset. The raw
Twitter data is collected from Datasift Twitter collection
engine and divided into periods for the training and test
sets as shown in Table 2. The data collection is partitioned
into a sequence of date-interval bins for forecasting day-
by-day. The event forecasting results are validated against
a labeled events set, known as the gold standard report
(GSR), exclusively provided by MITRE [16]. GSR is a
collection of civil unrest news reports from the most influ-
ential newspaper outlets in Latin America [18], as shown in
Table 1. For civil unrest forecasting, 3 spatial resolutions are
considered, namely country-level, state-level, and city-level.
An example of a labeled GSR event is given by the tuple:
(CITY=“Hermosillo”, STATE = “Sonora”, COUNTRY =
“Mexico”, DATE = “2013-01-20”).

For the dataset applied to the influenza outbreaks do-
main, we collected tweets containing at least one of 124
predefined flu-related keywords (e.g., “cold”, “fever”, and
“cough”) provided by Paul and Dredze [17]; the time period
of this dataset is also shown in Table 2. The data collection
for the influenza dataset is partitioned into a sequence of
week-interval bins for week-wise forecasting. The predic-
tions were validated against the flu statistics reported by the
Centers for Disease Control and Prevention (CDC). CDC
typically organizes the influenza surveillance data by HHS
regions2, which groups the US’s states into 10 regions. CDC
publishes weekly influenza-like illness (ILI) activity level
within each state in the United States using the proportion
of outpatient visits to healthcare providers for ILI. There
are 4 ILI activity levels: minimal, low, moderate, and high,
where the level “high” corresponds to a salient flu outbreak
and is considered the target for forecasting. In forecasting
influenza outbreaks, 3 spatial resolutions are considered,
namely country-level, HHS-region-level, and state-level. An

example of a CDC flu outbreak event is: (STATE = “Califor-
nia”, HHS REGION = “Region 9”, COUNTRY = “United
States”, WEEK = “01-09-2013 to 01-15-2013”).

5.1.2. Parameter Settings and Metrics. There is one tun-
able parameter in our MREF model, namely the regulariza-
tion parameter γ. This parameter was set for all 10 datasets
based on 10-fold cross validation on the training set.

In the experiment, the event forecasting task is to predict
whether or not there will be an event in the next time-step for
a specific location at several different spatial resolutions. For
civil unrest datasets, a time step is one day and the spatial
resolutions are country level, state level, and city level. For
disease outbreaks, a time step is one week and spatial reso-
lutions are country level, HHS-region level, and state level.
For each spatial resolution, a predicted event is matched to
a GSR event if the location for the current spatial resolution
is matched and the date is within 2 time steps before the
actual event occurrence; otherwise, it is considered a false
forecast. To validate the prediction performance, different
metrics are adopted. Precision designates the fraction of all
the predictions that match actual events that occur. Recall
denotes the percentage of all the actual events that have
been successfully predicted. In addition, another metric, F-
measure, is defined as the harmonic mean of precision and
recall: F-measure = 2 ·Precision ·Recall/(Precsion+Recall).

5.1.3. Comparison Methods. The following methods are
included in the performance comparison:

1. LASSO [18]. Different LASSO models are built for
corresponding spatial resolutions. The feature set is the set
of keyword counts. The regularization parameter is set as
0.15 based on a 10-fold cross validation on the training set.

2. Multitask Learning (MTL) [26]. In multi-task model,
each task is the forecasting for each location and spatial res-
olution. Keyword counts are the features. The regularization
parameters λ1 = 0.015 and λ = 0.001 are set based on a
10-fold cross-validation.

3. Tree-guided Group Lasso for Multi-task Learning
(TMTL) [15]. Here the relationships among the tasks follow
the geo-hierarchy defined in Figure 2. Specifically, each
subtree consists of a parent task as root and all of its children
as leaves, as defined in Definition 2. Keyword counts are the
features. The regularization parameter λ = 0.3 are set based
on a 10-fold cross-validation.

4. Autoregressive exogenous (ARX) [1]. For each sep-
arate location, the count of future events is predicted and
dependent on both the counts of historical events and tweets
indexed by the keywords. When forecasting, an output not
less than “1” indicates event occurrence; otherwise no event
is deemed to have occurred.

5. Logistic regression (LR) [9]. For each spatial res-
olution, LR utilizes a logit function to map the tweets
observations into future event occurrences (“0” denotes no

1. In addition to the top 3 domestic news outlets, the following news outlets
are included: The New York Times; The Guardian; The Wall Street Journal; The
Washington Post; The International Herald Tribune; The Times of London; Infolatam.

