
Can an LLM find its way around a Spreadsheet?
Cho-Ting Lee
Virginia Tech

Arlington, VA, USA
choting@vt.edu

Andrew Neeser
Virginia Tech

Blacksburg, VA, USA
aneeser24@vt.edu

Shengzhe Xu
Virginia Tech

Arlington, VA, USA
shengzx@vt.edu

Jay Katyan
Virginia Tech

Blacksburg, VA, USA
jkatyan@vt.edu

Patrick Cross
Virginia Tech

Blacksburg, VA, USA
patrickcross7@vt.edu

Sharanya Pathakota
Virginia Tech

Blacksburg, VA, USA
sharanyap21@vt.edu

Marigold Norman
World Forest ID

Washington DC, USA
marigold.norman@worldforestid.org

John Simeone
Simeone Consulting
Littleton, NH, USA

simeoneconsulting@gmail.com

Jaganmohan Chandrasekaran
Virginia Tech

Arlington, VA, USA
jagan@vt.edu

Naren Ramakrishnan
Virginia Tech

Arlington, VA, USA
naren@cs.vt.edu

Abstract—Spreadsheets are routinely used in business and
scientific contexts, and one of the most vexing challenges is
performing data cleaning prior to analysis and evaluation. The
ad-hoc and arbitrary nature of data cleaning problems, such
as typos, inconsistent formatting, missing values, and a lack of
standardization, often creates the need for highly specialized
pipelines. We ask whether an LLM can find its way around
a spreadsheet and how to support end-users in taking their
free-form data processing requests to fruition. Just like RAG
retrieves context to answer users’ queries, we demonstrate how
we can retrieve elements from a code library to compose data
preprocessing pipelines. Through comprehensive experiments, we
demonstrate the quality of our system and how it is able to
continuously augment its vocabulary by saving new codes and
pipelines back to the code library for future retrieval.

Index Terms—LLMs, code generation, data cleaning, end-user
programming

I. INTRODUCTION

Pre-trained large language models (LLMs) have demon-
strated significant proficiency in generating code from natural
language prompts, heralding a new era in software develop-
ment [1, 2, 3, 4]. In addition to generating code, modern
integrated development environments (IDEs) also incorporate
LLMs to assist with error correction, code refactoring, and
multilingual programming knowledge. By engaging in English
conversations, LLMs can function as coding assistants, en-
abling users with limited proficiency to produce accurate and
executable code to accomplish their tasks [5, 6].

Nevertheless, LLMs have not yet attained the maturity to
address all or most challenges programmers face in software
development and machine learning [7, 8]. One of the vexing
aspects for programmers involves processing tabular data, e.g.,
in the form of spreadsheets [9, 10]. Such datasets (Fig. 1
for example) frequently suffer from issues like typographical
errors, inconsistent formatting, missing values, and lack of

Fig. 1. Missing values, inconsistent formatting, misspellings, and other
similar issues are frequently encountered in large spreadsheets. Our approach,
TradeSweep , proposes the use of an LLM to systematize data cleaning and
transformations.



standardization, necessitating the creation of highly specialized
pipeline [11, 12].

Data cleaning and data preprocessing is not merely a matter
of resolving inconsistencies; it can significantly impact down-
stream results [13, 14]. For example, correcting typographical
errors in a dataset may inadvertently lead to over-clustering
or under-clustering of the relevant column, while inaccurately
resolving entities can distort the true distribution of data
points. Therefore, these processes must be approached with
care and deliberation, with careful attention to sequential
transformations. The need for automation support is widely
acknowledged [15, 16, 17], particularly for a “human-in-the-
loop” pipeline to guide the cleaning process and prevent
spurious results.

We present TradeSweep (named for its focus on tabular trade
datasets), an approach to use LLMs to systematically trans-
duce spreadsheets. TradeSweep interprets English requests for
data preprocessing and generates code proposals that can be
composed and applied to targeted datasets, achieving high
performance. Similar to how Retrieval-Augmented Generation
(RAG) retrieves context to answer users’ queries, we demon-
strate how elements from a code library can be stored and
retrieved to compose complex pipelines.

The contributions of this paper are as follows:
• TradeSweep utilizes English conversations to understand

and respond to users’ requests with Python code encom-
passing preprocessing functions, supporting three main
capabilities:

1) It produces new code when requested for a com-
pletely new task.

2) It can precisely modify its proposed code based on
users’ feedback in English conversations.

3) The proposed code is automatically tailored to the
target data, including accurate column names and
suitable algorithms.

• TradeSweep develops and continuously expands a library
of fundamental data preprocessing codes by storing ex-
ecutable functions that have been successfully deployed
previously. The augmentation of the code library supports
the composition and creation of elaborate data pipelines.

• To incorporate feedback from users who lack program-
ming expertise, TradeSweep offers both code proposals
and execution results on example data. This allows users
to determine whether to accept TradeSweep ’s proposal
or to make modifications based on output data visualiza-
tions, rather than focusing on code specifics.

• We perform extensive experiments on three trade datasets.
Results show that TradeSweep is capable of generating
executable and efficient code for data preprocessing,
significantly reducing time and effort for data analysts.

II. RELATED WORK

A. Generating Formulas and SQL queries

Formulas and SQL queries are the lingua franca of spread-
sheets. “Formula Language Model for Excel” (FLAME) [18]

is a T5-based model trained exclusively on Excel formulas
and used for code generation tasks such as formula repair,
formula completion, and similarity-based formula retrieval.
(TradeSweep is designed to address various formats of tabular
data, including Excel and CSV.)

A significant amount of research focuses on converting
natural language questions into executable SQL queries (often
referred to as Text-to-SQL) [19, 20, 21, 22]. Most exist-
ing benchmarks primarily focus on small databases, which
do not accurately reflect the challenges of working with
large databases in real-world situations. BIRD (Big Bench
for Large-scale Databases) [23] is a Text-to-SQL benchmark
designed to narrow the gap between experimental and practical
scenarios.

