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Abstract
Physics-based simulations are often used to model and un-
derstand complex physical systems and processes in domains
like fluid dynamics. Such simulations, although used fre-
quently, have many limitations which could arise either due
to the inability to accurately model a physical process ow-
ing to incomplete knowledge about certain facets of the pro-
cess or due to the underlying process being too complex to
accurately encode into a simulation model. In such situa-
tions, it is often useful to rely on machine learning meth-
ods to fill in the gap by learning a model of the complex
physical process directly from simulation data. However, as
data generation through simulations is costly, we need to
develop models, being cognizant of data paucity issues. In
such scenarios it is often helpful if the rich physical knowl-
edge of the application domain is incorporated in the ar-
chitectural design of machine learning models. Further, we
can also use information from physics-based simulations to
guide the learning process using aggregate supervision to fa-
vorably constrain the learning process. In this paper, we
propose PhyDNN , a deep learning model using physics-
guided structural priors and physics-guided aggregate super-
vision for modeling the drag forces acting on each parti-
cle in a Computational Fluid Dynamics-Discrete Element
Method(CFD-DEM). We conduct extensive experiments in
the context of drag force prediction and showcase the use-
fulness of including physics knowledge in our deep learning
formulation both in the design and through learning pro-
cess. Our proposed PhyDNN model has been compared to
several state-of-the-art models and achieves a significant per-
formance improvement of 8.46% on average across all base-
line models. The source code has been made available∗ and
the dataset used is detailed in [1, 2].

1 Introduction

Machine learning (ML) is ubiquitous in several disci-
plines today and with its growing reach, learning mod-
els are continuously exposed to new challenges and
paradigms. In many applications, ML models are
treated as black-boxes. In such contexts, the learning
model is trained in a manner completely agnostic to the
rich corpus of physical knowledge underlying the process
being modeled. This domain-agnostic training might
lead to many unintended consequences like the model
learning spurious relationships between input variables,
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Figure 1: Our proposed PhyDNN Model.

models learning representations that are not easily ver-
ifiable as being consistent with the accepted physical
understanding of the process being modeled. Moreover,
in many scientific disciplines, generating training data
might be extremely costly due to the nature of the data
generation collection process. To effectively be used
across many scientific applications, it is important for
data mining models to be able to leverage the rich phys-
ical knowledge in scientific disciplines to fill the void due
to the lack of large datasets and be able to learn good
process representations in the context of limited data.
This makes the model less expensive to train as well as
more interpretable due to the ability to verify whether
the learned representation is consistent with the existing
domain knowledge.

In this paper, we attempt to bridge the gap between
physics-based models and data mining models by incor-
porating domain knowledge in the design and learning of
machine learning models. Specifically, we propose three
ways for incorporating domain knowledge in neural net-
works: (1) Physics-guided design of neural network ar-
chitectures, (2) Learning with auxiliary tasks involving
physical intermediate variables, and (3) Physics-guided
aggregate supervision of neural network training.

We focus on modeling a system in the domain of
multi-phase flows (solid particles suspended in moving
fluid) which have a wide range of applicability in fun-
damental as well as industrial processes [3]. One of the
critical interaction forces in these systems that has a
large bearing on the dynamics of the system is the drag
force applied by the fluid on the particles and vice-versa.
The drag force can be obtained by Particle Resolved
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Simulations (PRS) at a high accuracy. It captures the
velocity and pressure field surrounding each particle in
the suspension that can later be used to compute the
drag force. However, PRS is quite expensive and only a
few 100s or at most 1000s of particles can be resolved in
a calculation utilizing grids of O(108) degrees of freedom
and utilizing O(102) processors or cores. Thus more
practical simulations have to resort to coarse-graining,
e.g., Discrete Element Method (DEM) and CFD-DEM.
In these methods, a particle is treated as a point mass
(not resolved) and the fluid drag force acting on the
particles in suspension is modeled.

Current practice in simulations is to use the mean
drag force acting on the particle suspension as a function
of flow parameters (Reynolds number) and the particle
packing density (solid fraction - φ) [4–6]. Given
the variability of drag force on individual particles in
suspension, this paper explores techniques in physics-
guided machine learning to advance the current state-
of-the-art for drag force prediction in CFD-DEM by
learning from a small amount of PRS data.

Our contributions are as follows:
•We introduce PhyDNN , a novel physics-guided model
architecture that yields state-of-the-art results for the
problem of particle drag force prediction.
• We introduce physics-guided auxiliary tasks to train
PhyDNN more effectively with limited data.
•We augment PhyDNN architecture with aggregate su-
pervision applied over the auxiliary tasks to ensure con-
sistency with physics knowledge.
• Finally, we conduct extensive experimentation to un-
cover several useful properties of our model in settings
with limited data and showcase that PhyDNN is consis-
tent with existing physics knowledge about factors in-
fluencing drag force over a particle, thus yielding greater
model interpretability.

