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Abstract
Large language models (LLMs) and foundation 

models have been recently touted as a game-
changer for 6 G systems. However, recent efforts 
on LLMs for wireless networks are limited to a 
direct application of existing language models that 
were designed for natural language processing 
(NLP) applications. To address this challenge and 
create wireless-centric foundation models, this 
paper presents a comprehensive vision on how 
to design universal foundation models that are tai-
lored towards the unique needs of next-generation 
wireless systems, thereby paving the way towards 
the deployment of artificial intelligence (AI)-native 
networks. Diverging from NLP-based foundation 
models, the proposed framework promotes the 
design of large multi-modal models (LMMs) fos-
tered by three key capabilities: 1) processing of 
multi-modal sensing data, 2) grounding of physi-
cal symbol representations in real-world wireless 
systems using causal reasoning and retrieval-aug-
mented generation (RAG), and 3) enabling 
instructibility from the wireless environment 
feedback to facilitate dynamic network adapta-
tion thanks to logical and mathematical reasoning 
facilitated by neuro-symbolic AI. In essence, these 
properties enable the proposed LMM framework 
to build universal capabilities that cater to vari-
ous cross-layer networking tasks and alignment 
of intents across different domains. Preliminary 
results from experimental evaluation demonstrate 
the efficacy of grounding using RAG in LMMs, 
and showcase the alignment of LMMs with wire-
less system designs. Furthermore, the enhanced 
rationale exhibited in the responses to mathemati-
cal questions by LMMs, compared to vanilla LLMs, 
demonstrates the logical and mathematical rea-
soning capabilities inherent in LMMs. Building on 
those results, we present a sequel of open ques-
tions and challenges for LMMs. We then conclude 
with a set of recommendations that ignite the path 
towards LMM-empowered AI-native systems.

Introduction
Future artificial intelligence (AI)-native wireless 
systems (e.g., 6 G and beyond) must leverage 
machine learning (ML) and AI algorithms to 

design, optimize, and operate various facets of 
the network, including resource allocation, trans-
ceiver design, and others [1]. Consequently, 
cross-layer network functionalities implemented 
by AI models could enable advanced network 
capabilities, including: 1) resilience, enabling 6 
G networks to withstand disruptions and main-
tain connectivity even in challenging scenarios; 2) 
intent management, allowing networks to auton-
omously translate high-level business intents into 
closed-loop network configurations; 3) big-data 
analytics, enabling diagnostics using historical 
wireless data, addressing software or hardware 
failures, improving communication and comput-
ing resource usage, and predicting future user and 
network behavior; and 4) non-linear signal pro-
cessing, allowing networks to process multi-modal 
signal characteristics.

To achieve the above goals, a promising 
avenue is to explore generative AI’s universal 
knowledge retrieval and generation capabilities, 
particularly foundation models such as large lan-
guage models (LLMs). Trained on diverse datasets, 
LLMs can discern intricate patterns and offer 
insights for optimizing end-user experience in 
future wireless applications.

Related Works and Limitations
LLMs for wireless networks have been studied in 
[2], [3], and [4]. However, the LLMs of [2] and 
[3] are confined to processing a single mode of 
textual data, which restricts their role to network 
chatbots. Accordingly, such LLMs cannot capture 
the multi-modal data arising from the multiple 
functions (e.g., sensing, communication, etc.) of 
future wireless networks. Although [4] focuses on 
utilizing multi-modal LLMs, their approach relies 
on LLMs like GPT-x, LLaMA, or Falcon tailored 
for natural language processing (NLP) tasks. To 
become effective, such multi-modal LLMs must 
be fine-tuned as wireless tasks change, and, thus, 
they cannot act as a universal solution to dif-
ferent interrelated, cross-layer tasks in AI-native 
networks.

In addition, the works in [2], [3], and [4] over-
look how AI-native networks can fuse, at scale, 
the environmental sensing data that drive their 
multi-modal LLMs. Moreover, state-of-art solutions 
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like [4] neglect the fact that even textual wireless 
data can be structured in specific formats such as 
tables and network performance evaluations can 
be presented in the form of graphs or images. 
This limitation in handling structure and modality, 
restricts the range of functionalities (e.g., wire-
less chatbots, text to image conversion) for which 
LLMs can be effectively adopted.

Moreover, current LLMs [2], [3], [4] lack 
the essential grounding abilities that connect 
their abstract, language-based knowledge to 
real-world experiences. In fact, LLMs majorly 
gain their knowledge upon being trained on 
extensive corpuses of text data. Hence, these 
LLMs cannot capture the complex physics gov-
erning the wireless environment, such as the 
propagation of wireless signals, thereby leading to 
potentially inconsistent decisions and predictions. 
The absence of grounding impedes AI-native 
networks from carrying out logical, causal, and 
mathematical reasoning operations, necessary 
for achieving goals such as resilience, intent man-
agement, non-linear signal processing, and others. 
Therefore, it is necessary to ensure that the repre-
sentations acquired by LLMs accurately interpret 
information from the real world and adhere to the 
network goals.