To generate high-level programs, Polozov et al. [24] devel-
oped “FlashMeta” to streamline the development of program
synthesis tools across various domains by offering a reusable,
domain-agnostic set of components, making it adaptable to
tasks such as data extraction and UI programming. Similarly,
Gulwani et al. [25] employed a programming-by-example
approach to help users perform transformations by providing
example input-output pairs, which the system generalizes into
reusable transformation rules. These contributions underscore
the growing accessibility of data manipulation and transfor-
mation functions for both spreadsheet and database users.

B. LLMs with Information Retrieval
While LLMs are highly effective when fine-tuned for par-

ticular NLP tasks, their ability to access and manipulate
knowledge is intrinsically constrained [26, 27, 28, 29]. RAG
[30] has achieved great success by integrating retrieval and
generation techniques, leading to the development of various
related approaches and variations. This line of work has
facilitated the convergence between information retrieval and
information generation.

Language models have shown substantial improvements in
code completion tasks by learning from “internal” source
code contexts [31, 32, 33]. Several retrieval-augmented frame-
works have been proposed, e.g., Retrieval-Augmented Code
Completion framework (ReACC) [34], RedCoder [35], and
RepoCoder [36], These systems however are intended to
support developers rather than end-users.

C. LLMs with Data Interaction
Tian et al. propose SpreadSheetLLM [37], a framework

designed to enable large language models (LLMs) to interpret
and analyze spreadsheet data, focusing on creating an effective
encoding approach that leverages LLMs’ powerful comprehen-
sion and reasoning capabilities. Expanding the application of
LLMs for spreadsheet reasoning and manipulation, Yibin et al.
developed SheetAgent [38], which enables users to perform a
broad range of tasks through natural language interactions.

D. LLMs and Code Generation
Li et al. developed SKCoder [39], a sketch-based code

generation strategy designed to mimic the code reuse behav-
iors of software engineers. To avoid hallucination [40, 41],



works such as Jigsaw [42], ALGO [43], SWE-agent [44],
CodeAgent [45], and CleanAgent [46] implement guardrails
to structure code generation outputs. In general, while LLMs
have strong capabilities in generating code based on user
prompts, they still encounter difficulties in handling algorith-
mic complexities and often require human verification [47, 48]
to ensure correct and/or efficient code. For example, a minor
typo in column names can cause the model to generate code
that applies to the wrong column, and failing to specify an
algorithm in the user’s request may result in functions with
low efficiency. For instance, this could involve generating code
that uses a brute-force approach to sorting numbers instead of
a more efficient algorithm like quicksort.

Jacob et al. [49] conducted a thorough research exploring
the limitations of current large language models for program
synthesis. While LLMs are powerful in generating code,
they can struggle with complex logical reasoning and require
effective prompting skills and user feedback to maximize
performance—a technique we adapted in our experiments.

III. APPROACH

We present TradeSweep , an LLM-based tool that leverages
the LLM’s code-writing abilities to produce executable pro-
grams for these tasks. Users are only required to provide a
dataset in either CSV or Excel format and submit a prepro-
cessing request. As illustrated in Fig. 2, TradeSweep comprises
three primary components:

• Prompt augmentation: This component employs infor-
mation retrieval techniques to select the top-k relevant
codes from the code library. (Section III-B)

• Code generation: The LLM generates a code proposal
and visualized samples of execution results, awaiting user
feedback. (Section III-C)

• Code library: We build a reference document that in-
cludes classic Python scripts for data preprocessing tasks.
(Section III-D)

A. Problem Definition

Let D represent a table with n rows and m columns,
with column names c1, c2, ..., cm denoted as C. Each element
xij , where i ∈ {1, ..., n} and j ∈ {1, ...,m}, represents the
value of the j-th feature of the i-th data record. In practical
applications, it is often necessary to perform data cleaning
(e.g., handling inconsistent formats, outliers, missing values)
and preprocessing (e.g., normalization, label encoding) on the
dataset D before training a machine learning model.

Let A be a subset of {c1, c2, ..., cm}, representing the col-
lection of columns that require processing. TradeSweep (M)
is designed to receive a preliminary description r of the user’s
data preprocessing requirements in English and to automati-
cally generate Python code f̂ and a processed dataset D̂. To
achieve this goal, TradeSweep (M) begins by constructing a
prompting curriculum denoted as P = [r, C]. This curricu-
lum is then inputted into an LLM as a prompt to develop
Python code that meets the specified requirements r. Using
the code generated by TradeSweep (code proposal G), the

system executes and evaluates G on a subset of D to obtain an
execution outcome O that can be presented to the user. It is
important to note that, TradeSweep operates without requiring
programming expertise from the user, as the specific columns
A necessitating modification are automatically determined by
the model, and the entire process from input description to
execution outcome is managed by the system.

One of the commonly reported challenges with using LLMs
is its vulnerability to hallucinations. In the context of code
generation, this can result in code that includes non-existent
functions or incorrect syntax, among other issues. To address
hallucination challenges, we expanded the existing curriculum
P = [r, C] into P = [r, C,F ]. Here, F denotes a finite set of
closely interconnected fundamental functions that serve as a
reference for the LLM. This approach offers a dual advantage:

1) Decreased Occurrence of Hallucinations: By incorpo-
rating a set of fundamental functions, the likelihood of
hallucinations is reduced.

2) Enhanced Code Generation: LLMs can develop new
code in addition to leveraging the fundamental reference
functions.

To implement the expanded curriculum P = [r, C,F ],
TradeSweep employs an adaptable code library L. First, the re-
quest r is transformed into an embedding representation embr.
A set of k relevant fundamental functions F = {f1, ..., fk} is
then extracted from the code database ⟨embi, functioni⟩ based
on the minimum cosine similarity mini∈L cosine(embr, embi).
Once a new code proposal G is successfully developed to
meet complex requirements r, typically through interaction
with users, it is saved in the library L. This allows the library
L to continually learn and provide more accurate and advanced
reference functions in the future.