2 Related Work

There have been multiple efforts to leverage domain
knowledge in the context of increasing the performance
of data-driven or statistical models. Methods have
been designed to influence training algorithms in ML
using domain knowledge, e.g., with the help of phys-
ically based priors in probabilistic frameworks [7–9],
regularization terms in statistical models [10, 11], con-
straints in optimization methods [12, 13], and rules in
expert systems [14, 15]. In a recent line of research,
new types of deep learning models have been proposed
(e.g., ODEnet [16] and RKnet [17]) by treating sequen-
tial deep learning models such as residual networks and
recurrent neural networks as discrete approximations of
ordinary differential equations (ODEs).

Yaser et al. show hints, i.e., prior knowledge can be

incorporated into learning-from-example paradigm [15].
In [18] the authors explored the idea of incorporating
domain knowledge directly as a regularizer in neural
networks to influence training and showed better gener-
alization performance. In [19,20] domain knowledge was
incorporated into a customized loss function for weak
supervision that relies on no training labels.

There have been efforts to incorporate prior knowl-
edge about a problem (like low rank structure of con-
volutional filters to be designed) into model architec-
ture design (structural priors) [21]. Also, to design neu-
ral network architectures, to incorporate feature invari-
ance [22], implicit physics rules [23] to enable learning
representations consistent with physics laws and explic-
itly incorporating knowledge as constraints [24]. In [25]
the authors propose a neural network model where each
individual neuron learns ”laws” similar to physics laws
applied to learn the behavior and properties of com-
plex many-body physical systems. In [26], the authors
propose a theory that details how to design neural net-
work architectures for data with non-trivial symmetries.
However none of these efforts are directly applicable to
encode the physical relationships we are interested in
modeling.

3 Proposed PhyDNN Framework

3.1 Problem Background: Given a collection of N
3D particles suspended in a fluid moving along the X
direction, we are interested in predicting the drag force
experienced by the ith particle, Fi, along theX direction
due to the moving fluid. This can be treated as a
supervised regression problem where the output variable
is Fi, and the input variables include features capturing
the spatial arrangement of particles neighboring particle
i, as well as other attributes of the system such as
Reynolds Number, Re, and Solid Fraction (fraction of
unit volume occupied by particles), φ. Specifically,
we consider the list of 3D coordinates of 15-nearest
neighbors around particle i, appended with (Re, φ) as
the set of input features, represented as a flat 47-length
vector, Ai.

A simple way to learn the mapping from Ai to Fi
is by training feed-forward deep neural network (DNN)
models, that can express highly non-linear relationships
between inputs and outputs in terms of a hierarchy of
complex features learned at the hidden layers of the
network. However, black-box architectures of DNNs
with arbitrary design considerations (e.g., layout of the
hidden layers) can fail to learn generalizable patterns
from data, especially when training size is small. To
address the limitations of black-box models in our target
application of drag force prediction, we present a novel
physics-guided DNN model, termed PhyDNN , that uses



Input Layer [1]
Fully-connected Layer
AcƟvaƟon: ELU
Input dimension: 47
Output dimension: 128

Shared Layers [2]
4 Fully-connected Layers

AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 128

Pressure Field [3]
Fully-connected Layer

AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 10

Velocity Field [4]
Fully-connected Layer

AcƟvaƟon: ELU
Input dimension: 128
Output dimension: 10

ConvoluƟon Layer [5]
1D ConvoluƟonal Layer
AcƟvaƟon: Linear
Input dimension: (2,10)
Output dimension: (2, 8)

Pooling Layer [6]
1D MaxPooling Layer
AcƟvaƟon: Lineaer
Input dimension: (2, 8)
Output dimension: (2, 4)

Shear Component [7]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 4
Output dimension: 3

Pressure Component [8]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 4
Output dimension: 3

Output Layer [9]
Fully-connected Layer
AcƟvaƟon: Linear
Input dimension: 6
Output dimension: 1

Figure 2: PhyDNN Architecture

physical knowledge in the design and learning of the
neural network, as described in the following.

3.2 Physics-guided Model Architecture: In or-
der to design the architecture of PhyDNN, we derive
inspiration from the known physical pathway from the
input features Ai to drag force Fi, which is at the ba-
sis of physics-based model simulations such as Particle
Resolved Simulations (PRS). Essentially, the drag force
on a particle i can be easily determined if we know two
key physical intermediate variables: the pressure field
(Pi) and the velocity field (Vi) around the surface of
the particle. It is further known that Pi directly affects
the pressure component of the drag force, FPi , and Vi

directly affects the shear component of the drag force,
FSi . Together, FPi and FSi add up to the total drag
force that we want to estimate, i.e., Fi = FPi + FSi .