Another persistent challenge of LLMs is their 
tendency to hallucinate by generating “human-
like” outputs that do not connect to reality, 
essentially fabricating false information [5]. If 
such hallucinations occur, AI-native networks 
driven by LLMs may generate inaccurate infor-
mation. For example, LLMs may propose power 
allocations that violate the regulated thresholds 
of transmit powers of base stations, leading to 
alignment problems. Alignment here pertains to 
fulfilling network objectives, adhering to physical 
constraints like radiated power or environmen-
tal sustainability goals, and ensuring compliance 
with governmental regulations. Finally, existing 
LLMs [2], [3], [4] lack precise instructibility from 

the environment and, hence, they cannot per-
form dynamic problem-solving. Instructibility is 
the capability of LLMs to dynamically adjust their 
behavior based on explicit feedback from user 
equipment, system engineers, or operators. This 
adaptability should also ensure that LLM deci-
sions are explainable.

Contributions
The main contribution of this paper is the 
introduction of grounded and instructible large 
multi-modal models (LMMs) that are universal 
and have alignment capabilities, as shown in Fig. 
1. Here, universal foundation model for wireless 
systems are AI models tailored to handle a wide 
array of tasks and applications within the wireless 
domain, irrespective of the network architecture 
and standards. Our key contributions include:
•	 We propose a novel framework for universal, 

wireless-centric foundation models, that goes 
beyond [2], [3], [4] by integrating the follow-
ing capabilities into LMMs: 1) Multi-modal 
data fusion: fusing multi-modal sensing infor-
mation to a shared semantic space thus 
enabling efficient training of universal founda-
tion models, 2) Grounding: involving the cre-
ation of a wireless-specific language through 
retrieval augmented generation (RAG) [6] 
and leveraging causal reasoning, and 3) 
Instructibility: facilitating transparent interac-
tions between the wireless environment and 
LMMs through online reinforcement learn-
ing (RL) and neuro-symbolic AI to perform 
logical and mathematical reasoning. This 
approach ensures alignment by developing 

FIGURE 1. Illustrative figure of the proposed framework for LMM-empowered AI-native wireless systems.

The absence of grounding impedes AI-native networks from carrying out logical, causal, and 
mathematical reasoning operations, necessary for achieving goals such as resilience, intent 

management, nonlinear signal processing, and others.
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trustworthy LMMs that can explain the rea-
sons behind wireless data, propose cross-lay-
er network actions aligned with network 
goals, and accommodate physical constraints.

•	 Initial experimental results using RAG 
demonstrate that infusing more wireless 
context improves the accuracy of LMM 
responses, thereby reducing hallucinations 
compared to responses generated without 
wireless context. Furthermore, for mathe-
matical questions, an LMM delivers accurate 
responses with proper rationale, showcasing 
its ability to reason effectively when ground-
ed in the right context.

•	 We present a use case of intent-based man-
agement employing LMMs, comprising 
problem formulation, intent assurance, and 
a validation phase. The improved logical and 
mathematical reasoning capabilities (shown 
in experiments) enable LMMs to function as 
dynamic problem solvers. We demonstrate 
that logical and mathematical reasoning 
capabilities enable continuous monitoring 
of network performance–a critical aspect 
of building resilient networks. In contrast 
to deep RL-based methods, which may be 

constrained to specific domains, LMMs can 
accelerate network service recovery during 
failures by proposing a sequence of remedi-
ation actions.

•	 We highlight challenges in constructing uni-
versal foundation models, covering aspects 
such as network planning, acquiring diverse 
datasets, and adapting to evolving standards.

LMM-Empowered AI-Native Wireless Systems: 
Proposed Framework

To build universal foundation models, as shown 
in Fig. 2, the proposed multi-modal LMM frame-
work is built upon the principles of multi-modal 
data fusion, grounding, and instructibility. The 
components of the proposed universal foundation 
models framework are discussed next.

Fusion of Multi-Modal Sensing Information: A 
Tradeoff Between Minimalit y and Redundancy

For capturing the real-world wireless environment, 
there is a need for precise sensing and mapping of 
its diverse surroundings. Prior works like [4] (and 
references therein) discussed exploiting visual 