Furthermore, incorporating human feedback in the code
generation process ensures that TradeSweep produces code
meeting user expectations. Specifically, we present the code
proposal G along with an execution result O. This allows
users to inspect and determine if the outcome meets their
expectations. If satisfied, the code is then executed on the
entire dataset, enabling users to verify if the processed data
aligns with their domain knowledge rather than examining
the code in detail. This makes the tool accessible for non-
expert programmers. If the intended outcome is not achieved,
TradeSweep will initiate a continuous conversation P =
[r′, C,F ], where r′ denotes a revision request. In the Results
section (Section V), we demonstrate how TradeSweep achieves
a high probability of meeting users’ requests on the LLM’s first
attempt and adapts more rapidly than baselines when revisions
are requested.

B. Prompt Augmentation

Following the submission of the user’s request for data
preprocessing, TradeSweep examines all functions contained
within the code library to learn from and utilize them as
references. The library comprises code functions commonly
applied in various preprocessing tasks. Along with these



Fig. 2. An overview of TradeSweep with three key components: code retrieval for prompt augmentation, LLM-based code generation followed by human
evaluation, and continuous updates to the code library

functions, data information is also provided to the LLM to
aid its understanding of the dataset structure.

However, inputting both code functions and data infor-
mation can result in a lengthy prompt containing redundant
information. This not only reduces the LLM’s performance
in accurately identifying the most relevant function but also
significantly delays the LLM’s response time. To address this
issue, we aim to shorten the input context. Instead of present-
ing all code functions in the prompt, we utilize information
retrieval (IR) techniques to perform a more precise selection
on code functions, providing the LLM with the most relevant
and useful codes.

We implemented this approach by representing our code
library as a vector database. Each vector includes an embedded
description of a code function, with its corresponding function
code serving as the payload of the vector. During each round
of code generation, we query the vector database to retrieve
k code functions deemed most relevant to the user’s request.
These selected functions are then included in the LLM prompt.
This process not only effectively shortens the prompt length
and reduces the LLM’s response time but also helps the LLM
focus on functions most pertinent to fulfilling the user’s request
(see Fig. 3).

Fig. 3. Identifying relevant code functions for prompt augmentation

While many state-of-the-art tools allow users to provide
<input, output> examples to help the LLM understand the
expected result dataset, this approach becomes impractical for
real-world datasets with massive record volumes. It is gener-

ally impractical for users to define precise pairs of examples
for complex data preprocessing tasks. Additionally, providing
only a small subset of examples could lead to an overfitting
risk, where the LLM might generate code that handles specific
cases accurately but fails to generalize across the dataset.
Therefore, our approach emphasizes a flexible, prompt-based
design, allowing TradeSweep to dynamically interpret natural
language requests and generate adaptable code. This design
choice focuses on key prompt components, enhancing both
the adaptability of code to varied user needs and overall user-
friendliness.

C. Code Generation

Once the top-k relevant codes have been retrieved as candi-
date codes, a prompt for the LLM is created by combining the
candidate codes with data information and the user’s request.
The LLM examines the provided information and produces a
code proposal designed to accomplish the requested task. If
the LLM does not find any candidate code that aligns with the
user’s request, it generates a novel code function.

The process of code generation includes iterative enhance-
ments under the following scenarios after the initial code
proposal is generated:

1) Incorrect Code Proposal Format: We provide the LLM
with a response template specifying that the proposal
format should include a Python code function that reads
a dataframe and returns it at the end. The proposal
should also include a function call for applying the code
to the data. If either of these components is missing in
the generated code, the LLM automatically modifies the
proposal to meet the required format.

2) Execution Error: Once a code proposal is generated
in the expected format, it is tested on sample data. If
execution fails due to bugs, syntax errors, exceptions, or
other issues, both the code and its corresponding error
message are returned to the LLM for revision.



3) User Feedback: Users are provided with a visualized
execution result on sample data, showing examples of
input values and their corresponding output values when
the code is applied. Based on the user’s review of
the code proposal and execution outcomes, they can
request code revisions by providing feedback describing
necessary fixes to the LLM.

Finally, once the user confirms that both the code proposal
and execution examples are correct, the code is applied to the
target dataset, as shown in Fig. 4. For novel code or when
users request saving multiple functions into a single pipeline,
the newly generated code or series of codes are added to our
code library.

Fig. 4. Code generation and enhancement based on execution results and
user feedback

D. Code Library

Due to the complexity of data preprocessing tasks - such
as those requiring specific algorithms or involving multiple
datasets - a code library is beneficial as a reference document
for the LLM to learn from and follow when generating code
proposals. In TradeSweep ’s code library, each function is
designed to handle a particular data preprocessing task and in-
cludes comments describing its usage. To enhance the efficacy
of TradeSweep , we have developed a code library capable
of supporting the addition of new functions as interactions
progress:

1) Novel Code: When the LLM does not identify any
function that corresponds to the user’s request after
analyzing the retrieved codes, it generates a novel code
proposal. Since this newly generated code is not initially
included in the library, we incorporate it back into the
library to improve efficiency and accuracy for future
code generations.

2) Pipeline Creation Request: After a series of code
functions have been generated, the user may request that
the entire procedure be stored as a pipeline. During this
process, the several functions previously applied to the
dataset are combined into a single code function, which
is then added to our code library.

As illustrated in Fig. 5, the process of integrating the novel
code function into the code library involves a sequence of
steps. First, we use an LLM to generate a description of the
novel code, which is then added as comments. In order to
save a new function, TradeSweep verifies if it meets three

criteria: it must be a valid Python function, include a function
description (or generate one if missing), and can read a dataset
for manipulation. Subsequently, both the newly generated code
function and its associated description are then added into our
vector database code library. A new query vector is constructed
using the function description, and its corresponding payload
is generated by the code.

Fig. 5. Code library dynamically updated with each novel LLM-generated
code or user pipeline request.