Using this physical knowledge, we design our
PhyDNN model so as to express physically meaningful
intermediate variables such as the pressure field, veloc-
ity field, pressure component, and shear component in
the neural pathway from Ai to Fi. Figure 2 shows the
complete architecture of our proposed PhyDNN model
with details on the number of layers, choice of activa-
tion function, and input and output dimensions of ev-
ery block of layers. In this architecture, the input layer
passes on the 47-length feature vectors Ai to a collec-
tion of four Shared Layers that produce a common set
of hidden features to be used in subsequent branches
of the neural network. These features are transmitted
to two separate branches: the Pressure Field Layer and
the Velocity Field Layer, that express Pi and Vi, respec-
tively, as 10-dimensional vectors. Note that Pi and Vi

represent physically meaningful intermediate variables
observed on a sequence of 10 equally spaced points on
the surface of the particle along the X direction.

The outputs of pressure field and velocity field
layers are combined and fed into a 1D Convolutional

layer that extracts the sequential information contained
in the 10-dimensional Pi and Vi vectors, followed
by a Pooling layer to produce 4-dimensional hidden
features. These features are then fed into two new
branches, the Shear Component Layer and the Pressure
Component Layer, expressing 3-dimensional FS

i and FP
i ,

respectively. These physically meaningful intermediate
variables are passed on into the final output layer that
computes our target variable of interest: drag force
along the X direction, Fi. Note that we only make
use of linear activation functions in all of the layers of
our PhyDNN model following the Pressure Field and
Velocity Field layers. This is because of the domain
information that once we have extracted the pressure
and velocity fields around the surface of the particle,
computing Fi is relatively straightforward. Hence, we
have designed our PhyDNN model in such a way that
most of the complexity in the relationship from Ai to Fi
is captured in the first few layers of the neural network.
The layout of hidden layers and the connections among
the layers in our PhyDNN model is thus physics-guided.
Further, the physics-guided design of PhyDNN ensures
that we hinge some of the hidden layers of the network
to express physically meaningful quantities rather than
arbitrarily complex compositions of input features, thus
adding to the interpretability of the hidden layers.

3.3 Learning with Physical Intermediates: It is
worth mentioning that all of the intermediate variables
involved in our PhyDNN model, namely the pressure
field Pi, velocity field Vi, pressure component FP

i , and
shear component FS

i , are produced as by-products of the
PRS simulations that we have access to during training.
Hence, rather than simply learning on paired examples
of inputs and outputs, (Ai, Fi), we consider learning our
PhyDNN model over a richer representation of training
examples involving all intermediate variables along with
inputs and outputs. Specifically, for a given input Ai,



we not only focus on accurately predicting the output
variable Fi at the output layer, but doing so while
also accurately expressing every one of the intermediate
variables (Pi,Vi,F

P
i ,F

S
i ) at their corresponding hidden

layers. This can be achieved by minimizing the following
empirical loss during training:

LossMSE = MSE(F, F̂ ) + λP MSE(P, P̂)

+λV MSE(V, V̂) + λFP MSE(FP, F̂P)

+λFS MSE(FS, F̂S)

where MSE represents the mean squared error, x̂ repre-
sents the estimate of x, and λP , λV , λFP , and λFS rep-
resent the trade-off parameters in miniming the errors
on the intermediate variables. Minimizing the above
equation will help in constraining our PhyDNN model
with loss terms observed not only on the output layer
but also on the hidden layers, grounding our neural net-
work to a physically consistent (and hence, generaliz-
able) solution. Note that this formulation can be viewed
as a multi-task learning problem, where the prediction
of the output variable can be considered as the primary
task, and the prediction of intermediate variables can be
viewed as auxiliary tasks that are related to the primary
task through physics-informed connections, as captured
in the design of our PhyDNN model.

3.4 Using Physics-guided Loss: Along with learn-
ing our PhyDNN using the empirical loss observed on
training samples, LossMSE , we also consider adding an
additional loss term that captures our physical knowl-
edge of the problem and ensures that the predictions
of our PhyDNN model do not violate known physical
constraints. In particular, we know that the distribu-
tion of pressure and velocity fields over different com-
binations of Reynolds number (Re) and solid fraction
(φ) show varying aggregate properties (e.g., different
means), thus exhibiting a multi-modal distribution. If
we train our PhyDNN model on data instances belong-
ing to all (Re,φ) combinations using LossMSE , we will
observe that the trained model will under-perform on
some of the modes of the distribution that are under-
represented in the training set. To address this, we
make use of a simple form of physics-guided aggregate
supervision, where we enforce the predictions P̂(Re,φ)

and V̂(Re,φ) of the pressure and velocity fields around
a particle respectively, at a given combination of (Re,φ)
to be close to the mean of the actual values of P and V
produced by the PRS simulations at that combination.
If P (Re,φ) and V (Re,φ) represent the mean of the pres-
sure and velocity field respectively for the combination
(Re, φ), we consider minimizing the following physics-

guided loss:

LossPHY =
∑

Re

∑

φ

MSE(µ(P̂(Re,φ)), P (Re,φ))

+MSE(µ(V̂(Re,φ)), V (Re,φ))

The function µ(·) : R −→ R is a mean function. We
finally consider the combined loss LossMSE +LossPHY
for learning our PhyDNN model.

