
Can an LLM find its way around a Spreadsheet?

Abstract—Spreadsheets are routinely used in business and
scientific contexts, and one of the most vexing challenges is
performing data cleaning prior to analysis and evaluation. The
ad-hoc and arbitrary nature of data cleaning problems, such
as typos, inconsistent formatting, missing values, and a lack of
standardization, often creates the need for highly specialized
pipelines. We ask whether an LLM can find its way around
a spreadsheet and how to support end-users in taking their
free-form data processing requests to fruition. Just like RAG
retrieves context to answer users’ queries, we demonstrate how
we can retrieve elements from a code library to compose data
preprocessing pipelines. Through comprehensive experiments, we
demonstrate the quality of our system and how it is able to
continuously augment its vocabulary by saving new codes and
pipelines back to the code library for future retrieval.

Index Terms—LLMs, code generation, data cleaning, end-user
programming

I. INTRODUCTION

Pre-trained large language models (LLMs) have demon-
strated significant proficiency in generating code from natural
language prompts, heralding a new era in software develop-
ment [1, 2, 38, 39]. In addition to generating code, modern
integrated development environments (IDEs) also incorporate
LLMs to assist with error correction, code refactoring, and
multilingual programming knowledge. By engaging in English
conversations, LLMs can function as coding assistants, en-
abling users with limited proficiency to produce accurate and
executable code to accomplish their tasks [3, 37].

Nevertheless, LLMs have not yet attained the maturity to
address all or most challenges programmers face in software
development and machine learning. One of the vexing aspects
for programmers involves processing tabular data, e.g., in
the form of spreadsheets. Such datasets (Fig. 1 for example)
frequently suffer from issues like typographical errors, incon-
sistent formatting, missing values, and lack of standardization,
necessitating the creation of highly specialized pipeline [4, 5].

Data preprocessing is not merely a matter of resolving
inconsistencies; it can significantly impact downstream results.
For example, correcting typographical errors in a dataset may
inadvertently lead to over-clustering or under-clustering of
the relevant column, while inaccurately resolving entities can
distort the true distribution of data points. Therefore, data
preprocessing must be approached with care and deliberation,
with careful attention to sequential transformations. The need
for automation support is widely acknowledged [35, 44, 45],
particularly for a “human-in-the-loop” pipeline to guide the
cleaning process and prevent spurious results.

LLMs have demonstrated impressive programming abilities;
however, their capabilities in processing tabular data remain
underexplored. Therefore, in this paper, we investigate whether

Fig. 1. Missing values, inconsistent formatting, misspellings, and other
similar issues are frequently encountered in large spreadsheets. Our approach,
TradeSweep , proposes the use of an LLM to systematize data cleaning and
transformations.

an LLM can effectively find its way around a spreadsheet and
how it can support end-users in fulfilling their free-form data
preprocessing requests. Our approach, TradeSweep (named for
its focus on tabular trade datasets), interprets English requests
for data preprocessing and generates code proposals that can
be composed and applied to targeted datasets, achieving high
performance. Similar to how Retrieval-Augmented Generation
(RAG) retrieves context to answer users’ queries, we demon-
strate how elements from a code library can be stored and
retrieved to compose complex pipelines.

The contributions of this paper are as follows:
• TradeSweep utilizes English conversations to understand

and respond to users’ requests with Python code encom-
passing preprocessing functions, supporting three main
capabilities:

1) It produces new code when requested for a com-
pletely new task.

2) It can precisely modify its proposed code based on
users’ feedback in English conversations.

3) The proposed code is automatically tailored to the
target data, including accurate column names and
suitable algorithms.

• TradeSweep develops and continuously expands a library
of fundamental data preprocessing codes by storing ex-
ecutable functions that have been successfully deployed
previously. The augmentation of the code library supports
the composition and creation of elaborate data pipelines.

• To incorporate feedback from users who lack program-
ming expertise, TradeSweep offers both code proposals
and execution results on example data. This allows users
to determine whether to accept TradeSweep ’s proposal
or to make modifications based on output data visualiza-
tions, rather than focusing on code specifics.

• We perform extensive experiments on three trade datasets.
Results show that TradeSweep is capable of generating
executable and efficient code for data preprocessing,
significantly reducing time and effort for data analysts.

II. RELATED WORK

A. Generating Formulas and SQL queries

Formulas and SQL queries are the lingua franca of spread-
sheets. “Formula Language Model for Excel” (FLAME) [6]
is a T5-based model trained exclusively on Excel formulas
and used for code generation tasks such as formula repair,
formula completion, and similarity-based formula retrieval.
(TradeSweep is designed to address various formats of tabular
data, including Excel and CSV.)

A significant amount of research focuses on converting
natural language questions into executable SQL queries (often
referred to as Text-to-SQL) [25, 26, 27, 28]. Most exist-
ing benchmarks primarily focus on small databases, which
do not accurately reflect the challenges of working with
large databases in real-world situations. BIRD (Big Bench
for Large-scale Databases) [7] is a Text-to-SQL benchmark
designed to narrow the gap between experimental and practical
scenarios.

B. LLMs with Information Retrieval

While LLMs are highly effective when fine-tuned for par-
ticular NLP tasks, their ability to access and manipulate
knowledge is intrinsically constrained [29, 30, 31, 41]. RAG
[8] has achieved great success by integrating retrieval and
generation techniques, leading to the development of various
related approaches and variations. This line of work has
facilitated the convergence between information retrieval and
information generation.

Language models have shown substantial improvements in
code completion tasks by learning from “internal” source
code contexts [32, 33, 34]. Several retrieval-augmented frame-
works have been proposed, e.g., Retrieval-Augmented Code
Completion framework (ReACC) [19], RedCoder [20], and

RepoCoder [21], These systems however are intended to
support developers rather than end-users.

C. LLMs with Data Interaction

Tian et al. presented SpreadsheetLLM [12], a framework
designed to enable LLMs to comprehend and analyze spread-
sheet data, aiming to create an effective encoding approach that
leverages the powerful comprehension and reasoning abilities
of LLMs. Although SpreadsheetLLM focuses on spreadsheet
comprehension rather than preprocessing, it addresses the chal-
lenges associated with handling large and complex datasets
with LLMs. The compression strategies established in this
study provide valuable insights for enhancing TradeSweep ’s
data preprocessing capabilities, particularly for handling mas-
sive spreadsheets.