2. HHS regions: http://www.hhs.gov/about/agencies/regional-offices/

http://www.hhs.gov/about/agencies/regional-offices/


Table 2: Domains for the Experimental Evaluations
Domain Training period Test period Spatial resolution Datasets

Civil Unrest 2013-01-01∼2013-12-31 2014-01-01∼2014-12-31 country, state, city Argentina, Brazil, Chile, Colombia, Ecuador, El
Salvador, Mexico, Paraguay, Uruguay, Venezuela

Influenza 2011-01-01∼2013-12-31 2014-01-01∼2014-12-31 country, HHS-region, state the United States

Table 3: Event forecasting performance on multiple civil unrest datasets
City Level (precision, recall, F-measure)

Method Brazil Colombia Ecuador El Salvador Mexico Paraguay Uruguay Venezuela

ARX 0.63,0.47,0.54 0.30,0.40,0.35 0.33,0.47,0.39 0.44,0.42,0.43 0.43,0.20,0.27 0.52,0.27,0.36 0.53,0.60,0.56 0.51,0.23,0.32
LR 0.43,0.41,0.42 0.33,0.38,0.36 0.37,0.39,0.38 0.50,0.34,0.41 0.30,0.11,0.16 0.52,0.23,0.32 0.48,0.47,0.48 0.40,0.33,0.36
KDE-LR 0.99,0.01,0.02 0.68,0.01,0.01 0.16,0.13,0.15 0.28,0.09,0.14 0.02,0.15,0.04 0.04,0.35,0.07 0.13,0.93,0.22 0.69,0.03,0.06
LDA-LR 1.00,0.01,0.02 0.01,0.63,0.02 0.16,0.13,0.15 0.26,0.09,0.13 0.01,0.19,0.02 0.04,0.36,0.07 0.14,0.93,0.24 0.99,0.04,0.07
LASSO 0.74,0.45,0.56 0.40,0.41,0.40 0.34,0.42,0.38 0.62,0.36,0.46 0.18,0.42,0.25 0.72,0.25,0.37 0.61,0.46,0.52 0.19,0.80,0.31
MTL 0.68,0.48,0.56 0.37,0.44,0.41 0.24,0.55,0.34 0.42,0.45,0.43 0.42,0.24,0.31 0.57,0.29,0.38 0.60,0.54,0.56 0.37,0.45,0.41
TMTL 0.46,0.42,0.44 0.36,0.34,0.35 0.37,0.43,0.40 0.57,0.43,0.49 0.29,0.25,0.27 0.25,0.42,0.31 0.60,0.64,0.62 0.41,0.58,0.48
MREF 0.79,0.47,0.59 0.37,0.39,0.38 0.38,0.43,0.40 0.58,0.43,0.50 0.29,0.30,0.29 0.75,0.26,0.39 0.66,0.60,0.63 0.24,0.49,0.33

State Level (precision, recall, F-measure)
Method Brazil Colombia Ecuador El Salvador Mexico Paraguay Uruguay Venezuela
ARX 0.73,0.63,0.67 0.35,0.41,0.38 0.34,0.51,0.41 0.53,0.55,0.54 0.55,0.39,0.46 0.48,0.42,0.45 0.33,0.57,0.42 0.63,0.41,0.50
LR 0.53,0.56,0.55 0.34,0.54,0.41 0.21,0.69,0.32 0.51,0.53,0.52 0.30,0.89,0.45 0.58,0.37,0.45 0.49,0.45,0.47 0.55,0.48,0.51
KDE-LR 1.00,0.08,0.16 0.02,0.18,0.04 0.10,0.38,0.16 0.10,0.29,0.14 0.93,0.23,0.37 1.00,0.12,0.21 0.23,0.20,0.21 0.37,0.37,0.37
LDA-LR 1.00,0.08,0.16 0.99,0.05,0.09 0.08,0.79,0.15 0.08,0.32,0.12 0.94,0.23,0.37 1.00,0.12,0.21 0.19,0.21,0.20 0.41,0.40,0.41
LASSO 0.70,0.67,0.68 0.43,0.43,0.43 0.34,0.50,0.40 0.64,0.44,0.52 0.41,0.69,0.52 0.31,0.77,0.44 0.52,0.49,0.50 0.64,0.40,0.49
MTL 0.60,0.72,0.66 0.40,0.50,0.45 0.39,0.51,0.44 0.55,0.51,0.53 0.70,0.30,0.42 0.65,0.37,0.47 0.58,0.55,0.56 0.57,0.54,0.55
TMTL 0.61,0.36,0.45 0.37,0.38,0.37 0.36,0.49,0.41 0.61,0.51,0.56 0.42,0.34,0.38 0.43,0.50,0.46 0.52,0.52,0.52 0.54,0.37,0.44
MREF 0.75,0.64,0.69 0.36,0.51,0.43 0.37,0.49,0.42 0.27,0.59,0.37 0.35,0.77,0.49 0.58,0.41,0.48 0.63,0.58,0.61 0.53,0.42,0.47