4 Dataset Description

The dataset used has 5824 particles. Each particle has
47 input features including three-dimensional coordi-
nates for fifteen nearest neighbors relative to the target
particle’s position, the Reynolds number (Re) and solid
fraction (φ) of the specific experimental setting (there
are a total of 16 experimental settings with different
(Re, φ) combinations). Labels include the drag force in
the X-direction Fi ∈ R1×1 as well as variables for auxil-
iary training, i.e., pressure fields (Pi ∈ R10×1), velocity
fields (Vi ∈ R10×1), pressure components (FP

i ∈ R3×1)
and shear components of the drag force (FS

i ∈ R3×1)†.

4.1 Experimental Setup All deep learning models
used have 5 hidden layers, a hidden size of 128 and
were trained for 500 epochs with a batch size of 100.
Unless otherwise stated, 55% of the dataset was used for
training while the remaining data was used for testing
and evaluation. We applied standardization to the all
input features and labels in the data preprocessing step.

Baselines: We compare the performance of
PhyDNN with several state-of-the-art regression base-
lines and a few close variants of PhyDNN .
•Linear Regression (Linear Reg.), Random Forest Re-
gression (RF Reg.), Gradient Boosting Regression (GB
Reg.) [27]: We employed an ensemble of 100 estimators
for RF, GB Reg. models and left all other parameters
unchanged.
• DNN: A standard feed-forward neural network model
for predicting the scalar valued particle drag force Fi.
• DNN+ Pres: A DNN model which predicts the pres-
sure field around a particle (Pi) in addition to Fi.
• DNN+ Vel: A DNN model which predicts the velocity
field around a particle (Vi) in addition to Fi.
• DNN-MT-Pres: Similar to DNN+ Pres except that
the pressure and drag force tasks are modeled in a multi-
task manner with a set of disjoint layers for each of the
two tasks and a separate set of shared layers.
•DNN-MT-Vel; Similar to DNN-MT-Pres except in this
case the auxiliary task models the velocity field around
the particle (Vi) in addition to drag force (Fi).

†Further details about the dataset included in the appendix.



We employ three metrics for model evaluation:
MSE & MRE: We employ the mean squared error

(MSE) and mean relative error (MRE) [2] metrics to
evaluate model performance. Though MSE can capture
the absolute deviation of model prediction from the
ground truth values, it can vary a lot for different scales
of the label values, e.g., for higher drag force values,
MSE is prone to be higher, vice versa. Thus, the need
for a metric that is invariant to the scale of the label
values brings in the MRE as an important supplemental
metric in addition to MSE.

MRE =
1

m

m∑

i=1

|F̂i − Fi|
F (Re,φ)

F (Re,φ) is the mean drag force for (Re, φ) set-

ting and F̂i the predicted drag force for particle i.

AU-REC: The third
metric we employ is the
area under the relative
error curve (AU-REC).
The relative error curve
represents the cumu-
lative distribution of
relative error between
the predicted drag force
values and the ground
truth PRS drag force
data. AU-REC calculates the area under this curve.
The AU-REC metric ranges between [0,1] and higher
AU-REC values indicate superior performance.

5 Experimental Results

We conducted multiple experiments to characterize
and evaluate the model performance of PhyDNN with
physics-guided architecture and physics-guided aggregate
supervision. Cognizant of the cost of generation of drag
force data, we aim to evaluate models in settings where
there is a paucity of labelled training data.

5.1 Physics-Guided Auxiliary Task Selection
When data about the target task is limited, we may em-
ploy exogenous inputs of processes that have an indirect
influence over the target process to alleviate the effects
of data paucity on model training. An effective way
to achieve this is through multi-task learning. We first
evaluate multi-task model performance relative to the
corresponding single-task models to demonstrate per-
formance gains. Table 1 shows the results of several
multi-task and single task architectures that we tested
to establish the superiority of multi-task models in the
context of the particle drag force prediction task. It

Model MSE MRE AU-REC(% Imp.)