IV. EXPERIMENTS

In this section, we present the design of our experiments,
including the choice of datasets, large language model, dis-
cussion about the baselines, and evaluation methodology.

A. Experimental Setup

Data: We use shipment-level bill of lading data [50] that
captures business-to-business international trade and highlights
the complexity of supply chains. The effectiveness of identify-
ing shipments potentially circumventing economic sanctions,
high tariffs, or engaging in suspicious activities largely de-
pends on the quality of data initially cleaned and preprocessed.
Specifically, we use three trade datasets involving imports and
exports across multiple nations for commodities that have been
subject to recent import prohibitions, high tariff rates, and
sanctions, and all may contain risks associated with origin
fraud [51, 52]. The datasets are as follows:

1) Teak: This dataset includes 69,134 teakwood transac-
tions exporting from 116 countries to the United States,
spanning from July 1, 2007, to August 10, 2023 (5,885
days in total). The data source is Panjiva1.

2) Grain: This dataset comprises 145,217 grain transac-
tions from Russia to 118 global destinations, covering
the period from May 20, 2021, to November 30, 2022
(560 days in total). The data sources are ExportGenius2

and ImportGenius3.
3) Timber: This dataset contains 3,087,822 timber exports

from Russia to 173 countries, starting from October 20,
2021, to March 31, 2023 (528 days in total). The data
sources are ExportGenius and ImportGenius.

These datasets span significant periods and were manually
entered, making them susceptible to errors such as typos,

1https://panjiva.com/
2https://www.exportgenius.in/
3https://www.importgenius.com/



inconsistent formatting, and missing information. Table I
presents detailed statistics for each dataset. Consequently, data
analysis becomes a laborious and time-consuming task for
analysts, highlighting the urgency and importance of effective
data preprocessing.

TABLE I
DISTRIBUTION FOR REAL-WORLD DATASETS.

Teak Grain Timber

# of columns 127 56 29
# of rows 69,134 145,217 >3M

# of unused columns 101 0 6
Missing values (NaN) (%) 48.77 66.94 3.19
Unformatted numbers (%) 19.99 2.84 87.93
Misspelled strings (%) 9.29 18.06 93.19

# of data preprocessing tasks re-
quired

12 18 24

Vector database: We use Qdrant4 to store and retrieve code
functions organized as vector embeddings.

Large Language Model: For this study, we employed
CodeLlama-13b-Instruct5 to accommodate both our hardware
constraints and the need for data confidentiality. This model is
used to learn from retrieved codes, generate executable Python
functions, and modify codes in response to user feedback.
Unlike API-based LLMs, CodeLlama-Instruct allows for local
execution, offering greater flexibility and control.

Code Library: Our goal is to demonstrate TradeSweep ’s
effectiveness in handling practical data preprocessing tasks
frequently encountered by analysts in industry. Given the
diverse range of preprocessing tasks applicable to spreadsheet
data, we selected the 12 most relevant operations based on
our dataset characteristics—which contained common issues
such as missing values, spelling errors, and inconsistent for-
matting—to include in the initial code library. These selected
functions cover a range of tasks, including standardizing date
formats, removing punctuation marks, correcting misspellings,
and filling in missing values based on other columns. Table
II provides an overview of selected functions from the initial
code library that TradeSweep is expected to generate.

Hardware Environment: The experiments were conducted
using a Tesla P40 GPU with 8 cores, 38 GB of RAM, and
500 GB of disk memory. This hardware setup ensures efficient
processing and management of computational tasks associated
with code generation and evaluation.

B. Baselines

Existing state-of-the-art tools (SKCODER, CleanAgent, etc)
are widely recognized for their code generation capabilities.
However, these tools are specialized for distinct tasks, mak-
ing direct comparisons challenging. For instance, SKCODER
focuses on task-specific code synthesis, while CleanAgent
emphasizes interactive data cleaning processes. To ensure a

4https://qdrant.tech/
5https://github.com/meta-llama/codellama

TABLE II
PREPROCESSING FUNCTIONS FROM THE INITIAL CODE LIBRARY

Task Explanation

Remove
columns

Delete a list of unwanted column(s).

Filter rows Only keep rows that satisfy a certain condition and delete
the rest.

Clean num-
bers

Remove non-numeric symbols and convert the value to
numbers.

Clean strings Remove punctuation marks, quotation marks, and any
extra spaces.

Fill in blanks Replace NaN values with a string defined by user.
Standardize
dates

Standardize all date values to a YYYY-mm-dd format.

Correct mis-
spellings

Apply word-embedding and clustering to a column to
cluster similar values. Then, in each cluster group, find
the most frequent value and correct others to that.

Compare
columns and
clean

Between a to-clean column and a reference column,
group the two columns. Then, for all to-clean values that
have the same reference value, find the most frequent to-
clean value and update others on this.

Lookup doc-
ument

Given a to-clean column in the dataset and an external
CSV/Excel document, map the to-clean values to a refer-
ence column in the document, then create a new column
with the mapped values.

meaningful evaluation of TradeSweep in generating effective
and relevant code, we designed three baselines that simulate
key characteristics of these approaches while maintaining
compatibility with our experimental setup.

1) Baseline 1 (B1): Code Generation Using Only an LLM
prompted with User’s Request. For approaches relying
purely on LLMs without additional resources (GPT,
Jigsaw, etc), we implemented Baseline 1, excluding the
access to the code library. In this baseline, the LLM
must independently generate code based on the user’s
request without external references. This setup allows
us to evaluate the LLM’s capability to produce relevant
code purely from the textual description provided by the
user, which may involve significant effort and may result
in less effective data cleaning outcomes.