FIGURE 2. Proposed framework of wireless-centric LMMs with capabilities of grounding, instructibility, and alignment.
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generative AI models such as meta-transformers to 
map multi-modal wireless sensing information to a 
semantic latent space. By capturing the character-
istics of the wireless environment, such models 
can enhance contextual and situational awareness 
for sensing applications in AI-native networks. 
However, providing the entire mapped sensing 
information (received from diverse sources) as 
input to train the LMM is resource-intensive and 
requires substantial time for retraining. This hin-
ders the timely execution of dynamic updates 
essential for maintaining seamless connectivity. To 
address this limitation of meta-transformers inher-
ent in [4], we propose to convey a compressed 
sequence of pertinent information to the LMM 
using dimensionality reduction. To achieve this, 
we start with the identification of physical sym-
bols present across the multi-modal data. Physical 
symbols refer to abstract entities present in the 
data that have relevant semantics with respect 
to the wireless network. For example, this may 
involve associating symbols with various extrin-
sic and intrinsic elements. Extrinsic elements 
encompass dynamic objects, such as scattering 
elements in the environment and users. Mean-
while, intrinsic elements involve static network 
features like network addresses and signal pro-
cessing methods underlying wireless transmission 
or reception, among others. There could be 
redundancy among the information conveyed 
by the symbols across multiple modalities of 
data. To mitigate redundancy, the shared seman-
tic latent space’s construction should adhere to 
the information bottleneck principle [7]. In this 
framework, it is assumed that a dominant mode 
of information, called prime modality, exists within 
a dataset, serving as the primary source of infor-
mation. Other modalities complement or enhance 
the information provided by this prime modality. 
Here, the compact representation for any modal-
ity should convey as little information as possible 
about the raw data, and, simultaneously, prime 
modality representation should convey max-
imum information about other modalities. This 
ensures that the resulting semantic latent space 
is of minimal dimension while avoiding redun-
dant information. Further, for LMM training, we 
advocate using this filtered representations in the 
shared semantic space as inputs. Additionally, fil-
tering also determines when to perform dynamic 
updates of the neural network (NN) parameters 
of the LMM, taking into account the nature of the 
captured data, which can be either static (e.g., 
3GPP standards) or dynamic (e.g., wireless chan-
nel information).

While the fusion and filtering of multi-modal 
information and the training of LMMs is import-
ant, on its own, simply identifying symbols is 
not enough if LMMs are to be universal. While 
a vanilla LLM can effectively predict the events 
following an observed sequence of sensing infor-
mation, it lacks precise understanding of what 
causes the event and its implications from a wire-
less system perspective. For example, translating 
images of trees in a wireless environment into a 
set of angles of arrival or departure that describe 
the RF signal propagation environment requires 
associating meaning from a wireless perspective 
with each extracted physical symbol. This aspect, 
called grounding, is detailed next.

Causal Reasoning for Grounding in LMMs: Reducing 
Hallucinations and Bolstering Trustworthiness

Traditional grounding approaches typically entail 
creating a knowledge base, which represents an 
instance of symbolic AI. The knowledge base cap-
tures the possible logical relations among physical 
symbols, such as scattering objects, users, net-
work topology, and transmission or reception 
parameters. Nevertheless, the use of knowledge 
base methods faces scalability challenges as 
the number of relations and physical symbols 
expands. To overcome this limitations in conven-
tional grounding methods, we propose that LMMs 
infer the relations among various physical symbols 
identified using causal reasoning [8], as discussed 
next.

While specific experiments demonstrate 
that language models might exhibit causality, it 
is predominantly attributed to the causal knowl-
edge ingrained in the training data, rather than 
indicative of LLMs possessing inherent causal 
understanding. In [9], a gradient-based, trans-
former-type algorithm for zero-shot optimal 
covariate balancing for causal treatment effect 
is introduced. We propose to advance [9] by 
incorporating theoretical methods to construct 
causal foundation models, focusing on wireless 
concepts as the relevant physical symbols. Here, 
one may ask: how to identify the causal relations 
among physical symbols and how to ensure that 
the learned relations are aligned with the wire-
less concepts in standards and textbooks? One 
common approach is to perform finetuning [4] 
that takes a pre-trained language model trained 
on large amounts of general text and then con-
tinue to train it on a small-scale task-specific text. 
Fine-tuning is appropriate if the user specifically 
knows the ground-truth causal relations. For wire-
less scenarios, fine-tuning can be beneficial for 
constructing a wireless specific chatbot capable 
of extracting valuable information from its knowl-
edge base. However, fine-tuning LLMs may impose 
limitations on the wireless applications supported. 
This limitation arises from the narrow set of NN 
parameters that are tuned during the fine-tuning 
process (limited degrees of freedom). This, in turn, 
requires re-tuning as the wireless environment 
or task change. To address these limitations, we 
suggest the use of RAG coupled with causal dis-
covery, as discussed next and in Fig. 3.

1) How to Perform Causal Discovery Through 
RAG?: Through querying from a wireless-spe-
cific database that includes wireless textbooks, 
research papers, 3GPP standard, or any device 
instruction handbook, RAG [10] enables the LMM 
to understand the domain-knowledge context. 
Once this information is retrieved, the genera-
tion component of RAG can help formulate new 
content that infers or expresses causal relations 
among the identified physical symbols. For exam-
ple, when the LMM is tasked with deducing causal 
relationships between scattering objects in the 
environment and channel parameters like angle of 
arrival (AoA) or angle of departure (AoD), RAG 
can map these wireless observations to the under-
lying physical concepts from the database.

Through an evolvable external knowledge 
component and multi-agent cooperation, RAG 
can allow the implementation of emerging 
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applications that require multi-tasking, like in con-
nected homes or industrial robots. Moreover, 
performing retrieval from an evolving knowledge 
base can enable universal knowledge retrieval for 
semantic communications [11], and intent man-
agement. With its continuous learning capability, 
RAG, with evolving knowledge, enables contin-
ually updating the wireless algorithms across all 
open systems interconnection (OSI) layers while 
ensuring compatibility with the advancements in 
the semiconductor industry and software solu-
tions. This proves advantageous, particularly for 
intent management and resilience (see the sec-
tions “LMMs for Intent Management” and “LMMs 
for Resilient Networking”). Apart from the con-
tinual learning capability, RAG with evolving 
knowledge enables the knowledge retrieved to 
be dynamically adjusted to cater to the specific 
application demands. For example, in a multi-user 
communication system, the retrieved literature 
on signal processing algorithms must differ from 
what might be required in a single-user scenario.