Linear Reg. 47.47 38.48 0.71332 (-19.54)

RF Reg. 29.33 19.13 0.82148 (-7.3)

GB Reg. 25.02 17.55 0.83692 (-5.60)

DNN 20.50 16.72 0.84573 (-4.61)

DNN-MT-Pres 20.12 15.66 0.85593 (-3.45)

DNN-MT-Vel 19.98 15.69 0.85556 (-3.49)

PhyDNN-
FP

x FS
x

15.54 14.06 0.87232 (-1.61)

PhyDNN 14.28 12.59 0.88657 (–)

Table 1: We compare the performance of PhyDNN and
its variant PhyDNN-FP

x FS
x (only x-components of pressure

and shear drag are modeled) with many state-of-the-art
regression baselines and show that the PhyDNN model yields
significant performance improvement over all other models
for the particle drag force prediction task. The last column
of the table reports the AU-REC metric and also quantifies
the percentage improvement of the best performing model
i.e PhyDNN w.r.t all other models in the context of the AU-
REC metric.

is widely known and accepted in physics that the drag
force on each particle in fluid-particle systems such as
the one being considered in this paper, is influenced
strongly by the pressure and velocity fields acting on
the particles [2]. Hecnce, we wish to explicitly model the
pressure and velocity fields around a particle, in addi-
tion to the main problem of predicting its drag force. To
this end, we design two multi-task models, DNN-MT-
Pres, DNN-MT-Vel, as described in section 4.1. We
notice that the two multi-task models DNN-MT-Pres
and DNN-MT-Vel outperform not only the DNN model
but also their single task counterparts (DNN+ Pres ,
DNN+ Vel). This improvement in performance may be
attribured to the carefully selected auxiliary tasks to aid
in learning the representation of the main task. This
physics-guided auxiliary task selection is also impera-
tivie to our process of development of PhyDNN models
to be detailed in section 5.2. However, Table 1 also un-
covers another interesting property which is the DNN+
models underperforming compared to their DNN-MT
counterparts. Although the DNN+ and the DNN-MT
models are predicting the same set of 11 values i.e 1
drag force value and 10 pressure or velocity samples in
the vicinity of the particle, the DNN+ models make
their predictions as part of a single task. Hence, the
importance of the main task is diminished by the 10
additional auxiliary task values as the model tries to
learn a jointly optimal representation. However, in the
case of the DNN-MT models, each task has a set of dis-
joint hidden layers geared specifically towards learning
the representation of the main task and a similar set
of layers for the auxiliary task (in addition to a set of
shared layers), which yields more flexibility in learning
representations specific to the main and auxiliary task



as well as a shared common representation. In addi-
tion, it is straightforward to explicitly control the effect
of auxiliary tasks on the overall learning process in a
multi-task setting.

5.2 Physics-Guided Learning Architecture Sec-
tion 5.1 showcases the effectiveness of multi-task learn-
ing and of physics-guided auxiliary task selection for
learning improved representations of particle drag force.
We now delve deeper and inspect the effects of expand-
ing the realm of auxiliary tasks. In addition to this, we
also use our domain knowledge regarding the physics
of entities affecting the drag force acting on each par-
ticle, to influence model architecture through physics-
guided structural priors. As mentioned in Section 3,
PhyDNN has four carefully and deliberately chosen aux-
iliary tasks (pressure field prediction, velocity field pre-
diction, predicting the pressure component(s) of drag,
predicting the shear components of drag) aiding the
main task of particle drag force prediction. In addition
to this, the auxiliary tasks are arranged in a sequen-
tial manner to incorporate physical inter-dependencies
among them leading up to the main task of parti-
cle drag force prediction. The effect of this carefully
chosen physics-guided architecture and auxiliary tasks
can be observed in Table 1. We now inspect the dif-
ferent facets of this physics-guided architecture of the
PhyDNN model‡.
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Figure 3: The cumulative distribution function of relative er-
ror for all (Re,φ) combinations. Overall, the PhyDNN model
comfortably outperforms the DNN model and the Mean
baseline (dotted red line).

We first characterize the performance of our
PhyDNN models with respect to the DNN and mean
baseline. Fig. 3 represents the cumulative distribution
of relative error of the predicted drag forces and the
PRS ground truth drag force data. We notice that
both DNN and PhyDNN outperform the mean baseline

‡PhyDNNwas found to be robust to changes in auxiliary task
hyperparameters, results included in appendix.

which essentially predicts the mean value per (Re,φ)
combination. The PhyDNN model significantly out-
performs the DNN (current state-of-the-art [2]) model
to yield the best performance overall. We also tested
DNN variants with dropout and L2 regularization but
found that performance deteriorated. Results were
excluded due to space constraints.

5.3 Performance With Limited Data Bearing in
mind the high data generation cost of the PRS simu-
lation, we wish to characterize an important facet of
the PhyDNN model, namely, its ability to learn effec-
tive representations when faced with a paucity of train-
ing data. Hence, we evaluate the performance of the
PhyDNN model as well as the other single task and
multi-task DNN models, on different experimental set-
tings obtained by continually reducing the fraction of
data available for training the models. In our experi-
ments, the training fraction was reduced from 0.85 (i.e
85% of the data used for training) to 0.35 (i.e 35% of
the data used for training).

0.35 0.45 0.55 0.65 0.75 0.85
Training Fraction

0.75

0.80

0.85

0.90

AU
-R

EC

PhyDNN
RF Reg.