2) Baseline 2 (B2): LLM Prompted with Candidate Codes
and User’s Request. Most SOTA approaches require
external APIs for accessing the LLM (ex. CleanAgent
and CodeAgent). Due to data confidentiality, we intro-
duced Baseline 2, which excludes data information to
evaluate the role of contextual input. In this baseline, we
provided the LLM with a set of top-k candidate codes
retrieved from the code library, along with the user’s
request. In TradeSweep , we included data information
like column names to aid the LLM in understanding
which columns to manipulate without users needing
to specify exact column names; In contrast, in B2,
such data details are excluded from the prompt. This
design assesses the impact of not providing data context
on the LLM’s performance. The LLM must generate
code based solely on the provided candidate codes and
user request, potentially leading to less accurate code
generation due to the lack of data-specific guidance.



3) Baseline 3 (B3): Providing User’s Request and the
Entire Code Library Without Descriptions. Many SOTA
tools allow the LLM to access a provided repository
and extract relevant documents for further tasks. (ex.
SWE-Agent). Thus, we designed Baseline 3, where the
LLM receives the entire code library, but without any
accompanying descriptions or comments. The candi-
date codes are provided in their raw form, with no
explanatory notes. This setup explores the effect of
removing code descriptions on the LLM’s ability to
generate relevant code. Additionally, B3 does not utilize
the vector database for prompt augmentation; instead,
it provides the full code library as part of the prompt.
This approach helps understand the influence of having
complete access to code functions without context or
descriptions on code generation performance.

C. Evaluation Methodology

For each dataset, we defined a set of data preprocessing
tasks based on the dataset’s specific content and characteristics,
as presented in Table III. The tasks studied in our experiment
were determined by data experts who identified the most
relevant operations based on our real-world datasets. These
datasets presented common challenges, including missing val-
ues, spelling errors, and inconsistent formatting, aiming to
demonstrate TradeSweep ’s effectiveness in tackling practical
data preprocessing tasks.

TABLE III
NUMBER OF DATA PREPROCESSING TASKS USED IN OUR EXPERIMENTS

Teak Grain Timber

Remove columns
1

(101 columns
at once)

× 1
(6 at once)

Standardize dates 1 1 1
Clean numbers 1 1 4
Clean strings × 4 3
Fill in blanks 4 1 2
Correct misspellings 2 × 2
Compare columns
and clean

2 6 1

Lookup documents × 5 5
Others (not in library) 1 × 5

Our objective with TradeSweep is to empower non-
programmers to use the tool with ease. Thus, to simulate these
users, we prompted the LLM with vague requests, refraining
from providing specific instructions on code structure or
algorithms.

The code for each task is generated using TradeSweep and
the three baselines, and evaluated based on several key metrics.
We record both the initial and final versions of the generated
codes, noting any revisions made, and measure the time taken
to generate the code. This “generation time” is measured by
the time it takes for the LLM to retrieve code snippets and
generate proposals; If the user modifies the generated code,
the revision time is also included. After generating the code,
we apply it to the initial, unprocessed dataset and compare the

execution outputs to manually preprocessed data to assess the
accuracy and effectiveness of each method.

When multiple columns are assigned to perform the same
task within the same dataset, we generate separate codes
for each column using the same algorithm but with slight
modifications to tailor the code to the specific column re-
quirements. This approach allows us to evaluate how well each
method adapts to different columns and their unique attributes,
ensuring a comprehensive comparison of code generation
efficiency and performance.

V. RESULTS

This section outlines the results and presents a discussion
on them. Fig. 6 illustrates the user interface of TradeSweep .
First, users upload a spreadsheet (e.g., Timber.csv), which is
displayed on the left half of the screen. They then enter their
data preprocessing request, such as Only show records where
trading country is US, into the text box. The interface also
provides access to all previously completed data preprocessing
tasks. Once the LLM generates a code proposal, it appears in
the box below, where users can test it on sample data and
request revisions if necessary.

We applied the codes generated by TradeSweep and the
three baselines to the trade datasets for evaluation. In our
analysis, we refer to the initial data as Init and the manually
cleaned data as GT (Ground Truth) for simplicity. The Ground
Truth data represents the fully preprocessed and cleaned
version of the dataset, achieved through meticulous manual
adjustments by data analysts. Our experiments are designed
to answer the following questions:

1) Can TradeSweep preprocess data as accurate as prepro-
cessing manually? (Section V-A and V-D)

2) Does TradeSweep generate high-quality data preprocess-
ing functions? (Section V-B)

3) How effective can TradeSweep generate a valid code
proposal? (i.e. generating code that passes assertion
checks and performs the task correctly)? (Section V-B)

4) To what extent can TradeSweep independently generate
valid code proposals, without requiring user feedback?
(Section V-C)

5) How many rounds of user feedback are needed to
produce a valid code proposal? (Section V-C)

6) How does the source code library enhance
TradeSweep ’s code generation capabilities? (Section
V-D)

7) What role does RAG play in improving TradeSweep ’s
code generation? (Section V-D)

A. Preprocessed Dataset Correctness

After preprocessing the three raw datasets (Init) using
the code generated by all three baselines (B1 to B3) and
TradeSweep , we compared the resulting preprocessed datasets
to the Ground Truth (GT), the manually cleaned dataset. As
Table IV illustrates, TradeSweep ’s execution results closely
align with GT, demonstrating its effectiveness in preprocessing
across the three datasets. Baselines 2 and 3 also produced



Fig. 6. TradeSweep in action - input data (on the left), user query and generated code (on the right)

results similar to TradeSweep , as they benefited from refer-
encing and learning from the code library during code gener-
ation. Conversely, the codes generated by Baseline 1 showed
considerable deviation from Ground Truth. This discrepancy
is due to Baseline 1’s reliance on the LLM’s independent code
generation, which often led to the use of different algorithms
and approaches compared to those in the code library.