D. LLMs and Code Generation

Li et al. developed SKCoder [13], a sketch-based code
generation strategy designed to mimic the code reuse behav-
iors of software engineers. To avoid hallucination [36, 40],
works such as ALGO [15] and CleanAgent [18] implement
guardrails to structure code generation outputs. In general,
while LLMs have strong capabilities in generating code based
on user prompts, they still encounter difficulties in handling
algorithmic complexities and often require human verification
[42, 43] to ensure correct and/or efficient code. For example, a
minor typo in column names can cause the model to generate
code that applies to the wrong column, and failing to specify
an algorithm in the user’s request may result in functions with
low efficiency. For instance, this could involve generating code
that uses a brute-force approach to sorting numbers instead of
a more efficient algorithm like bubble sort. Table I presents
a comparison between TradeSweep and the systems surveyed
above.

III. APPROACH

We present TradeSweep , an LLM-based tool that lever-
ages the LLM’s code-writing abilities to produce executable
programs for data preprocessing tasks. Users are only re-
quired to provide a dataset in either CSV or Excel format
and submit a preprocessing request. As illustrated in Fig. 2,
TradeSweep comprises three primary components:

• Prompt augmentation: This component employs infor-
mation retrieval techniques to select the top-k relevant
codes from the code library. (Section III-B)

• Code generation: The LLM generates a code proposal
and visualized samples of execution results, awaiting user
feedback. (Section III-C)

• Code library: We build a reference document that in-
cludes classic Python scripts for data preprocessing tasks.
(Section III-D)

A. Problem Definition

Let D represent a table with n rows and m columns,
with column names c1, c2, ..., cm denoted as C. Each element
xij , where i ∈ {1, ..., n} and j ∈ {1, ...,m}, represents the

TABLE I
FEATURE COMPARISON: EXISTING TOOLS VS. TRADESWEEP

SkCoder Jigsaw ALGO CleanAgent Devin TradeSweep

English conversations ✓ ✓ ✓ ✓ ✓
Simple user request ✓ ✓ ✓
Feedback enabled ✓ ✓ ✓
Novel code generation ✓ ✓ ✓ ✓ ✓ ✓
Dynamic code library ✓
Visualized execution results ✓ ✓

Fig. 2. An overview of TradeSweep with three key components: code retrieval for prompt augmentation, LLM-based code generation followed by human
evaluation, and continuous updates to the code library

value of the j-th feature of the i-th data record. In practical
applications, it is often necessary to perform data cleaning
(e.g., handling inconsistent formats, outliers, missing values)
and preprocessing (e.g., normalization, label encoding) on the
dataset D before training a machine learning model.

Let A be a subset of {c1, c2, ..., cm}, representing the col-
lection of columns that require processing. TradeSweep (M)
is designed to receive a preliminary description r of the user’s
data preprocessing requirements in English and to automati-
cally generate Python code f̂ and a processed dataset D̂. To
achieve this goal, TradeSweep (M) begins by constructing a
prompting curriculum denoted as P = [r, C]. This curricu-
lum is then inputted into an LLM as a prompt to develop
Python code that meets the specified requirements r. Using
the code generated by TradeSweep (code proposal G), the
system executes and evaluates G on a subset of D to obtain an
execution outcome O that can be presented to the user. It is
important to note that, TradeSweep operates without requiring
programming expertise from the user, as the specific columns
A necessitating modification are automatically determined by
the model, and the entire process from input description to
execution outcome is managed by the system.

One of the commonly reported challenges with using LLMs
is its vulnerability to hallucinations. In the context of code
generation, this can result in code that includes non-existent
functions or incorrect syntax, among other issues. To address

hallucination challenges, we expanded the existing curriculum
P = [r, C] into P = [r, C,F]. Here, F denotes a finite set of
closely interconnected fundamental functions that serve as a
reference for the LLM. This approach offers a dual advantage:

1) Decreased Occurrence of Hallucinations: By incorpo-
rating a set of fundamental functions, the likelihood of
hallucinations is reduced.

2) Enhanced Code Generation: LLMs can develop new
code in addition to leveraging the fundamental reference
functions.

To implement the expanded curriculum P = [r, C,F],
TradeSweep employs an adaptable code library L. First, the re-
quest r is transformed into an embedding representation embr.
A set of k relevant fundamental functions F = {f1, ..., fk} is
then extracted from the code database ⟨embi, functioni⟩ based
on the minimum cosine similarity mini∈L cosine(embr, embi).
Once a new code proposal G is successfully developed to
meet complex requirements r, typically through interaction
with users, it is saved in the library L. This allows the library
L to continually learn and provide more accurate and advanced
reference functions in the future.

Furthermore, incorporating human feedback in the code
generation process ensures that TradeSweep produces code
meeting user expectations. Specifically, we present the code
proposal G along with an execution result O. This allows
users to inspect and determine if the outcome meets their

expectations. If satisfied, the code is then executed on the
entire dataset, enabling users to verify if the processed data
aligns with their domain knowledge rather than examining
the code in detail. This makes the tool accessible for non-
expert programmers. If the intended outcome is not achieved,
TradeSweep will initiate a continuous conversation P =
[r′, C,F], where r′ denotes a revision request. In the Results
section (Section V), we demonstrate how TradeSweep achieves
a high probability of meeting users’ requests on the LLM’s first
attempt and adapts more rapidly than baselines when revisions
are requested.

B. Prompt Augmentation

Following the submission of the user’s request for data
preprocessing, TradeSweep examines all functions contained
within the code library to learn from and utilize them as
references. The library comprises code functions commonly
applied in various preprocessing tasks. Along with these
functions, data information is also provided to the LLM to
aid its understanding of the dataset structure.

However, inputting both code functions and data infor-
mation can result in a lengthy prompt containing redundant
information. This not only reduces the LLM’s performance
in accurately identifying the most relevant function but also
significantly delays the LLM’s response time. To address this
issue, we aim to shorten the input context. Instead of present-
ing all code functions in the prompt, we utilize information
retrieval (IR) techniques to perform a more precise selection
on code functions, providing the LLM with the most relevant
and useful codes.