Linear Reg.
GB Reg.

Mean
DNN

Figure 4: Model performance comparison for different levels
of data paucity.

Fig. 4 showcases the model performance in settings with
limited data. We see that PhyDNN model significantly
outperforms all other models in most settings (sparse
and dense). We note that GB Reg. yields comparable
performance to the PhyDNN model for the case of 0.35
training fraction. However, the gradient boosting (and
all the other regression models except DNN) fail to learn
useful information as more data is provided for training.
We also notice that the DNN model fails to outperform
the PhyDNN model for all but the last setting i.e the
setting with 0.85 training fraction.

5.4 Characterizing PhyDNN Performance For
Different (Re,φ) Settings. In addition to quantita-
tive evaluation, qualitative inspection is necessary for
a deeper, holistic understanding of model behavior.
Hence, we showcase the particle drag force predictions
by the PhyDNN model for different (Re,φ) combina-



tions in Fig. 5§. We notice that the PhyDNN model
yields accurate predictions (i.e yellow and red curves
are aligned). This indicates that the PhyDNN model is
able to effectively capture sophisticated particle inter-
actions and the consequent effect of said interactions on
the drag forces of the interacting particles. We notice
that for high (Re,φ) as in Fig. 5b, the drag force i.e
PRS curve (yellow) is nonlinear in nature and that the
magnitude of drag forces is also higher at higher (Re,φ)
settings. Such differing scales of drag force values can
also complicate the drag force prediction problem as it
is non-trivial for a single model to effectively learn such
multi-modal target distributions. However, we find that
the PhyDNN model is effective in this setting.
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Figure 5: Each figure shows a comparison between
PhyDNN predictions (red curve) and ground truth drag force
data (yellow curve), for different (Re,φ) cases. We also show-
case the mean drag force value for each (Re,φ) case (black).

Thus far, we characterized the performance of the
PhyDNN model in isolation for different (Re,φ) con-
texts. In order to gain a deeper understanding of
the performance of PhyDNN models for different (Re,φ)
combinations, we show percentage improvement for the
AUREC metric of PhyDNN model and three other mod-
els in Fig. 6a - Fig. 6c. We choose DNN, DNN-MT-
Pres, DNN-MT-Vel as these are the closest by design
to PhyDNN among all the baselines we consider in this
paper. In Fig. 6, we see that PhyDNN outperforms
the other models in most of the (Re,φ) settings.
PhyDNN when compared with the DNN model achieves
especially good performance for low solid fraction set-
tings which may be attributed to the inability of the
DNN model to learn effectively with low data volumes
as lower solid fractions have fewer training instances. In
the case of the DNN-MT models, the PhyDNN model
achieves significant performance improvement for high
solid fraction (φ = {0.2, 0.3, 0.35}) cases and also for Re
= {10, 200}, indicating that PhyDNN is able to perform
well in the most complicated scenarios (high Re, high
φ). PhyDNN is able to achieve superior performance in
14 out of the 16 (Re, φ) settings across all three models.

§Figures for all (Re,φ) combinations are in the appendix.

5.5 Verifying Consistency With Domain
Knowledge A significant advantage of physics-guided
multi-task structural priors is the increased inter-
pretability provided by the resulting architecture.
Since each component of the PhyDNN model has been
designed and included based on sound domain theory,
we may employ this theoretical understanding to verify
through experimentation that the resulting behavior
of each auxiliary component is indeed consistent with
known theory. We first verify the performance of the
pressure and shear drag component prediction task in
the PhyDNN model. It is well accepted in theory that
for high Reynolds numbers, the proportion of the shear
components of drag (FS) decreases [2]. In order to
evaluate this, we consider the ratio of the magnitude of
the predicted pressure components in the x-direction
(FPx ∈ FP) to the magnitude of the predicted shear
components in the x-direction (FSx ∈ FS) for every (Re,
φ) setting¶. The heatmap in Fig. 7 depicts the compar-
ison of this ratio of predicted pressure components to
predicted shear components to a similar ratio derived
from the ground truth pressure and shear components.
We notice that there is good agreement between the
predicted and ground truth ratios for each (Re, φ)
setting and also that the behavior of the predicted
setting is indeed consistent with known domain theory
as there is a noticeable decrease in the contribution of
the shear components as we move toward high Re and
high solid fraction φ settings.