TABLE IV
EVALUATION OF PREPROCESSED OUTPUTS RELATIVE TO GROUND TRUTH

(GT)

Init GT B1 B2 B3 TS

Teak

# of cols 127 26 26
# of rows 69,134 69,134
NaNs (%) 48.77 7.57 10.94 7.09 7.09 7.09
incorrect
formats (%)

19.99 0 29.98 9.86 1.03 1.03

typos (%) 9.29 0 25 3.92 3.92 3.92

Grain

# of cols 56 61 61
# of rows 145,217 145,217
NaNs (%) 66.94 62.10 3.76 63.07 66.22 63.57
incorrect
formats (%)

2.84 0 9.68 0.09 0.08 0.08

typos (%) 18.06 0 14.43 2.37 6.65 3.21

Timber

# of cols 29 23 23
# of rows 3,087,822 3,087,822
NaNs (%) 3.19 4.55 8.68 4.75 8.24 4.42
incorrect
formats (%)

87.93 0 64.86 0.63 12.81 0.63

typos (%) 93.19 0 74.69 4.04 6.83 2.76

Pylint analyzes source code for errors, warnings, and code
smells, providing a quality score; Radon measures cyclomatic

complexity, with lower complexity indicating better readability
and maintainability.

B. Code Quality

To evaluate the code quality of the functions produced
by TradeSweep and the baselines, we utilized Pylint6 and
Radon7 as metrics. According to the documentations, Pylint
analyzes source code for errors, warnings, and code smells,
providing a quality score between 0 (inefficient) and 10
(efficient); Radon measures Cyclomatic Complexity, providing
a rank from A (simplest) to F (most complex), with “A”
indicating better readability and maintainability. For simple
data preprocessing tasks, such as “Clean dates to yyyy-mm-
dd format”, TradeSweep and the three baselines produced code
of comparable quality and complexity, regardless of whether
they utilized a code library (see Table V).

However, for more complex tasks, such as compar-
ing two columns and cleaning the target column using
the most frequent value from the reference column, the
use of a code library significantly improves code quality.
TradeSweep obtained a higher Pylint score and generated a
more complex code; Baseline 1, with a Radon complexity rank
of A, produced code that was too simple to fulfill the task.
This enhancement is evident in the results, where functions
generated with the aid of a code library demonstrated higher
quality scores and are more complex compared to Baseline 1,
which relied on independent code generation without library
references.

6https://www.pylint.org/
7https://pypi.org/project/radon/



TABLE V
COMPARISON OF CODE QUALITY FOR A SIMPLE TASK (CLEAN DATES TO YYYY-MM-DD FORMAT) VS. COMPLEX TASK (COMPARE TWO COLUMNS AND

CLEAN)

Teak Grain Timber
simple task complex task simple task complex task simple task complex task

Baseline 1
# of lines (↓) 7 7 7 6 6 6
Pylint (↑) 4.29 3.64 5.71 4.44 5.71 1.67
Radon (↓) A A A A A A

Baseline 2
# of lines (↓) 8 6 9 6 8 6
Pylint (↑) 4.17 5.65 5 5.65 5.83 5.65
Radon (↓) A C A C A C

Baseline 3
# of lines (↓) 8 6 10 6 6 6
Pylint (↑) 5.83 5.65 5.38 5.65 5.71 5.65
Radon (↓) A C A C A C

TradeSweep
# of lines (↓) 7 6 7 6 8 6
Pylint (↑) 5.45 5.65 6 5.65 5 5.65
Radon (↓) A C A C A C

As part of TradeSweep , we integrated an assertion check
feature to ensure that the generated functions execute correctly
before they are presented to the user. If a function encounters
execution failures due to exceptions, errors, or other issues,
the incorrect function and the corresponding error message are
sent back to the LLM for correction. This process is performed
in an iterative manner.

Table VI shows the average number of execution failures
for TradeSweep compared to the baselines. TradeSweep , by
leveraging a code library and data information for the LLM,
consistently achieved the lowest number of execution failures
across various data preprocessing tasks. In contrast, Baseline
1, which generated functions independently without utilizing
a code database, had a higher error rate due to numerous
coding errors. Baseline 2 encountered challenges due to the
lack of data information; for instance, if a user request was
vague (e.g., “Correct misspellings in shipper names” without
specifying to apply the function on the “Shipper” column),
the LLM erroneously applied the function to a non-existent
column, leading to an infinite loop of KeyErrors. Baseline 3
experienced difficulties because the LLM was tasked with in-
terpreting all functions in the code library rather than focusing
on the most relevant ones, resulting in a higher likelihood of
errors in its generated functions.

TABLE VI
AVERAGE NUMBER OF EXECUTION FAILURES IN THE GENERATED CODE

Baseline 1 Baseline 2 Baseline3 TradeSweep

Teak 1.92 ∞ 0.17 0.08
Grain 1.72 ∞ 0.72 0.11
Timber 1.17 ∞ 0.67 0.08

C. User Involvement

Table VII records the rate of codes approved by users on
the LLM’s first attempt. Each value represents the number of
codes accepted on the first try, divided by the total number
of accepted codes. TradeSweep achieved the highest rate of

user-approved codes across all three datasets without need-
ing revisions, exhibiting better performance in generating a
function that meets the user’s demand on the LLM’s first
attempt by leveraging knowledge from the code library. In
contrast, Baseline 1 often produces unstable results initially,
as it generates code independently without the benefit of
the code library. This results in frequent misalignment with
vague user requests (e.g., “Clean numbers in net weights”)
and requires more explicit instructions (e.g., “Clean numbers
in net weights by removing commas and converting the values
to float numbers”). The lowest acceptance rate was noted for
Baseline 2 due to the absence of column name information
provided to the LLM. Although Baseline 2 used the same al-
gorithm as TradeSweep , the lack of column name information
necessitates nearly all preprocessing tasks to undergo revision,
highlighting the need for accurate column specification (e.g.,
“Clean numbers in the NetWeight column” rather than “Clean
numbers in net weights”). Baseline 3, while also capable
of generating correct codes initially, requires slightly more
user involvement compared to TradeSweep . In this baseline,
although the LLM often selects the correct code for reference,
the absence of function descriptions leads to over- or under-
modification of reference code, resulting in additional revision
requests.