2) What Does Causal Discovery Through RAG 
Entail for LMMs?: Grounding via causal discov-
ery entails endowing LMMs with the capability to 
comprehend the causal relationships among phys-
ical symbols and subsequently engage in causal 
inference through interventions and counterfactu-
als [8]. Through interventions and counterfactuals, 
the LMM can indulge in chain-of-thought kind 
of reasoning, where it analyzes a sequence of 
causal state-action pairs (st, at) and their effects, 
s s s sa a a

0 1 2
0 1 1

 →  →  →
−



N
N .  This ability 

facilitates long-term planning for wireless resource 
allocation, signaling schemes for transmission 
and reception (and may include beamforming, 
modulation, coding, and control signaling, among 
others), and quality-of-service (QoS) manage-
ment, thereby contributing to the establishment of 
robust and resilient wireless systems.

Instructiblity From Environmental Feedback
For instructibility, LMMs should be able to dynam-
ically adjust resource allocation, signaling policies, 
and many other cross-layer network functionalities 
in real time, catering to diverse tasks, environ-
ments, and optimization objectives. Additionally, 
they should be able to continuously monitor wire-
less observations to identify and address any 

unforeseen issues that might impede seamless 
network connectivity. A standard approach for 
dynamically adjusting wireless resource man-
agement and signaling schemes based on user 
feedback using deep RL. However, deep RL tech-
niques are task-specific and require retraining 
when the wireless environment and optimization 
objectives change. While multi-task RL solutions 
exist, they are mostly limited to specific domains 
or OSI layers. Moreover, they lack the ability to 
continuously evolve their state and action space to 
cope with changes in standards or advancements 
in wireless technology. Conventional multi-task RL 
solutions also cannot perform abductive reason-
ing, a crucial aspect for making inferences about 
missing data or determining the best explanations 
for observed data. These features are essential 
for achieving dynamic adaptability and recon-
figurability, necessary for resilience and intent 
management. They are also crucial for support-
ing abductive reasoning capabilities required for 
semantic communications and other related tasks. 
We next discuss the key components needed 
to provide instructibility to LMMs. We begin by 
detailing the framework incorporating communica-
tion context, prompting, and an online LMM with 
wireless environment feedback, contributing to 
establishing an instructible system. Subsequently, 
we explore how to instill LMMs with logical and 
mathematical reasoning, that are essential for con-
structing self-evolving and dynamically adaptable 
systems, thus achieving instructibility.

1) Communication Context: Causal represen-
tations that are used to represent the physical 
symbols, similar to tokens in NLP-based LLMs, 
form the communication context for an LMM. This 
context encapsulates critical aspects of the wire-
less communication scenario. The components of 
the LMM context include:
•	 Network setup including details about 1) 

communicating devices, 2) communication 
link (downlink or uplink), and 3) physical 
topology that describes the antenna con-
figuration, as well as any miscellaneous net-
work architecture.

•	 Communication constraints including con-
straints on the total power and shared com-
munication/computation resources aross 
frequency, time, and other dimensions.

FIGURE 3. Applying LMM solutions for wireless applications: 1) Fine-tuning, 2) RAG, and 3) RAG with evolving knowledge.
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•	 Wireless standards/text snippets read using 
RAG (the section “How to Perform Caus-
al Discovery Through RAG?”), that include 
excerpts from relevant wireless communi-
cation standards or documents, providing 
a contextual basis for the communication 
scenario.

•	 End-to-end optimization objectives that 
may include quality-of-service (QoS) mea-
sures such as average throughput, delay, 
reliability/quality-of-experience.

•	 Historical wireless data that may involve 
diverse measurements such as uplink pilots, 
user feedback on channel quality indication, 
various sensing measurements, and received 
uplink signal measurements, among other 
relevant parameters.
Next, we explain how to construct an online 

LMM by instructing it with environmental 
feedback.

2) Online LMM With Wireless Environment 
Feedback Using Neuro-Symbolic AI: One com-
mon apporoach to instill instructiblity is to use an 
iterative prompting mechanism in which an LMM 
is guided through multiple rounds of interaction 
with human prompts. In each iteration, the model 
refines and improves subsequent responses using 
the feedback (e.g., the QoS results based on the 
wireless policy of the LMM) from the previous 
round. However, iterative prompting requires 
human intervention. We propose building an 
online LMM framework to address this limitation 
and enable the development of autonomous 
wireless systems. In this setup, LMM functions as 
the wireless policy and is operationally embed-
ded within an interactive setting using online 
RL. This entails utilizing gathered wireless obser-
vations and feedback from the environment to 
iteratively enhance its functionality, aligning with 
goals expressed in wireless language. The formu-
lation of the LMM-powered cross-layer network 
functionalities can be represented as a partially 
observable Markov decision process. Here, the 
states are defined by the communication con-
text and prompts, actions are represented by 
the wireless policy suggested by the LMM, and 
rewards are determined using performance met-
rics obtained from the wireless environment. 
If available, the network goal or intent can be 
articulated in natural language by the network 
operator. To ensure continuous operation with-
out disrupting connectivity, online LMMs should 
possess the ability to explain wireless observa-
tions and infer any missing data, necessitating 
logical reasoning capabilities. Furthermore, given 
that many wireless concepts can be expressed 
mathematically, LMMs must inevitably be capa-
ble of performing mathematical reasoning. This 
includes tasks such as channel predictions, beam-
forming vector computations, channel quality 
measurements, and many other cross-layer net-
work computations.