5.6 Auxiliary Representation Learning With
Physics-Guided Statistical Constraints Two of
the auxiliary prediction tasks involve predicting the
pressure and velocity field samples around each par-
ticle. We hypothesized that since the drag force of a
particle is influenced by the pressure and velocity fields,
modeling them explicitly should help the model learn
an improved representation of the main task of particle
drag force prediction. In Fig. 8, we notice that ground-
truth pressure field PDFs exhibit a grouped structure.
Interestingly, the pressure field PDFs can be divided
into three distinct groups with all the pressure fields
with φ = 0.2 being grouped to the left of the plot, pres-
sure fields with φ = 0.1 being grouped toward the bot-
tom, right of the plot and the rest of the PDFs form-
ing a core (highly dense) group in the center. Hence,
we infer that solid fraction has a significant influence
on the pressure field. It is non-trivial for models to
automatically replicate such multi-modal and grouped
behavior and hence we introduce physics-guided statisti-

¶Similar behavior was recorded even when ratios were taken
for all three pressure and shear drag components.



(a) PhyDNN vs. DNN (b) PhyDNN vs. DNN-MT-Pres. (c) PhyDNN vs. DNN-MT-Vel

Figure 6: Each figure indicates the percentage improvement in the context of the AU-REC metric of the PhyDNN model
over the DNN (Fig. 6a), DNN-MT-Pres (Fig. 6b) and DNN-MT-Vel (Fig. 6c). Red squares show that PhyDNN does better
and blue squares indicate that other models outperform PhyDNN . PhyDNN yields significant performance improvement
over other models.
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Figure 7: Heatmap showing ratio of absolute value of
pressure drag (FP

x ) x-component to shear drag (FS
x )

x-component i.e
( |FP

x |
|FS

x |
)
. Left figure shows ratio for

PhyDNN predictions and the figure on the right shows the
same ratio for ground truth data. We notice that distribu-
tion of ratios in both figures is almost identical.

cal priors through aggregate supervision during model
training of PhyDNN . We notice that the learned dis-
tribution with aggregate supervision Fig. 8 (center) has
a similar grouped structure to the ground truth PDF
pressure field. For the purpose of comparison, we also
obtained the predicted pressure field PDFs of a version
of PhyDNN trained without aggregate supervision and
the result is depicted in Fig. 8 (right). We notice that
the PDFs exhibit a kind of mode collapse behavior and
do not display any similarities to ground truth pressure
field PDFs. Similar aggregate supervision was also ap-
plied to the velocity field prediction task and we found
that incorporating physics-guided aggregate supervision
to ensure learning representations consistent with the-
ory, led to significantly improved model performance.

6 Conclusion

In this paper, we introduce PhyDNN . A physics in-
spired deep learning model developed to incorporate
fluid mechanical theory into the model architecture

and proposed physics informed auxiliary tasks selec-
tion to aid with training under data paucity. We con-
duct a rigorous analysis to test PhyDNN performance
in settings with limited labelled data and find that
PhyDNN significantly outperforms all other state-of-
the-art regression baselines for the task of particle drag
force prediction achieving an average performance im-
provement of 8.46% across all models. We verify that
each physics informed auxiliary task of PhyDNN is con-
sistent with existing physics theory, yielding greater
model interpretability. Finally, we also showcase the
effect of augmenting PhyDNN with physics-guided ag-
gregate supervision to constrain auxiliary tasks to be
consistent with ground truth data. In future, we will
augment PhyDNN with more sophisticated learning ar-
chitectures.
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Appendix
Physics-guided Design and Learning of Neural Networks

for Predicting Drag Force on Particle Suspensions in Moving Fluids

Nikhil Muralidhar ∗† Jie Bu ∗† Ze Cao ‡ Long He ‡ Naren Ramakrishnan ∗

Danesh Tafti ‡ Anuj Karpatne ∗†

1 Dataset Description

The dataset used has 5824 particles. Each particle has
47 input features including three-dimensional coordi-
nates for fifteen nearest neighbors relative to the target
particle’s position, the Reynolds number (Re) and solid
fraction (φ) of the specific experimental setting (there
are a total of 16 experimental settings with different
(Re, φ) combinations). Labels include the drag force in
the X-direction Fx ∈ R1×1 as well as variables for aux-
iliary training, i.e., pressure fields (P ∈ R10×1), velocity
fields (V ∈ R10×1), pressure components (FP ∈ R3×1)
and shear components of the drag force (FS ∈ R3×1).

Features Range of Data
X ∈ R15×1 −2.93 ∼ 2.95
Y ∈ R15×1 −2.96 ∼ 2.95
Z ∈ R15×1 −2.96 ∼ 2.96
Re ∈ R1×1 {10, 50, 100, 200}
φ ∈ R1×1 {0.1, 0.2, 0.3, 0.35}

Table 1: The 47 input features of the dataset. Indexes are
the column index of the features in the dataset. X,Y,Z
correspond to the x, y, z coordinates respectively for the 15
nearest neighbors of a particular particle. Re is the Reynolds
numbers. The φ is the global solid fraction for the particular
experimental setting.