Country Level (precision, recall, F-measure)
Method Brazil Colombia Ecuador El Salvador Mexico Paraguay Uruguay Venezuela
ARX 0.93,1.00,0.96 0.73,0.97,0.83 0.53,0.87,0.65 0.66,0.97,0.78 0.99,1.00,1.00 0.90,0.87,0.88 0.60,0.90,0.72 0.90,0.98,0.94
LR 0.95,1.00,0.97 0.79,0.97,0.87 0.56,0.95,0.70 0.78,0.82,0.80 1.00,0.98,0.99 0.89,0.97,0.93 0.63,0.93,0.75 0.92,0.96,0.94
KDE-LR 0.97,0.96,0.97 0.93,0.80,0.86 0.88,0.59,0.70 0.85,0.76,0.80 1.00,0.99,1.00 1.00,0.85,0.92 0.97,0.69,0.80 1.00,0.91,0.95
LDA-LR 0.96,0.96,0.96 0.95,0.82,0.88 0.95,0.57,0.71 0.82,0.78,0.80 0.93,1.00,0.96 0.91,0.92,0.91 0.94,0.70,0.80 1.00,0.91,0.95
LASSO 0.95,0.99,0.97 0.81,0.95,0.87 0.59,0.93,0.72 0.75,0.86,0.80 0.99,0.99,0.99 0.90,0.99,0.94 0.54,0.99,0.70 0.93,0.99,0.96
MTL 0.98,0.97,0.97 0.83,0.94,0.88 0.58,0.88,0.70 0.79,0.87,0.83 0.99,0.99,0.99 0.92,0.94,0.93 0.68,0.75,0.71 0.95,0.95,0.95
TMTL 0.82,0.98,0.89 0.88,0.92,0.90 0.67,0.87,0.76 0.70,0.87,0.78 1.00,1.00,1.00 0.94,0.98,0.96 0.67,0.72,0.70 0.88,1.00,0.94
MREF 0.97,1.00,0.98 0.86,0.94,0.90 0.66,0.91,0.76 0.76,0.98,0.86 1.00,1.00,1.00 0.93,0.99,0.96 0.69,0.97,0.81 0.96,1.00,0.98

Overall (precision, recall, F-measure)
Method Brazil Colombia Ecuador El Salvador Mexico Paraguay Uruguay Venezuela
ARX 0.76,0.70,0.73 0.46,0.59,0.52 0.40,0.62,0.49 0.54,0.65,0.59 0.66,0.53,0.59 0.63,0.52,0.57 0.49,0.70,0.58 0.68,0.54,0.60
LR 0.64,0.66,0.65 0.49,0.63,0.55 0.38,0.68,0.49 0.60,0.56,0.58 0.53,0.66,0.59 0.66,0.52,0.58 0.53,0.62,0.57 0.62,0.59,0.60
KDE-LR 0.99,0.35,0.52 0.54,0.33,0.41 0.38,0.37,0.37 0.41,0.38,0.39 0.65,0.46,0.54 0.68,0.44,0.53 0.44,0.61,0.51 0.69,0.44,0.54
LDA-LR 0.99,0.35,0.52 0.65,0.50,0.57 0.40,0.50,0.44 0.39,0.40,0.39 0.63,0.47,0.54 0.65,0.47,0.55 0.42,0.61,0.50 0.80,0.45,0.58
LASSO 0.80,0.70,0.75 0.55,0.60,0.57 0.42,0.62,0.50 0.67,0.55,0.60 0.53,0.69,0.60 0.64,0.67,0.65 0.56,0.65,0.60 0.59,0.73,0.65
MTL 0.75,0.72,0.73 0.53,0.63,0.57 0.40,0.65,0.50 0.59,0.61,0.60 0.70,0.51,0.59 0.71,0.53,0.61 0.62,0.61,0.61 0.63,0.65,0.64
TMTL 0.63,0.59,0.59 0.54,0.55,0.54 0.47,0.60,0.53 0.62,0.60,0.61 0.57,0.53,0.55 0.54,0.63,0.58 0.60,0.63,0.61 0.61,0.64,0.62
MREF 0.84,0.70,0.76 0.53,0.61,0.57 0.47,0.61,0.53 0.53,0.66,0.59 0.55,0.70,0.61 0.75,0.55,0.63 0.66,0.72,0.67 0.58,0.65,0.61

occurrence, “1” denotes occurrence). The input features here
are the counts of keywords.