Here, multi-task RL can be an alternative 
approach to perform diverse wireless tasks. How-
ever, since they lack logical and mathematical 
reasoning capabilities, we advocate incorporating 
them through the use of neuro-symbolic AI [11]. 
In our setting, symbolic AI serves to evaluate 
diverse logical and mathematical formulas, while 
the neural component is responsible for learning 

the logical and mathematical equations from 
wireless observations and context information. 
When prompted with communication con-
text and grounded wireless observations using 
causal discovery (the section “How to Perform 
Causal Discovery Through RAG?”), symbolic AI 
connects facts and data through rules and algo-
rithms, resembling the cognitive operations of 
the human brain in storing high-level concepts 
and engaging in nuanced inference. To prevent 
hallucination, LMMs must have the ability to 
explain wireless observations and infer any miss-
ing data. Additionally, they should understand the 
connections between various physical symbols 
through symbolic AI. Here, a viable approach 
is to develop a formal logical language that can 
encapsulate the exhaustive ontology of wireless 
concepts and articulate rules governing the func-
tioning of wireless systems (and is the symbolic 
part here). This strategy is reminiscent of the Cyc 
concept [12], which serves a similar purpose for 
web-based data. Beyond their lack of logical rea-
soning abilities, existing LLMs face challenges in 
accurately capturing mathematical formulas and 
executing mathematical derivations. To overcome 
this limitation, a promising approach involves 
leveraging a neuro-symbolic problem solver [13], 
having three main components. First, a problem 
reader encodes math word problems, presented 
as textual prompts, into vector representations. 
Second, a programmer generates symbolic 
grounded equations, which are executed to pro-
duce answers. Lastly, a symbolic executor obtains 
final results. In this setup, the programmer learns 
the weights (neural part) that establish connec-
tions between various mathematical symbols. 
The resulting neuro-symbolic problem solver 
enables the construction of dynamic problem 
solvers, a critical component for intent manage-
ment and resilience, as discussed in sections 
“LMMs for Intent Management” and “LMMs for 
Resilient Networking.”

Experimental Validation: A Use Case Study for 
Intent Management and Resilient Networking

Here, we first demonstrate illustrative exper-
iments conducted on a dataset specific to 
wireless scenarios using RAG. We highlight the 
enhanced performance of LMM compared to 
vanilla LLMs which does not have any wireless 
context, characterized by succinct explanations 
(resulting in reduced hallucinations), precise 
answers (demonstrating grounding in wireless 
concepts), and well-founded rationales (illus-
trating mathematical reasoning capabilities). 
Additionally, we discuss how the results indicate 
the potential application of the proposed LMM 
in addressing specific challenges in future wire-
less networks.

Experimental Validation
To evaluate the efficacy of RAG in wireless con-
texts, we conducted certain Q/A experiments, 
where a sample question from the dataset is 
shown in Fig. 4. In the RAG process, relevant 
paragraphs are extracted from [14] to serve as 
wireless context information. This information 
encompasses a combination of textual content 
and mathematical symbols and equations. This 
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structured wireless information represents a 
simple multi-modality case. Table 1 shows an eval-
uation using 16 human participants on responses 
from different prompting methods of 4 conceptual 
wireless questions and 7 mathematical wireless 
questions. With the help of retrieved knowledge 
context, common LMM evaluation metrics (see 
Table 1 for definitions), including precision, 
recall, F1 score, and ROUGE-L measure, indicate 
a performance improvement over vanilla LLMs 
ranging between 15% to 30%. We also interpret 
the human evaluation result in the following 
way: 1) For conceptual questions, the standard 
Question Prompt can retrieve reasonable ratio-
nale, while RAG can refine the assertion, leading 
to an 8% improvement in the assertion metric. 
Furthermore, the over-explaining metric, which 
gauges the alignment of responses with human 
expectations, shows a remarkable almost three-
fold improvement for RAG compared to vanilla 
LLMs. Improved assertions imply that LMMs can 
mitigate hallucinations in their responses, thereby 
aligning more effectively with the goals of the 
network. 2) In the context of mathematical ques-
tions, Retrieval Augmented Prompt consistently 
provides the correct answer and can offer more 
detailed mathematical derivatives. Specifically, 
the rationale exhibits a 22% improvement with 
RAG, while the derivative steps are 81% more 
detailed than vanilla LLMs. This indicates that 
LMMs exhibit enhanced logical and mathematical 
reasoning abilities.