TABLE VII
ACCEPTANCE RATE OF INITIAL CODE PROPOSALS

Baseline 1 Baseline 2 Baseline3 TradeSweep

Teak 5/12 1/12 9/12 10/12
Grain 5/18 5/18 12/18 12/18
Timber 15/24 5/24 17/24 18/24

D. Enhancing Code Generation Capabilities

To evaluate the impact of how having a code library
can enhance the generation of data preprocessing functions,
we compared the overall results of data preprocessed by



TradeSweep with Baseline 1, as the primary distinction be-
tween the two lies in TradeSweep ’s use of a code library.
After conducting preprocessing on the three datasets, Table
VIII illustrates that TradeSweep , by leveraging example code
functions from the library, consistently produces suitable and
executable code that can preprocess data with much higher
correct-value rates (comparable to the Ground Truth data)
compared with Baseline 1.

TABLE VIII
IMPACT OF CODE LIBRARY IN GENERATING RELEVANT CODE FOR DATA

PREPROCESSING TASKS - BASELINE 1 VS. TRADESWEEP

Teak Grain Timber

Init correct-rate 86.60% 85.94% 9.09%
GT correct-rate 100% (time-consuming)

Baseline 1 correct-rate 73.09% 87.65% 29.58%
first-attempt valid rate 41.66% 27.78% 62.5%

TradeSweep correct-rate 97.19% 97.61% 98.17%
first-attempt valid rate 83.33% 66.67% 75%

TABLE IX
IMPACT OF RAG ON CODE GENERATION - BASELINE 3 VS. TRADESWEEP

Teak Grain Timber

Baseline 3 555.46 369.99 269.34
TradeSweep 167.55 117.40 94.08

The ability to maintain and expand the code library is crucial
for handling more complex and repetitive user requests, as
newly generated code functions can be added to the library
for future use. The results presented in Table IX suggests
that Baseline 3, which provides the entire code library to the
LLM, requires significantly more time for code generation
compared to TradeSweep . This is due to the increased prompt
length, which slows down the process. TradeSweep ’s use of
RAG to retrieve only the top-k most relevant codes from the
library reduces prompt length and improves code generation
efficiency. In our experiments, we determined that setting the
value of k to 3 optimizes performance. Values of k ≥ 4 result
in longer code generation times, while values of k ≤ 2 increase
the likelihood of retrieving irrelevant functions. For instance, if
a user requests to “clean the dates,” setting k too low may lead
to retrieving functions like “clean numbers” or “clean strings”,
which are less relevant compared to “standardize dates”. Thus,
k = 3 strikes a balance between retrieval accuracy and prompt
length efficiency. In conclusion, Baseline 3, which excluded
information retrieval and inputted a lengthy prompt to the
LLM, required considerably longer time for generating codes
compared to TradeSweep .

E. Case Study

To better understand the differences in code generation
performance among various baselines and TradeSweep , we
analyzed the initial code proposals generated by each method
before any user feedback was provided. All baselines received
identical user request inputs for each preprocessing task.

Using the example of cleaning the column “Shipper Coun-
try”, Fig. 7 shows the code proposal generated by the three
baselines and TradeSweep . In the scenario, the user’s request
was: “Compare values in shipper country with shippers, and
clean country names with the same shipper to the most
frequent value.” The ideal approach would involve using
the “compare and clean” function from the code library and
apply it to the “Shipper Country” column while comparing
with the “Shipper” column.

1) TradeSweep : In TradeSweep , the top three relevant
functions were retrieved from the code library and inputted
into the LLM. The generated code proposal demonstrated that
the LLM effectively learned from the “compare and clean”
function in the code library. By including data column names,
TradeSweep accurately identified the columns intended for the
task. The proposed code grouped the data by the “Shipper”
column and, within each group, identified the most frequent
“Shipper Country” value, modifying other values to match this
frequent value.

2) Baseline 1: Baseline 1 generated code based on assump-
tions about the user’s request. Although the proposed code
successfully grouped the columns and found the most frequent
shipper country, it made errors by converting all strings to
lowercase and not handling potential NaN values properly.
This led to a higher prevalence of NaNs and incorrectly
formatted country names. Unlike TradeSweep , Baseline 1
failed to use the most frequent non-NaN value, resulting in
a less accurate output.

3) Baseline 2: Baseline 2 was provided with candidate
codes and the user’s request but lacked data information. The
code generated attempted to use the “compare and clean”
function from the code library, but without knowing the exact
column names, it made assumptions. The LLM used column
names like “shippers” and “shipper country” instead of the
correct “Shipper” and “Shipper Country,” leading to incorrect
application of the function. In contrast, TradeSweep accurately
applied the function to the intended columns by utilizing the
provided data information.

4) Baseline 3: In Baseline 3, all functions in the code
library were inputted into the LLM without their descriptions.
Although the LLM could understand the usage of each func-
tion, the excessive length of the prompt, due to including
all functions, led to a significant slowdown in code gen-
eration—taking 690 seconds. Despite successfully applying
the “compare and clean” function, the approach of inputting
the entire code library resulted in inefficiencies compared to
TradeSweep ’s method of using only the top-k relevant func-
tions, which streamlined the process and improved generation
speed.

F. Limitations

Despite TradeSweep demonstrating strong results, certain
failure cases remain where the system does not generate the
correct code proposal on the first attempt. This happens due to
misinterpretations of user requests, e.g., “clean dates” might



Fig. 7. Case Study: A snapshot of code proposal generated by the three baselines (B1 - B3) and TradeSweep

lead to retrieval of incorrect functions for “clean numbers” or
“clean strings”.

Another limitation is that the execution outputs of sample
data may not provide users with sufficient information to
assess the code’s performance for certain tasks. For instance,
correcting misspellings in company names might result in
over- or under-correction, and by observing a limited number
of correction examples, users may be unable to confirm
whether the code successfully captures all corner cases. In
such scenarios, it is helpful to perform an apply-test on the
full target data and generate a comparison of names before and
after correction. However, applying codes to the full dataset
takes much more time than only applying it to sample data.