6. Latent Direchlet allocation based Logistic regression
(LDA-LR) [23]. After extracting the latent topics by LDA
from the tweets, the LDA-LR model is built on features that
are the proportions of the latent topics. Individual models
are built for each spatial resolution. The number of topics
for each dataset is set based on 10-fold cross-validation.

7. Kernel density estimation-based logistic regression
(KDE-LR) [12]. This approach utilizes KDE-smoothed
historical-event counts and the proportions of latent topics
as features, and builds a model for each spatial resolution.
The number of topics for each dataset is set based on 10-fold
cross-validation.
Table 4: Forecasting performance on influenza outbreak dataset
(Precision, Recall, and F-measure)

Method State-level Region-level Country-level Overall Runtime

ARX 0.09,0.52,0.15 0.12,0.86,0.21 0.58,0.98,0.73 0.26,0.79,0.39 21 sec
LR 0.08,0.20,0.12 0.26,0.48,0.33 0.85,0.95,0.90 0.40,0.54,0.46 37 sec
KDE-LR 0.74,0.07,0.12 0.24,0.21,0.22 1.00,0.53,0.69 0.66,0.27,0.38 2026 sec
LDA-LR 0.56,0.03,0.05 0.73,0.14,0.24 0.65,0.53,0.59 0.65,0.23,0.34 296 sec
LASSO 0.12,0.84,0.20 0.18,1.00,0.30 0.77,1.00,0.87 0.36,0.95,0.52 118 sec
MTL 0.94,0.12,0.21 0.93,0.18,0.21 1.00,0.68,0.81 0.96,0.33,0.49 45 sec
TMTL 0.15,0.54,0.24 0.49,0.35,0.41 0.70,1.00,0.82 0.45,0.63,0.49 656 sec
MREF 0.17,0.57,0.27 0.59,0.35,0.44 0.75,1.00,0.86 0.50,0.64,0.56 923 sec

5.2. Performance

In this section, the performances of all the methods are
evaluated and compared. First, the specific spatial event
forecasting performance in different spatial resolutions is
discussed for civil unrest and influenza outbreaks, after
which the Precision-Recall curves for the overall forecasting
performance are examined.

5.2.1. Civil unrest event forecasting performance at mul-
tiple spatial resolutions. In Table 3, the performance of our
MREF and competing methods are compared for civil unrest
event forecasting. Three metrics, namely precision, recall,
and F-measure, are adopted to quantify the performance.
Due to space limitation, only 8 out of the 10 datasets are
illustrated; the results for the other 2 datasets, Argentina and
Chile, are similar to the 8 shown. Model performance for
each of the spatial resolution levels and for the overall per-
formance are shown. The overall performance is calculated
based on Definition 3.

Table 3 shows that the forecasting performance generally
improves as the spatial resolution becomes coarser. For
example, at the city-level, the F-measure is typically 0.2 to
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Figure 4: Precision-Recall curves for the performances on different datasets

0.5, while for the state-level, it is typically 0.3 to 0.6, and for
country-level, it increases to about 0.8 to 1.0. In general, the
performance of the methods utilizing regularization terms is
better than for other methods. Specifically, LASSO, MTL,
TMTL, and our MREF model achieve better performances
for each spatial resolution level than the others. LASSO,
MTL, TMTL, and MREF obtain the best overall perfor-
mance in 7 of the 8 datasets shown, demonstrating the
effectiveness of utilizing regularization terms for filtering
out unrelated features and ensuring the model’s generaliz-
ability. Among these, the MTL and TMTL methods also
take into account the relatedness of different geographical
locations, enabling it to handle the data scarcity inherent
in small locations. Apart from location relatedness, MREF
also considers the parent-child relationships between lo-
cations and supports information sharing among different
spatial resolutions. Among the other methods LR, KDE-LR,
and LDA-LR, all of which utilize the logistic regression
framework, KDE-LR and LDA-LR obtain similar perfor-
mances because they both consider the latent topics. The
performance of ARX is not as good as regularization-based
methods, which consistently outperform ARX by 1%∼18%.
Of these datasets, all the methods generally achieve better
performances for Brazil, which is a large country with
a large number of civil unrest events. In all, our MREF
model outperforms all the other methods in 6 datasets in
overall performance, 5 datasets in city-level performance,
4 datasets in state-level performance, and all 8 datasets in
country-level performance. This is because MREF lever-
ages the tasks’ relationships in terms of geo-hierarchy, geo-
resolution, and geo-parent-child constraints in Theorem 1.
Moreover, MREF achieves good performance at the finest
granularity, namely city-level, outperforming the other meth-
ods by around 9% in 5 datasets and placing second in other
2 more. This is because MREF can provide better predic-
tions at the finest resolution by borrowing information from
coarser resolutions, which effectively handles the shortage
of finest-level data in social media datasets.