We implemented this approach by representing our code
library as a vector database. Each vector includes an embedded
description of a code function, with its corresponding function
code serving as the payload of the vector. During each round
of code generation, we query the vector database to retrieve
k code functions deemed most relevant to the user’s request.
These selected functions are then included in the LLM prompt.
This process not only effectively shortens the prompt length
and reduces the LLM’s response time but also helps the LLM
focus on functions most pertinent to fulfilling the user’s request
(see Fig. 3).

Fig. 3. Identifying relevant code functions for prompt augmentation

C. Code Generation

Once the top-k relevant codes have been retrieved as candi-
date codes, a prompt for the LLM is created by combining the
candidate codes with data information and the user’s request.
The LLM examines the provided information and produces a

code proposal designed to accomplish the requested task. If
the LLM does not find any candidate code that aligns with the
user’s request, it generates a novel code function.

The process of code generation includes iterative enhance-
ments under the following scenarios after the initial code
proposal is generated:

1) Incorrect Code Proposal Format: We provide the LLM
with a response template specifying that the proposal
format should include a Python code function that reads
a dataframe and returns it at the end. The proposal
should also include a function call for applying the code
to the data. If either of these components is missing in
the generated code, the LLM automatically modifies the
proposal to meet the required format.

2) Execution Error: Once a code proposal is generated
in the expected format, it is tested on sample data. If
execution fails due to bugs, syntax errors, exceptions, or
other issues, both the code and its corresponding error
message are returned to the LLM for revision.

3) User Feedback: Users are provided with a visualized
execution result on sample data, showing examples of
input values and their corresponding output values when
the code is applied. Based on the user’s review of
the code proposal and execution outcomes, they can
request code revisions by providing feedback describing
necessary fixes to the LLM.

Finally, once the user confirms that both the code proposal
and execution examples are correct, the code is applied to the
target dataset, as shown in Fig. 4. For novel code or when
users request saving multiple functions into a single pipeline,
the newly generated code or series of codes are added to our
code library.

Fig. 4. Code generation and enhancement based on execution results and
user feedback

D. Code Library
Due to the complexity of data preprocessing tasks - such

as those requiring specific algorithms or involving multiple
datasets - a code library is beneficial as a reference document
for the LLM to learn from and follow when generating code
proposals. In TradeSweep ’s code library, each function is
designed to handle a particular data preprocessing task and in-
cludes comments describing its usage. To enhance the efficacy
of TradeSweep , we have developed a code library capable
of supporting the addition of new functions as interactions
progress:

1) Novel Code: When the LLM does not identify any
function that corresponds to the user’s request after
analyzing the retrieved codes, it generates a novel code
proposal. Since this newly generated code is not initially
included in the library, we incorporate it back into the
library to improve efficiency and accuracy for future
code generations.

2) Pipeline Creation Request: After a series of code
functions have been generated, the user may request that
the entire procedure be stored as a pipeline. During this
process, the several functions previously applied to the
dataset are combined into a single code function, which
is then added to our code library.

As illustrated in Fig. 5, the process of integrating the novel
code function into the code library involves a sequence of
steps. First, we use an LLM to generate a description of the
novel code, which is then added as comments. Subsequently,
both the newly generated code function and its associated
description are then added into our vector database code
library. A new query vector is constructed using the function
description, and its corresponding payload is generated by the
code.

Fig. 5. Code library dynamically updated with each novel LLM-generated
code or user pipeline request.

IV. EXPERIMENTS

In this section, we present the design of our experiments,
including the choice of datasets, large language model, dis-
cussion about the baselines, and evaluation methodology.

A. Experimental Setup

Data: We use shipment-level bill of lading data [22] that
captures business-to-business international trade and highlights
the complexity of supply chains. The effectiveness of identify-
ing shipments potentially circumventing economic sanctions,
high tariffs, or engaging in suspicious activities largely de-
pends on the quality of data initially cleaned and preprocessed.
Specifically, we use three trade datasets involving imports and
exports across multiple nations for commodities that have been
subject to recent import prohibitions, high tariff rates, and
sanctions, and all may contain risks associated with origin
fraud [23, 24]. The datasets are as follows:

1) Teak: This dataset includes 69,134 teakwood transac-
tions exporting from 116 countries to the United States,

spanning from July 1, 2007, to August 10, 2023 (5,885
days in total). The data source is Panjiva1.

2) Grain: This dataset comprises 145,217 grain transac-
tions from Russia to 118 global destinations, covering
the period from May 20, 2021, to November 30, 2022
(560 days in total). The data sources are ExportGenius2

and ImportGenius3.
3) Timber: This dataset contains 3,087,822 timber exports

from Russia to 173 countries, starting from October 20,
2021, to March 31, 2023 (528 days in total). The data
sources are ExportGenius and ImportGenius.

These datasets span significant periods and were manually
entered, making them susceptible to errors such as typos, in-
consistent formatting, and missing information. Consequently,
data analysis becomes a laborious and time-consuming task for
analysts, highlighting the urgency and importance of effective
data preprocessing.

Vector database: We use Qdrant4, a widely recognized and
rapidly expanding vector database, as our information retrieval
system. Qdrant is employed to efficiently store and retrieve
code functions based on its vector embeddings.

Large Language Model: For this study, we employed
CodeLlama-13b-Instruct5. This model is used to learn from
retrieved codes, generate executable Python functions, and
modify codes in response to user feedback. Unlike API-based
LLMs, CodeLlama-Instruct allows for local execution, offering
greater flexibility and control.

Code Library: Our initial code library comprises 12 widely
recognized and commonly used data preprocessing functions.
These functions cover a range of tasks, including standard-
izing date formats, removing punctuation marks, correcting
misspellings, and filling in missing values based on other
columns. Table II presents details on some of the functions
from the initial code library.

Hardware Environment: The experiments were conducted
using a Tesla P40 GPU with 8 cores, 38 GB of RAM, and
500 GB of disk memory. This hardware setup ensures efficient
processing and management of computational tasks associated
with code generation and evaluation.