As discussed earlier, the demonstrated logi-
cal and mathematical reasoning capabilities, 
evidenced by improved rationale measures, 

Evaluation Measure Question Prompt Retrieval Augmented Prompt

Precision (↑) 0.06 0.08

Recall (↑) 0.59 0.65

F1 Score (↑) 0.11 0.14

ROUGE-L (F-measure) (↑) 0.17 0.20

Over Explaining (↓) 0.34 0.12

Conceptual Question Ratertion (↑) 0.89 0.84

Conceptual Question Asserte (↑) 0.88 0.95

Mathematical Question Rationale (↑) 0.77 0.94

Mathematical Question Assertion (↑) 0.76 0.97

Mathematical Question Derivative Steps (↑) 0.48 0.87

TABLE 1. Prompting GPT-3.5 Turbo with retrieval-augmented context shows 
a general advancement over purely prompting with questions in 4 
quantitative measurements (upper section) and 6 human-evaluated 
measurements (lower section). For each metric (row), the symbol (↑) 
indicates that higher scores are better, and better results are highlighted 
in bold for the two prompting methods. Precision: the number of shared 
words to the total number of words in the generated answers; Recall: the 
number of shared words to the total number of words in the human 

	 answers; F1 score: 2 ⋅ ⋅

+

Precision Recall
Precision Recall

;  ROUGE-L (F-measure): based on the 

	 longest common subsequence (LCS) between the generated answer and 
human answer, which indicates that a longer shared sequence should 
indicate more similarity between the two sequences. Human Evaluated 
Score: Participants are asked to rate each Q/A sample without knowing the 
source of it. They will give score 0 for no and score 1 for yes for each of the 
Rationale, Assertion, and Over Explaining items. Mathematical questions 
require an additional derivative step to be scored.

FIGURE 4. A sample mathematical Q/A pair from the dataset.
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enable LMMs to map wireless observations and 
context information fed as input to them into a 
mathematical problem formulation. This empow-
ers LMMs to function as dynamic problem solvers 
(defined in the section “Online LMM With Wire-
less Environment Feedback Using Neuro-Symbolic 
AI”). To exemplify the application of these capa-
bilities in future wireless systems, we next discuss 
a few use cases, including intent management and 
resilience.

LMMs for Intent Management
A recent work that exploits LLMs for intent man-
agement appeared in [3]. However, this prior 
work is limited to using an LLM as a chatbot to 
convert human specified intent in natural lan-
guage to infrastructure level intents as network 
service descriptors. Furthermore, the authors in 
[3] utilize human feedback to enhance the con-
figurations generated by the LLM, hindering their 
ability to ensure intent assurance autonomously. 
In contrast to [3], we propose to employ LMMs 
for various phases in intent management spanned 
across the OSI layers:
•	 Problem Formulation Phase: The network 

must autonomously translates the oper-
ator specified intents into an optimization 
problem, considering multiple objectives 
and physical constraints. An LMM can facil-
itate dynamic problem formulation with-
out human intervention since they possess 
better logical and mathematical reasoning 
abilities. Moreover, LMM responses are 
grounded in wireless physics, as discussed in 
the section “Causal Reasoning for Ground-
ing in LMMs: Reducing Hallucinations and 
Bolstering Trustworthiness,” and clarified in 
Fig. 4. It can thus formulate precisely wire-
less optimization problems, for resource 
allocation, signaling schemes, or a combina-
tion of cross-layer objectives.

•	 Intent Assurance Phase: Leveraging a con-
tinuous stream of wireless measurements, 
LMMs can function as intent assurance 
agents. Using neuro-symbolic AI capabili-
ties, these agents can assess logical formu-
las representing the desired intent (typically 
defined by QoS targets). If the intent is not 
fulfilled, LMMs can identify and articulate 
the specific issues that need resolution, 
guiding efforts towards achieving intent 
assurance within a specified timeframe.

•	 Validator Agent: For solving the LMM-de-
signed problem formulation provided we 
can use multiobjective RL with causal rea-
soning games building on [8]. Validating 
solutions against regulatory norms and phys-
ical constraints for long-term intent fulfill-
ment is crucial. This is the alignment goal 
described previously in the section “Intro-
duction.” To autonomously manage intent, 
a validator role can be fulfilled by LMM, 
possessing a solid understanding of wireless 
concepts.
Next, we discuss the impact of minimizing 

hallucinations through improved assertions and 
providing precise answers (as reflected in over-
explaining metric). This capability is essential for 
swiftly recovering from network service disrup-
tions and thereby ensuring resilience.