To address these limitations in the future, we plan to
expand the code library with a broader range of well-described
functions. We also plan to implement more advanced sampling
techniques for execution outputs to provide users with a more
representative subset of results. Additionally, optimizing the
apply-test procedure to efficiently handle larger datasets can
expedite the process, enabling quicker feedback and validation
for users.

VI. CONCLUSION

The rise of automation and programming support through
LLMs has significantly reduced the turnaround time for pro-
cessing large spreadsheets. Our method, TradeSweep , func-
tions as an LLM-driven data preprocessing agent, retrieving
suitable functions from a code library and adapting them to ful-
fill specific data preprocessing tasks. The results demonstrate
TradeSweep ’s effectiveness in practical data transformation
scenarios. Future work is aimed at improving the expressive-
ness and enhacing the range of applicability of TradeSweep .
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T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-
augmented generation for knowledge-intensive nlp
tasks,” 2020.

[31] M. Izadi, J. Katzy, T. van Dam, M. Otten, R. M.
Popescu, and A. van Deursen, “Language models for
code completion: A practical evaluation,” 2024.

[32] A. de Moor, A. van Deursen, and M. Izadi, “A
transformer-based approach for smart invocation of auto-
matic code completion,” in Proceedings of the 1st ACM
International Conference on AI-Powered Software, ser.
AIware ’24. ACM, Jul. 2024, p. 28–37.

[33] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-
token code completion by jointly learning from structure
and naming sequences,” in Proceedings of the 44th
International Conference on Software Engineering, ser.
ICSE ’22. ACM, May 2022.

[34] S. Lu, N. Duan, H. Han, D. Guo, S. won Hwang, and
A. Svyatkovskiy, “Reacc: A retrieval-augmented code
completion framework,” 2022.

[35] M. R. Parvez, W. Ahmad, S. Chakraborty, B. Ray,
and K.-W. Chang, “Retrieval augmented code generation
and summarization,” in Findings of the Association for
Computational Linguistics: EMNLP 2021. Association
for Computational Linguistics, 2021.

[36] F. Zhang, B. Chen, Y. Zhang, J. Keung, J. Liu,
D. Zan, Y. Mao, J.-G. Lou, and W. Chen, “Repocoder:
Repository-level code completion through iterative re-
trieval and generation,” 2023.

[37] Y. Tian, J. Zhao, H. Dong, J. Xiong, S. Xia, M. Zhou,
Y. Lin, J. Cambronero, Y. He, S. Han, and D. Zhang,
“Spreadsheetllm: Encoding spreadsheets for large lan-
guage models,” 2024.

[38] Y. Chen, Y. Yuan, Z. Zhang, Y. Zheng, J. Liu, F. Ni,
and J. Hao, “Sheetagent: Towards a generalist agent
for spreadsheet reasoning and manipulation via large
language models,” 2024.

[39] J. Li, Y. Li, G. Li, Z. Jin, Y. Hao, and X. Hu, “Skcoder:
A sketch-based approach for automatic code generation,”
in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, May 2023, p.

2124–2135.
[40] B. A. Halperin and S. M. Lukin, “Artificial dreams:

Surreal visual storytelling as inquiry into ai ’hallucina-
tion’.” New York, NY, USA: Association for Computing
Machinery, 2024.

[41] S. Roychowdhury, “Journey of hallucination-minimized
generative ai solutions for financial decision makers,”
2023.

[42] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan,
S. Parthasarathy, S. Rajamani, and R. Sharma, “Jigsaw:
Large language models meet program synthesis,” in
Proceedings of the 44th International Conference on
Software Engineering, ser. ICSE ’22. ACM, May 2022,
p. 1219–1231.

[43] K. Zhang, D. Wang, J. Xia, W. Y. Wang, and L. Li, “Algo:
Synthesizing algorithmic programs with llm-generated
oracle verifiers,” 2023.

[44] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao,
K. Narasimhan, and O. Press, “Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing,” 2024.

[45] K. Zhang, J. Li, G. Li, X. Shi, and Z. Jin, “Codeagent:
Enhancing code generation with tool-integrated agent
systems for real-world repo-level coding challenges,”
2024.

[46] D. Qi and J. Wang, “Cleanagent: Automating data stan-
dardization with llm-based agents,” 2024.

[47] A. Khurana, H. Subramonyam, and P. K. Chilana, “Why
and when llm-based assistants can go wrong: Inves-
tigating the effectiveness of prompt-based interactions
for software help-seeking,” in Proceedings of the 29th
International Conference on Intelligent User Interfaces,
ser. IUI ’24. ACM, Mar. 2024, p. 288–303.

[48] W. Wang, H. Ning, G. Zhang, L. Liu, and Y. Wang,
“Rocks coding, not development–a human-centric, ex-
perimental evaluation of llm-supported se tasks,” 2024.

[49] J. Austin, A. Odena, M. Nye, M. Bosma,
H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, and C. Sutton, “Program synthesis with large
language models,” 2021.

[50] A. Flaaen, F. Haberkorn, L. Lewis, A. Monken, J. Pierce,
R. Rhodes, and M. Yi, “Bill of lading data in international
trade research with an application to the covid-19 pan-
demic,” Finance and Economics Discussion Series, vol.
2021, pp. 1–40, 10 2021.

[51] L. Aratani, “Us imports of ‘blood teak’
from myanmar continue despite sanctions,”
The Guardian, May 2023. [Online]. Available:
https://www.theguardian.com/world/2023/may/16/myanmar-
teak-wood-import-sanctions

[52] AP NEWS, “Russia smuggling ukrainian grain to help
pay for putin’s war,” Oct 2022. [Online]. Available:
https://apnews.com/article/russia-ukraine-putin-business-
lebanon-syria-87c3b6fea3f4c326003123b21aa78099