B. Baselines

To evaluate the performance of TradeSweep in generating
effective and relevant code, we developed three baselines for
comparison:

1) Baseline 1 (B1): State-of-the-Art (SOTA) Simulation -
Code Generation Using Only LLM. For B1, we ab-
stracted the code generation components of state-of-the-
art tools such as FLAME and Jigsaw. These tools’ code-
writing capabilities focus solely on LLM and do not
utilize any code libraries or additional augmentations.
The LLM must independently generate code based on

1https://panjiva.com/
2https://www.exportgenius.in/
3https://www.importgenius.com/
4https://qdrant.tech/
5https://github.com/meta-llama/codellama

TABLE II
PREPROCESSING FUNCTIONS FROM THE INITIAL CODE LIBRARY

Task Explanation

Remove
columns

Delete unwanted column(s).

Remove
rows

Delete rows that satisfy a certain condition.

Clean num-
bers

Remove non-numeric symbols and convert the value to
numbers.

Clean strings Remove punctuation marks, quotation marks, and any
extra spaces.

Standardize
dates

Standardize all date values to a YYYY-mm-dd format.

Correct mis-
spellings

Apply word-embedding and clustering to a column to
cluster similar values. Then, in each cluster group, find
the most frequent value and correct others to that.

Compare
columns and
clean

Between a to-clean column and a reference column,
group the two columns. Then, for all to-clean values that
have the same reference value, find the most frequent to-
clean value and update others on this.

Lookup doc-
ument

Given a to-clean column in the dataset and an external
CSV/Excel document, map the to-clean values to a refer-
ence column in the document, then create a new column
with the mapped values.

the user’s request without external references. This setup
evaluates the LLM’s capability to produce relevant code
purely from the textual description provided by the user,
which may involve significant effort and may result in
less effective data cleaning outcomes.

2) Baseline 2 (B2): LLM Prompted with Candidate Codes
and User’s Request. For Baseline 2, we provided the
LLM with a set of top-k candidate codes retrieved from
the code library, along with the user’s request. Unlike
TradeSweep , which also includes data information, this
baseline excludes specific data details from the prompt.
This design assesses the impact of not providing data
context on the LLM’s performance. The LLM must
generate code based solely on the provided candidate
codes and user request, potentially leading to less ac-
curate code generation due to the lack of data-specific
guidance.

3) Baseline 3 (B3): Providing the Entire Code Library
Without Descriptions. In this baseline, the LLM receives
the entire code library, but without any accompanying
descriptions or comments. The candidate codes are
provided in their raw form, with no explanatory notes.
This setup explores the effect of removing code descrip-
tions on the LLM’s ability to generate relevant code.
Additionally, B3 does not utilize the vector database
for prompt augmentation; instead, it provides the full
code library as part of the prompt. This approach helps
understand the influence of having complete access to
code functions without context or descriptions on code
generation performance.

C. Evaluation Methodology

For each dataset, we defined a set of data preprocessing
tasks based on the dataset’s specific content and characteristics,

as presented in Table III.

TABLE III
DATA PREPROCESSING TASKS USED IN OUR EXPERIMENTS

Teak Grain Timber

Remove columns ✓ ✓
Standardize dates ✓ ✓ ✓
Clean numbers ✓ ✓
Clean strings ✓ ✓
Correct misspellings ✓ ✓
Compare columns and clean ✓ ✓ ✓
Lookup documents ✓ ✓
Others (not in library) ✓ ✓ ✓

The code for each task is generated using TradeSweep and
the three baselines, and evaluated based on several key metrics.
We record both the initial and final versions of the generated
codes, noting any revisions made, and measure the time taken
to generate the code. After generating the code, we apply it
to the initial, unprocessed dataset and compare the execution
outputs to manually preprocessed data to assess the accuracy
and effectiveness of each method.

When multiple columns are assigned to perform the same
task within the same dataset, we generate separate codes
for each column using the same algorithm but with slight
modifications to tailor the code to the specific column re-
quirements. This approach allows us to evaluate how well each
method adapts to different columns and their unique attributes,
ensuring a comprehensive comparison of code generation
efficiency and performance.

V. RESULTS

This section outlines the results and presents a discussion
on them. Fig. 6 illustrates the user interface of TradeSweep .
First, users upload a spreadsheet (e.g., Timber.csv), which is
displayed on the left half of the screen. They then enter their
data preprocessing request, such as Only show records where
trading country is US, into the text box. The interface also
provides access to all previously completed data preprocessing
tasks. Once the LLM generates a code proposal, it appears in
the box below, where users can test it on sample data and
request revisions if necessary.

We applied the codes generated by TradeSweep and the
three baselines to the trade datasets for evaluation. In our
analysis, we refer to the initial data as Init and the manually
cleaned data as GT (Ground Truth) for simplicity. The Ground
Truth data represents the fully preprocessed and cleaned
version of the dataset, achieved through meticulous manual
adjustments by data analysts. Our experiments are designed
to answer the following questions:

1) Can TradeSweep preprocess data accurately? (Section
V-A and V-D)

2) Does TradeSweep generate high-quality data preprocess-
ing functions? (Section V-B)

3) How effective can TradeSweep pass assertion checks
(i.e. generating code that functions properly)? (Section
V-B)

Fig. 6. TradeSweep in action - input data (on the right), user query and generated code (on the left)

4) To what extent can TradeSweep independently generate
valid code proposals? (Section V-C)

5) How many rounds of user feedback are needed to
produce a valid code proposal? (Section V-C)

6) How does the source code library enhance
TradeSweep ’s code generation capabilities? (Section
V-D)

7) What role does RAG play in improving TradeSweep ’s
code generation? (Section V-D)

A. Preprocessed Dataset Correctness
After preprocessing the three raw datasets (Init) using

the code generated by all three baselines (B1 to B3) and
TradeSweep , we compared the resulting preprocessed datasets
to the Ground Truth (GT), the manually cleaned dataset. As
Table IV illustrates, TradeSweep ’s execution results closely
align with GT, demonstrating its effectiveness in preprocessing
across the three datasets. Baselines 2 and 3 also produced
results similar to TradeSweep , as they benefited from refer-
encing and learning from the code library during code gener-
ation. Conversely, the codes generated by Baseline 1 showed
considerable deviation from Ground Truth. This discrepancy
is due to Baseline 1’s reliance on the LLM’s independent code
generation, which often led to the use of different algorithms
and approaches compared to those in the code library.