5.2.2. Influenza outbreak event forecasting performance
in multiple spatial resolutions. In Table 4, the performance
of MREF and the competing methods are illustrated for
influenza outbreak event forecasting. Their performances
for all the different spatial resolutions and their overall

performance have been investigated.
As in Table 3, Table 4 shows that the forecasting perfor-

mance generally becomes better when the spatial resolution
becomes coarser. For example, at the state-level, the F-
measure is typically 0.1 to 0.2, at the region-level, the F-
measure is typically 0.2 to 0.4, and at the country-level,
the F-measure increases to about 0.6 to 0.9. In general, the
performance of the methods utilizing regularization terms
is better than other methods. In particular, LASSO, MTL,
TMTL and MREF achieve better performance at each spatial
resolution level than the others. For example, LASSO, MTL,
TMTL, and MREF obtain the best overall performances,
with F-measures of around 0.5, while the other methods
are lower, at around 0.3 to 0.4. This demonstrates the
effectiveness of utilizing regularization terms for filtering
out unrelated features and ensuring the model’s general-
izability. KDE-LR and LDA-LR achieve similar perfor-
mances because they both consider the latent topics as
features. The performance of ARX is not as good as those
of regularization-based methods, which outperforms ARX
by over 20%. MREF outperforms all the other methods
for overall performance, by 11% at the state-level, 7% at
the region-level, and 8% overall. This again demonstrates
the advantage enjoyed by MREF due to characterizing the
location relatedness and heterogeneity of locations.

5.2.3. Efficiency on running time. The rightmost column
of Table 4 shows the training time efficiency comparison
for forecasting influenza outbreaks. The running times on
test set for all the comparison methods are instant (i.e., less
than 0.01 second for one prediction) so that are not provided
here. According to Table 4, the running time of ARX was
21 seconds, outperforming the other methods. The running
times achieved by all these methods were only a maximum
of 40 minutes for 3-year-long huge training set for week-
wise event forecasting tasks, making this eminently practical
for real-world applications. The efficiency evaluation results
on civil unrest datasets follow a similar pattern and are not
provided due to the space limitation.

5.2.4. Event forecasting performance on Precision-Recall
curves. Figure 4 illustrates the event forecasting overall
performance on Precision-Recall curves for 3 datasets in
two domains, namely civil unrest and influenza outbreaks.



These curves are drawn by varying the boundary between
values for positive and negative predictions. The other civil
unrest datasets follow a similar pattern of the “El Salvador”
and “Uruguay” datasets and are not provided here due to
the space limitation. The calculation of the overall perfor-
mance again follows that provided in Definition 3. For the
3 datasets shown in Figure 4, MREF generally outperforms
the other methods because it is in most cases the closest
to (1,1) points in the plots. Moreover, the ROC curves of
MREF are consistently above the other methods in these
datasets, when precision and recall vary. Other than MREF,
the models MTL, TMTL, and LASSO achieve the most
competitive results. The performance of KDE-LR and LDA-
LR exhibit similar patterns because they utilize latent topics
as features, unlike the other methods. Once again, ARX
obtains a particularly poor performance for the flu dataset,
although it achieves an average performance in the other
datasets.

6. Conclusion

The accuracy and discernibility of a spatial event fore-
casting model are two key concerns. But the joint considera-
tion and optimization of them suffer from several challenges.
In this paper, we propose a new multi-resolution spatial
event forecasting framework to address all the challenges
simultaneously. To achieve this, we propose a novel multi-
task learning model that leverages the heterogeneous rela-
tionships among the prediction tasks, and develop an ef-
fective parameter optimization algorithm based on ADMM.
Experiments on 11 datasets in two different domains were
conducted to evaluate the performance and parameter sensi-
tivity of the proposed model. The results demonstrated that
because of the effective utilization of the shared information
across different spatial resolutions and neighborhoods, the
proposed model outperforms the other comparison methods.
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