LMMs for Resilient Networking

Resilience is the ability of wireless networks to: 
a) detect or predict in advance any failures or 
performance disruptions arising due to network 
functionality issues across any OSI layer, changing 
wireless environment, user dynamics, or exter-
nal malicious influences; and b) recover back to 
their normal functionality within a stipulated time 
frame, thereby ensuring seamless connectivity 
for all connected devices. In [8], we proposed a 
robust framework for building resilient wireless 
networks causal Bayesian optimization. How-
ever, the application of our solution in [8] is 
limited, because it mainly focuses around quickly 
recovering from QoS deviations in the network. 
However, network service disruptions can stem 
from changes in the wireless environment or mal-
functions in hardware or software functionalities 
across diverse edge devices. To address this chal-
lenge, we suggest leveraging LMMs equipped with 
causal knowledge, not only pertaining to the wire-
less environment but also grounded in wireless 
standards and cross-layer network functionalities. 
Such a universal foundation model can handle 
service disruptions across multiple domains and 
tasks by operating in a closed loop fashion as dis-
cussed next.
•	 Continuous Monitoring of Service Disrup-

tions: To detect network service disruptions, 
the LMM should continuously monitor and 
predict potential issues across OSI layers. 
For example, consider a situation where the 
software code representing functionality at 
any OSI layer on an edge device becomes 
corrupted due to processor malfunctions. 
Alternatively, critical information intended 
for storage on an edge server might face 
corruption due to jamming attempts. Here-
in, since LMMs are grounded in wireless 
concepts, they can adeptly analyze error 
messages and descriptions of software 
malfunctions or data corruptions, offering 
suggestions aligned with network standards 
to rectify the issues, without any human 
intervention. This approach enhances the 
model’s capability to provide context-aware 
solutions across diverse tasks or domains or 
environments. Furthermore, LMMs can be 
consistently prompted to check for poten-
tial wireless environment issues that might 
lead to performance deviations in the near 
future. Such network issues can be formu-
lated as either logical formulas or mathe-
matical equations. For example, a potential 
logical formula could be p : X → (Y < τ), 
signifying that with probability p, the wire-
less observation X results in a performance 
Y below the expected target τ. However, 
vanilla LLMs face challenges in handling 
such logical and mathematical problems, as 
discussed in the section “Instructiblity From 
Environmental Feedback.” In this context, 
logical and mathematical reasoning capabil-
ities using neuro-symbolic problem solvers 

Improved assertions imply that LMMs can mitigate hallucinations in their responses, thereby aligning 
more effectively with the goals of the network.
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play a crucial role in assessing performance 
quality. In contrast to [8], which necessitates 
the construction of specific causal models 
for monitoring particular tasks or QoS tar-
gets, the universal nature of LMMs allows 
a single model to be used for monitoring 
performance deviations and software or 
hardware malfunctions across any OSI layer. 
Given that a failure is detected, we next look 
at how the LMM can help the network func-
tionalities quickly (within a stipulated time) 
recover back to the expected performance.

•	 Network Service Recovery via LMM:
As detailed in the section “How to Per-
form Causal Discovery Through RAG?,” 
RAG enables the model to comprehend 
the causal implications of network actions 
by grounding wireless observations to the 
extracted knowledge. This enables LMMs to 
execute the minimal interventions required 
to restore the network to a normal func-
tioning state. Further, as discussed in the 
section “Instructiblity From Environmental 
Feedback,” instructibility allows LMMs to 
generate a sequence of network actions in 
response to the feedback from the wireless 
environment. These actions can involve 
repairing malfunctioning code, adjusting 
resource allocation, or refining signaling 
schemes to restore the network to normal 
functioning. In contrast to [8], which might 
require separate causal AI models to mon-
itor diverse functionalities across OSI lay-
ers, the universality of LMMs can possible 
enable faster switching between tasks 
requiring repair or refinement, utilizing a sin-
gle AI model.

Challenges and Open Questions for LMM-
Empowered AI-Native Wireless Systems

How Can We Enable LMMs To Do Planning?
Meeting future wireless network goals requires the 
capability of LMMs to provide recommendations 
across various OSI layers. This includes resource 
allocation policies, waveforms under non-linear 
signal models, network slicing policies, and more. 
To ensure that these recommendations align with 
long-term network goals in terms of performance, 
sustainability, or seamless connectivity, LMMs 
must possess the ability to perform planning. In 
this context, planning entails the ability of LMMs 
to propose a sequence of multi-dimensional net-
work actions, enabling the network to optimize 
performance objectives. The term “multi-dimen-
sional” reflects that these network actions are not 
restricted to a specific task or a single layer but 
can extend across multiple OSI layers. Standard 
methods like deep RL optimize actions for spe-
cific tasks but lack universality, as discussed in the 
section “LMM-Empowered AI-Native Wireless Sys-
tems: Proposed Framework.” Here, we look at 
possible approaches to incorporate planning in 
LMMs. The first approach, uses fine-tuning, and 

involves taking a pretrained LLM and refining it 
using planning problems—consisting of instances 
and their solutions. While additional fine-tuning 
data and efforts might result in improved empirical 
performance, we must recognize that fine-tun-
ing essentially transforms the planning task into 
a memory-based (approximate) retrieval process. 
This, however, falls short of providing conclusive 
evidence regarding the inherent planning capabil-
ities of LMMs.