B. Code Quality
To evaluate the code quality of the functions produced

by TradeSweep and the baselines, we utilized Pylint6 and
Radon7 as metrics. Pylint measures errors (e.g., syntax errors),

6https://www.pylint.org/
7https://pypi.org/project/radon/

TABLE IV
EVALUATION OF PREPROCESSED OUTPUTS RELATIVE TO GROUND TRUTH

(GT)

Init GT B1 B2 B3 TS

Teak

of cols 127 26 26
of rows 69,134 69,134
NaNs (%) 48.77 7.57 10.94 7.09 7.09 7.09
incorrect
formats (%)

19.99 0 29.98 9.86 1.03 1.03

typos (%) 9.29 0 25 3.92 3.92 3.92

Grain

of cols 56 61 61
of rows 145,217 145,217
NaNs (%) 66.94 62.10 3.76 63.07 66.22 63.57
incorrect
formats (%)

2.84 0 9.68 0.09 0.08 0.08

typos (%) 18.06 0 14.43 2.37 6.65 3.21

Timber

of cols 29 23 23
of rows 3,087,822 3,087,822
NaNs (%) 3.19 4.55 8.68 4.75 8.24 4.42
incorrect
formats (%)

87.93 0 64.86 0.63 12.81 0.63

typos (%) 93.19 0 74.69 4.04 6.83 2.76

warnings (e.g., unused import packages), and other aspects for
Python functions, assigning a score between 0 (inefficient)
to 10 (efficient). Radon calculates Cyclomatic Complexity,
providing a rank from A (simplest) to F (most complex). For
simple data preprocessing tasks, such as “Clean dates to yyyy-
mm-dd format”, TradeSweep and the three baselines produced
code of comparable quality and complexity, regardless of
whether they utilized a code library (see Table V).

However, for more complex tasks, such as compar-
ing two columns and cleaning the target column using

the most frequent value from the reference column, the
use of a code library significantly improves code quality.
TradeSweep obtained a higher Pylint score and generated a
more complex code; Baseline 1, with a Radon complexity rank
of A, produced code that was too simple to fulfill the task.
This enhancement is evident in the results, where functions
generated with the aid of a code library demonstrated higher
quality scores and are more complex compared to Baseline 1,
which relied on independent code generation without library
references.

As part of TradeSweep , we integrated an assertion check
feature to ensure that the generated functions execute correctly
before they are presented to the user. If a function encounters
execution failures due to exceptions, errors, or other issues,
the incorrect function and the corresponding error message are
sent back to the LLM for correction. This process is performed
in an iterative manner.

Table VI shows the average number of execution failures
for TradeSweep compared to the baselines. TradeSweep , by
leveraging a code library and data information for the LLM,
consistently achieved the lowest number of execution failures
across various data preprocessing tasks. In contrast, Baseline
1, which generated functions independently without utilizing
a code database, had a higher error rate due to numerous
coding errors. Baseline 2 encountered challenges due to the
lack of data information; for instance, if a user request was
vague (e.g., “Correct misspellings in shipper names” without
specifying to apply the function on the “Shipper” column),
the LLM erroneously applied the function to a non-existent
column, leading to an infinite loop of KeyErrors. Baseline 3
experienced difficulties because the LLM was tasked with in-
terpreting all functions in the code library rather than focusing
on the most relevant ones, resulting in a higher likelihood of
errors in its generated functions.

C. User Involvement

Table VII records the rate of codes approved by users on
the LLM’s first attempt. Each value represents the number of
codes accepted on the first try, divided by the total number
of accepted codes. TradeSweep achieved the highest rate of
user-approved codes across all three datasets without need-
ing revisions, exhibiting better performance in generating a
function that meets the user’s demand on the LLM’s first
attempt by leveraging knowledge from the code library. In
contrast, Baseline 1 often produces unstable results initially,
as it generates code independently without the benefit of
the code library. This results in frequent misalignment with
vague user requests (e.g., “Clean numbers in net weights”)
and requires more explicit instructions (e.g., “Clean numbers
in net weights by removing commas and converting the values
to float numbers”). The lowest acceptance rate was noted for
Baseline 2 due to the absence of column name information
provided to the LLM. Although Baseline 2 used the same al-
gorithm as TradeSweep , the lack of column name information
necessitates nearly all preprocessing tasks to undergo revision,
highlighting the need for accurate column specification (e.g.,

“Clean numbers in the NetWeight column” rather than “Clean
numbers in net weights”). Baseline 3, while also capable
of generating correct codes initially, requires slightly more
user involvement compared to TradeSweep . In this baseline,
although the LLM often selects the correct code for reference,
the absence of function descriptions leads to over- or under-
modification of reference code, resulting in additional revision
requests.

D. Enhancing Code Generation Capabilities

To evaluate the impact of how having a code library
can enhance the generation of data preprocessing functions,
we compared the overall results of data preprocessed by
TradeSweep with Baseline 1, as the primary distinction be-
tween the two lies in TradeSweep ’s use of a code library.
After conducting preprocessing on the three datasets, Table
VIII illustrates that TradeSweep , by leveraging example code
functions from the library, consistently produces suitable and
executable code that can preprocess data with much higher
correct-value rates (comparable to the Ground Truth data)
compared with Baseline 1.

The ability to maintain and expand the code library is crucial
for handling more complex and repetitive user requests, as
newly generated code functions can be added to the library
for future use. The results presented in Table IX suggests
that Baseline 3, which provides the entire code library to the
LLM, requires significantly more time for code generation
compared to TradeSweep . This is due to the increased prompt
length, which slows down the process. TradeSweep ’s use of
RAG to retrieve only the top-k most relevant codes from the
library reduces prompt length and improves code generation
efficiency. In our experiments, we determined that setting the
value of k to 3 optimizes performance. Values of k ≥ 4 result
in longer code generation times, while values of k ≤ 2 increase
the likelihood of retrieving irrelevant functions. For instance, if
a user requests to “clean the dates,” setting k too low may lead
to retrieving functions like “clean numbers” or “clean strings”,
which are less relevant compared to “standardize dates”. Thus,
k = 3 strikes a balance between retrieval accuracy and prompt
length efficiency. In conclusion, Baseline 3, which excluded
information retrieval and inputted a lengthy prompt to the
LLM, required considerably longer time for generating codes
compared to TradeSweep .

E. Case Study

To better understand the differences in code generation
performance among various baselines and TradeSweep , we
analyzed the initial code proposals generated by each method
before any user feedback was provided. All baselines received
identical user request inputs for each preprocessing task.

Using the example of cleaning the column “Shipper Coun-
try”, Fig. 7 shows the code proposal generated by the three
baselines and TradeSweep . In the scenario, the user’s request
was: “Compare values in shipper country with shippers, and
clean country names with the same shipper to the most
frequent value.” The ideal approach would involve using

TABLE V
COMPARISON OF CODE QUALITY FOR A SIMPLE TASK (CLEAN DATES TO YYYY-MM-DD FORMAT) VS. COMPLEX TASK (COMPARE TWO COLUMNS AND

CLEAN)

Teak Grain Timber
simple task complex task simple task complex task simple task complex task

Baseline 1
of lines (↓) 7 7 7 6 6 6
Pylint (↑) 4.29 3.64 5.71 4.44 5.71 1.67
Radon (↓) A A A A A A

Baseline 2
of lines (↓) 8 6 9 6 8 6
Pylint (↑) 4.17 5.65 5 5.65 5.83 5.65
Radon (↓) A C A C A C

Baseline 3
of lines (↓) 8 6 10 6 6 6
Pylint (↑) 5.83 5.65 5.38 5.65 5.71 5.65
Radon (↓) A C A C A C

TradeSweep
of lines (↓) 7 6 7 6 8 6
Pylint (↑) 5.45 5.65 6 5.65 5 5.65
Radon (↓) A C A C A C

TABLE VI
AVERAGE NUMBER OF EXECUTION FAILURES IN THE GENERATED CODE

Baseline 1 Baseline 2 Baseline3 TradeSweep

Teak 1.92 ∞ 0.17 0.08
Grain 1.72 ∞ 0.72 0.11
Timber 1.17 ∞ 0.67 0.08

TABLE VII
ACCEPTANCE RATE OF INITIAL CODE PROPOSALS

Baseline 1 Baseline 2 Baseline3 TradeSweep

Teak 5/12 1/12 9/12 10/12
Grain 5/18 5/18 12/18 12/18
Timber 15/24 5/24 17/24 18/24

the “compare and clean” function from the code library and
apply it to the “Shipper Country” column while comparing
with the “Shipper” column.

1) TradeSweep : In TradeSweep , the top three relevant
functions were retrieved from the code library and inputted
into the LLM. The generated code proposal demonstrated that
the LLM effectively learned from the “compare and clean”
function in the code library. By including data column names,
TradeSweep accurately identified the columns intended for the
task. The proposed code grouped the data by the “Shipper”

TABLE VIII
IMPACT OF CODE LIBRARY IN GENERATING RELEVANT CODE FOR DATA

PREPROCESSING TASKS - BASELINE 1 VS. TRADESWEEP

Teak Grain Timber

Init correct-rate 86.60% 85.94% 9.09%
GT correct-rate 100% (time-consuming)

Baseline 1 correct-rate 73.09% 87.65% 29.58%
first-attempt valid rate 41.66% 27.78% 62.5%

TradeSweep correct-rate 97.19% 97.61% 98.17%
first-attempt valid rate 83.33% 66.67% 75%

TABLE IX
IMPACT OF RAG ON CODE GENERATION - BASELINE 3 VS. TRADESWEEP

Teak Grain Timber

Baseline 3 555.46 369.99 269.34
TradeSweep 167.55 117.40 94.08

column and, within each group, identified the most frequent
“Shipper Country” value, modifying other values to match this
frequent value.

2) Baseline 1: Baseline 1 generated code based on assump-
tions about the user’s request. Although the proposed code
successfully grouped the columns and found the most frequent
shipper country, it made errors by converting all strings to
lowercase and not handling potential NaN values properly.
This led to a higher prevalence of NaNs and incorrectly
formatted country names. Unlike TradeSweep , Baseline 1
failed to use the most frequent non-NaN value, resulting in
a less accurate output.

3) Baseline 2: Baseline 2 was provided with candidate
codes and the user’s request but lacked data information. The
code generated attempted to use the “compare and clean”
function from the code library, but without knowing the exact
column names, it made assumptions. The LLM used column
names like “shippers” and “shipper country” instead of the
correct “Shipper” and “Shipper Country,” leading to incorrect
application of the function. In contrast, TradeSweep accurately
applied the function to the intended columns by utilizing the
provided data information.

4) Baseline 3: In Baseline 3, all functions in the code
library were inputted into the LLM without their descriptions.
Although the LLM could understand the usage of each func-
tion, the excessive length of the prompt, due to including
all functions, led to a significant slowdown in code gen-
eration—taking 690 seconds. Despite successfully applying
the “compare and clean” function, the approach of inputting
the entire code library resulted in inefficiencies compared to

Fig. 7. Case Study: A snapshot of code proposal generated by the three baselines (B1 - B3) and TradeSweep

TradeSweep ’s method of using only the top-k relevant func-
tions, which streamlined the process and improved generation
speed.

F. Limitations

During the data preprocessing operation, if TradeSweep is
unable to identify a relevant function in the code library, it
generates a novel code. This limitation causes TradeSweep to
behave similarly to SOTA tools, relying solely on the LLM
to generate code. Consequently, the user must provide more
iterations of feedback and changes for the LLM to produce
valid code functions. Another limitation is that the execution
outputs of sample data may not provide users with sufficient
information to assess the code’s performance for certain tasks.
For instance, correcting misspellings in company names might
result in over- or under-correction, and by observing a limited
number of correction examples, users may not confirm whether
the code successfully captures all corner cases. In such sce-
narios, it is helpful to perform an apply-test on the full target
data and generate a comparison of names before and after
correction. However, applying codes to the full dataset takes
much more time than only applying it to sample data.

To address these limitations in the future, several improve-
ments can be made. Expanding the code library with a broader
range of pre-defined functions can reduce the likelihood of
generating novel code, thereby decreasing the need for user

feedback and iterations. Implementing more advanced sam-
pling techniques for the execution outputs can provide users
with a more representative subset of the data, helping them
better assess the code’s performance. Additionally, optimizing
the apply-test procedure to efficiently handle larger datasets
can expedite the process, enabling quicker feedback and
validation for users.