The second approach to enhance planning 
performance involves prompting the LMM with 
hints or suggestions to improve its initial plan 
guess. Crucial considerations in this context 
include whether the back prompting is manual 
or automated, the entity certifying the correct-
ness of the final answer, and whether the prompts 
offer additional problem knowledge or merely 
encourage the LMM to reconsider its approach. 
A more popular methodology, here is “chain of 
thought prompting (CoT),” that involves having a 
human (a system engineer) in the loop prompt 
the LMM. However, CoT is susceptible to the 
Clever Hans effect, where the LMM generates 
wireless policies, and the human in the loop, 
aware of right vs. wrong solutions, inadvertently 
guides the LMM. The responsibility for accuracy, 
if achieved, lies with the human in the loop. This 
framework raises concerns when the human can-
not verify the answer to the planning problem 
themselves. However, in a wireless network, to 
ensure automated network operation, we cannot 
afford to rely on human intervention. Therefore, a 
promising approach entails the LMM critiquing its 
predictions through self-reflection capability and 
iteratively self-improving. This self-reflection capa-
bility can be achieved by incorporating causal 
reasoning. With the LMM being aware of each 
network action’s causal effects, it can store 
these experiences in a short-term memory. Sub-
sequently, when presented with new wireless 
observations, the LMM can self-reflect based on 
its previous experiences and engage in planning 
to ensure that network objectives are met.

What Are the Challenges Associated With Training a 
Universal Foundation Model?

Training a foundation model for wireless commu-
nication enables domain-specific optimization, 
efficiency gains through reduced NN weights, 
and enhanced performance. However, achieving 
this long-term goal requires collaboration among 
stakeholders in wireless communication and com-
puter science. The associated challenges include 
the need for seamless interdisciplinary coopera-
tion, addressing diverse communication standards, 
and incorporating evolving technologies to ensure 
the model’s adaptability and effectiveness.
•	 Diverse and Representative Datasets: To 

ensure seamless connectivity across differ-
ent wireless environments and diverse appli-
cations, an LMM should be trained under 
diverse signal conditions, interference pat-
terns and fading scenarios.

•	 Adaptability to Evolving Standards and Tech-
nologies: The incorporation of evolving 
3GPP standards into the foundation models 
is crucial. This integration ensures that the 
decisions made by the LMM comply with 

Instructibility allows LMMs to generate a sequence of network actions in response to the feedback 
from the wireless environment.
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both the network and the unified 3GPP 
standards. This alignment contributes signifi-
cantly to enhancing the trustworthiness of 
the language model by ensuring its compati-
bility and compliance with the latest industry 
standards. In addition to leveraging LMMs 
for understanding and adhering to existing 
standards, they can also play a crucial role 
in the creation of standards, especially in 
scenarios where technologies are not stan-
dardized. LMMs, with their capacity for 
natural language processing and generation 
grounded in wireless concepts, can contrib-
ute to the formulation and documentation 
of wireless standards, fostering innovation 
and clarity in technology development.

Conclusion and Recommendations
This article developed a new framework for 
designing AI-native wireless systems (6G and 
beyond) for multiple tasks using foundation 
models built on multi-modality, grounding, and 
instructibility principles. We conclude with three 
key recommendations:
•	 Speeding Up Next-G Standardization to 

System Design: LMMs can assist in the swift 
prototyping of diverse system design sce-
narios. Leveraging the capabilities of RAG, 
LMMs can retrieve pertinent text-based 
descriptions and specifications by consid-
ering the provided input, whether it be a 
network intent or system design goals. This 
enables LMMs to actively contribute to rap-
idly exploring design alternatives and their 
associated implications.

•	 Building a Repository of Wireless Data-
sets: While the results based on RAG offer 
unique insights into LMMs’ capabilities, it 
is essential to acknowledge the challenges 
associated with generating a comprehensive 
dataset. To address this, we recommend the 
creation of an opensource ontology for wire-
less concepts and algorithms, sourced from 
a curated selection of textbooks and wire-
less literature, encompassing 3GPP standards. 
This approach ensures the quality, reliability, 
and trustworthiness of the dataset, making 
it applicable for research and development 
across the entire wireless community.

•	 Compositions of Short Language Models 
and Distributed Architecture: Creating a 
universal foundation model at each wire-
less base station may prove impractical due 
to the substantial energy consumption and 
computational resources involved. Thus, we 
recommend a distributed architecture that 
involves constructing distinct short language 
models learned at edge servers. These edge 
servers might require only a condensed lan-
guage model, as the applications or tasks 
they handle are limited in scope. This dis-
tributed architecture facilitates collaborative 
reasoning based on the principle of compo-
sitionality [15], through the combination of 
representations from multiple smaller mod-
els. This compositional approach empowers 
the LMM-based network with the capacity 
to acquire diverse skills and functionalities 
over time, and thus gaining universal capa-
bilities in a distributed fashion.

•	 Sustainable Foundation Models Using 
Next-Generation AI: Existing LLMs are pow-
er-hungry due to billions of NN parameters 
in their architecture. However, to achieve 
the goal of sustainability in future wireless 
networks, it is critical to build foundation 
models that can work with less data and 
are smaller models but still able to meet 
the capabilities of LMMs. Herein, we rec-
ommend to construct universal foundation 
models with the next-generation AI capabil-
ities of explainability (using causal reason-
ing), reasoning (using neurosymbolic AI), 
planning, and common sense (using world 
models) as envisioned in [1]. Such next-gen-
eration AI capabilities allow the foundation 
models to understand how the world works 
(using world models), form better future pre-
dictions, and thereby gain universal capabili-
ties with limited training overhead.
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