VI. CONCLUSION

The rise of automation and programming support through
LLMs has significantly reduced the turnaround time for pro-
cessing large spreadsheets. Our method, TradeSweep , func-
tions as an LLM-driven data preprocessing agent, retrieving
suitable functions from a code library and adapting them to
fulfill specific data preprocessing tasks. Our results demon-
strate TradeSweep ’s effectiveness in practical data transfor-
mation scenarios. In experiments conducted on three transac-
tion datasets, TradeSweep efficiently performed the requested
data preprocessing tasks with minimal user interaction. The
ablation study highlights that utilizing a code library and a
vector database for information retrieval accelerates the code
generation process. Moreover, providing data information and
function descriptions to the LLM enhances the accuracy of
code generation, reducing the need for user feedback and
enabling users with limited programming expertise to achieve
effective results.

REFERENCES

[1] M. Heller, “Large language models and the rise
of the AI code generators,” InfoWorld, May 23,
2023. https://www.infoworld.com/article/3696970/llms-
and-the-rise-of-the-ai-code-generators.html

[2] P. Ingle, “Top artificial intelligence (AI) tools
that can generate code to help programmers
(2024),” MarkTechPost, Mar. 14, 2024.
https://www.marktechpost.com/2024/03/14/top-artificial-
intelligence-ai-tools-that-can-generate-code-to-help-
programmers/

[3] B. D. Ramel, 06/30/2023, “Top 10 AI ‘copilot’ tools
for visual studio code -,” Visual Studio Magazine.
https://visualstudiomagazine.com/articles/2023/06/30/vs-
code-copilots.aspx (accessed Jul. 22, 2024).

[4] S. Anunaya, “Data preprocessing in data mining: a
hands on guide,” Analytics Vidhya, Aug. 10, 2021.
https://www.analyticsvidhya.com/blog/2021/08/data-
preprocessing-in-data-mining-a-hands-on-guide
(accessed Jul. 22, 2024).

[5] A. A. Kandilli, “How is dirty data handled
in data analytics?,” Medium, Jul. 26, 2022.
https://medium.com/@sweephy/how-is-dirty-data-
handled-in-data-analytics-1767fb998e37 (accessed Jul.
22, 2024).

[6] H. Joshi et al. (2024) “Flame: a small language model for
spreadsheet formulas”, Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(12), pp. 12995–13003.
doi:10.1609/aaai.v38i12.29197.

[7] J. Li et al. (2024) “Can LLM already serve as a database
interface? a big bench for large-scale database grounded
text-to-SQLs”. In Proceedings of the 37th International
Conference on Neural Information Processing Systems
(NIPS ‘23). Curran Associates Inc., Red Hook, NY, USA,
Article 1835, 42330–42357.

[8] P. Lewis et al. 2020. “Retrieval-augmented generation
for knowledge-intensive NLP tasks”. In Proceedings of
the 34th International Conference on Neural Information
Processing Systems (NIPS ‘20). Curran Associates Inc.,
Red Hook, NY, USA, Article 793, 9459–9474.

[9] Q. Tang et al., “Self-retrieval: building an information
retrieval system with one large language model”, arXiv
[cs.IR]. 2024.

[10] C. Fan, M. Chen, X. Wang, J. Wang and B. Huang. “A
review on data preprocessing techniques toward efficient
and reliable knowledge discovery from building opera-
tional Data.” Frontiers in Energy Research (2021).

[11] C. Gopal, “Network visualization and anomaly detection
in international timber trade flows”. 2021.

[12] Y. Tian et al. “SpreadsheetLLM: encoding spread-
sheets for large language models.” arXiv preprint
arXiv:2407.09025 (2024).

[13] J. Li et al. “SkCoder: a sketch-based approach for
automatic code generation.” 2023 IEEE/ACM 45th In-
ternational Conference on Software Engineering (ICSE)

(2023): 2124-2135.
[14] N. Jain et al. “Jigsaw: large language models meet

program synthesis.” 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE) (2021):
1219-1231.

[15] K. Zhang, D. Wang, J. Xia, W. Y. Wang, and L. Li.
2024. “ALGO: synthesizing algorithmic programs with
LLM-generated oracle verifiers”. In Proceedings of the
37th International Conference on Neural Information
Processing Systems (NIPS ‘23). Curran Associates Inc.,
Red Hook, NY, USA, Article 2389, 54769–54784.

[16] cognition.ai, “Cognition — introducing Devin,
the first AI software engineer,” cognition.ai.
https://www.cognition.ai/blog/introducing-devin

[17] H. Zhang, Y. Dong, C. Xiao and M. Oyamada.
“Large language models as data preprocessors.” ArXiv
abs/2308.16361 (2023): n. pag.

[18] D. Qi and J. Wang. “CleanAgent: automating data
standardization with LLM-based agents.” ArXiv
abs/2403.08291 (2024): n. pag.

[19] S. Lu et al. “ReACC: a retrieval-augmented code comple-
tion framework.” ArXiv, (2022). Accessed July 25, 2024.
/abs/2203.07722.

[20] Md. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray
and K. W. Chang. “Retrieval augmented code generation
and summarization.” ArXiv abs/2108.11601 (2021): n.
pag.

[21] F. Zhang et al. “RepoCoder: Repository-Level Code
Completion Through Iterative Retrieval and Generation.”
Conference on Empirical Methods in Natural Language
Processing (2023).

[22] A. Flaaen et al., “Bill of lading data in international
trade research with an application to the COVID-
19 pandemic,” Finance and Economics Discussion Se-
ries, vol. 2021, no. 066, pp. 1–40, Oct. 2021, doi:
https://doi.org/10.17016/feds.2021.066.

[23] L. Aratani, “US imports of ‘blood teak’
from Myanmar continue despite sanctions,”
The Guardian, May 16, 2023. Available:
https://www.theguardian.com/world/2023/may/16/myanmar-
teak-wood-import-sanctions

[24] “Russia smuggling Ukrainian grain to help pay
for Putin’s war,” AP NEWS, Oct. 03, 2022.
https://apnews.com/article/russia-ukraine-putin-business-
lebanon-syria-87c3b6fea3f4c326003123b21aa78099

[25] Y. Song et al. 2024. “Enhancing text-to-SQL trans-
lation for financial system design”. In Proceed-
ings of the 46th International Conference on Soft-
ware Engineering: Software Engineering in Practice
(ICSE-SEIP ‘24). Association for Computing Ma-
chinery, New York, NY, USA, 252–262. https://doi-
org.ezproxy.lib.vt.edu/10.1145/3639477.3639732

[26] X. Xu, C. Liu, and D. Song. “Sqlnet: generating struc-
tured queries from natural language without reinforce-
ment learning.” arXiv preprint arXiv:1711.04436 (2017).

[27] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. 2017.

“SQLizer: query synthesis from natural language”. Proc.
ACM Program. Lang. 1, OOPSLA, Article 63 (October
2017), 26 pages. https://doi.org/10.1145/3133887

[28] B. Wang et al. “Mac-sql: a multi-agent collab-
orative framework for text-to-sql.” arXiv preprint
arXiv:2312.11242 (2024).

[29] L. Huang et al. “A survey on hallucination in large
language models: principles, taxonomy, challenges, and
open questions.” ArXiv abs/2311.05232 (2023): n. pag.

[30] J.D. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and
Q. Yang. 2023. “Why Johnny can’t prompt: How non-
AI experts try (and fail) to design LLM prompts”. In
Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ‘23). Association
for Computing Machinery, New York, NY, USA, Article
437, 1–21. https://doi.org/10.1145/3544548.3581388

[31] Z. Xu, S. Jain, and M. Kankanhalli. “Hallucination is
inevitable: an innate limitation of large language models.”
arXiv preprint arXiv:2401.11817 (2024).

[32] M. Izadi et al. 2024. “Language models for code com-
pletion: a practical evaluation”. In Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering (ICSE ‘24). Association for Computing
Machinery, New York, NY, USA, Article 79, 1–13.
https://doi.org/10.1145/3597503.3639138

[33] A. de Moor, A. van Deursen, and M. Izadi. 2024.
“A transformer-based approach for smart invoca-
tion of automatic code completion”. In Proceedings
of the 1st ACM International Conference on AI-
Powered Software (AIware 2024). Association for
Computing Machinery, New York, NY, USA, 28–37.
https://doi.org/10.1145/3664646.3664760

[34] M. Izadi, R. Gismondi, and G. Gousios. 2022. “Code-
Fill: multi-token code completion by jointly learning
from structure and naming sequences”. In Proceed-
ings of the 44th International Conference on Soft-
ware Engineering (ICSE ‘22). Association for Com-
puting Machinery, New York, NY, USA, 401–412.
https://doi.org/10.1145/3510003.3510172

[35] P. Li, Z. Chen, X. Chu, and K. Rong. 2023. “Diff-
Prep: differentiable data preprocessing pipeline search
for learning over tabular data”. Proc. ACM Manag.
Data 1, 2, Article 183 (June 2023), 26 pages.
https://doi.org/10.1145/3589328

[36] B. A. Halperin and S. M Lukin. 2024. “Artificial dreams:
surreal visual storytelling as inquiry into AI ‘hallucina-
tion’”. In Proceedings of the 2024 ACM Designing In-
teractive Systems Conference (DIS ‘24). Association for
Computing Machinery, New York, NY, USA, 619–637.
https://doi.org/10.1145/3643834.3660685

[37] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu,
and B. Myers. 2024. “Using an LLM to help with
code understanding”. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing (ICSE ‘24). Association for Computing Machinery,
New York, NY, USA, Article 97, 1–13. https://doi-

org.ezproxy.lib.vt.edu/10.1145/3597503.3639187
[38] B. Jury, A. Lorusso, J. Leinonen, P. Denny,

and A. Luxton-Reilly. 2024. “Evaluating LLM-
generated worked examples in an introductory
programming course”. In Proceedings of the 26th
Australasian Computing Education Conference
(ACE ‘24). Association for Computing Machinery,
New York, NY, USA, 77–86. https://doi-
org.ezproxy.lib.vt.edu/10.1145/3636243.3636252

[39] T. Coignion, C. Quinton, and R. Rouvoy. “A performance
study of LLM-generated code on Leetcode.” In Proceed-
ings of the 28th International Conference on Evaluation
and Assessment in Software Engineering, pp. 79-89.
2024.

[40] S. Roychowdhury. 2024. “Journey of hallucination-
minimized generative AI solutions for financial
decision makers”. In Proceedings of the 17th ACM
International Conference on Web Search and Data
Mining (WSDM ‘24). Association for Computing
Machinery, New York, NY, USA, 1180–1181.
https://doi.org/10.1145/3616855.3635737

[41] A. Mittal, R. Murthy, V. Kumar, and R. Bhat. 2024.
“Towards understanding and mitigating the hallucina-
tions in NLP and speech”. In Proceedings of the
7th Joint International Conference on Data Science &
Management of Data (11th ACM IKDD CODS and
29th COMAD) (CODS-COMAD ‘24). Association for
Computing Machinery, New York, NY, USA, 489–492.
https://doi.org/10.1145/3632410.3633297

[42] A. Khurana, H. Subramonyam, and P. K Chilana.
2024. “Why and when LLM-based assistants can go
wrong: investigating the effectiveness of prompt-based
interactions for software help-seeking”. In Proceed-
ings of the 29th International Conference on Intelli-
gent User Interfaces (IUI ‘24). Association for Com-
puting Machinery, New York, NY, USA, 288–303.
https://doi.org/10.1145/3640543.3645200

[43] W. Wang, H. Ning, G. Zhang, L. Liu, and Y.
Wang. 2024. “Rocks coding, not development: a
human-centric, experimental evaluation of LLM-
supported SE tasks”. Proc. ACM Softw. Eng. 1,
FSE, Article 32 (July 2024), 23 pages. https://doi-
org.ezproxy.lib.vt.edu/10.1145/3643758

[44] R. Nouaji, S. Bitchebe, and O. Balmau. 2024. “Speedy-
Loader: efficient pipelining of data preprocessing and
machine learning training”. In Proceedings of the
4th Workshop on Machine Learning and Systems
(EuroMLSys ‘24). Association for Computing Ma-
chinery, New York, NY, USA, 65–72. https://doi-
org.ezproxy.lib.vt.edu/10.1145/3642970.3655824

[45] T. Kim et al. 2024. “FusionFlow: accelerating
data preprocessing for machine learning with
CPU-GPU cooperation”. Proc. VLDB Endow.
17, 4 (December 2023), 863–876. https://doi-
org.ezproxy.lib.vt.edu/10.14778/3636218.3636238