2 Experimental Results

2.1 Characterizing PhyDNN Performance For
Different (Re,φ) Settings. In addition to quanti-
tative evaluation, qualitative inspection is necessary
for a deeper, holistic understanding of model behav-
ior. Hence, we showcase the particle drag force predic-
tions by the PhyDNN model for different (Re,φ) combi-
nations in Fig. 1. We notice that the PhyDNN model
yields accurate predictions (i.e yellow and red curves

∗Dept. of Computer Science, Virginia Tech, VA, USA
†Discovery Analytics Center, Virginia Tech, VA, USA
‡Dept. of Mechanical Engineering, Virginia Tech, VA, USA

Labels Range of Data
Fx ∈ R1×1 0.74 ∼ 107.93
P ∈ R10×1 −1.26 ∼ 4.72
V ∈ R10×1 0.07 ∼ 5.29
FP
x ∈ R1×1 0.27 ∼ 92.32
FP
y ∈ R1×1 −15.54 ∼ 19.61
FP
z ∈ R1×1 −14.23 ∼ 15.28
FS
x ∈ R1×1 0.42 ∼ 17.19
FS
y ∈ R1×1 −2.88 ∼ 3.57
FS
z ∈ R1×1 −2.95 ∼ 5.05

Table 2: Fx is the drag force the particle experienced on
the x direction, which is the target variable to predict.
FP
x , F

P
y , F

P
z represent the pressure drag components in the

x,y,z directions respectively. FS
x , F

S
y , F

S
z represent the shear

drag components in the x,y,z directions respectively.

are aligned). This indicates that the PhyDNN model is
able to effectively capture sophisticated particle inter-
actions and the consequent effect of said interactions on
the drag forces of the interacting particles. We notice
that for high (Re,φ) as in Fig. 1p, the drag force i.e
PRS curve (yellow) is nonlinear in nature and that the
magnitude of drag forces is also higher at higher (Re,φ)
settings. Such differing scales of drag force values can
also complicate the drag force prediction problem as it
is non-trivial for a single model to effectively learn such
multi-modal target distributions. However, we find that
the PhyDNN model is effective in this setting.

2.2 Hyperparameter Sensitivity Each of the four
auxiliary tasks in the PhyDNN models, is governed
by a hyperparameter during model training (refer to
Section 3 in the main paper). In our experiments, we
only tune the hyperparameters for the pressure field
and velocity field prediction tasks leaving all other
hyperparameters set to static values for all experiments.
We employ a grid search procedure on the validation
set to select the optimal hyperparameter values for the
pressure and velocity field prediction auxiliary tasks in
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(b) Re = 10, φ = 0.2
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(c) Re = 10, φ = 0.3
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(d) Re = 10, φ = 0.35
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(e) Re = 50, φ = 0.1
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(f) Re = 50, φ = 0.2
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(g) Re = 50, φ = 0.3
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(h) Re = 50, φ = 0.35
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(i) Re = 100, φ = 0.1
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(j) Re = 100, φ = 0.2
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(k) Re = 100, φ = 0.3
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(l) Re = 100, φ = 0.35
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(m) Re = 200, φ = 0.1

0 20 40 60 80 100 120
Particle Index

10
15
20
25
30
35
40

Dr
ag

 F
or

ce

Mean
PRS

PhyDNN Avg.
PhyDNN

(n) Re = 200, φ = 0.2
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(o) Re = 200, φ = 0.3
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Figure 1: Each figure shows a comparison between PhyDNN predictions (red curve) and ground truth drag force data
(yellow curve), for different (Re,φ) cases..We also showcase the mean drag force value for each (Re,φ) case (black).



Training Fraction λP λV
0.35 1e−2 1e−1

0.45 1e−4 1e−1

0.55 1e−4 1e−3

0.65 1e−4 1e−1

0.75 1e−2 1e−3

0.85 1e−4 1e−2

Table 3: The table showcases hyperparameter values of
PhyDNN , for different levels of training fractions each ob-
tained through gridsearch. It must be noted that only the
hyperparameters for the pressure and velocity field predic-
tion auxiliary tasks were tuned and the rest of the values
were kept constant for all experiments λFP = 0.01, λFS =
0.01.

the PhyDNN model. In order to characterize the effect
of this hyperparameter selection procedure on the model
evaluation, we evaluate the sensitivity of the model to
different hyperparameter values.
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Figure 2: Hyperparameter sensitivity evaluation of the
grid search hyperparameter selection procedure for the
PhyDNN model. We notice that PhyDNN is robust to differ-
ent settings of hyperparameters as we do not see significant
changes in the AU-REC between the settings where hyperpa-
rameters for the PhyDNN were selected through grid search
on the validation set (green) and the settings wherein the hy-
perparameter values were set by hand before the experiment
(blue).

We design the hyperparameter sensitivity experiment
to inspect how model performance varies with different
training fractions (i.e different experimental settings).
We conduct an experiment by reducing the training
fraction from 0.85 (85% of data used for training) to
0.35 (35% data used for training). Fig. 2 shows the re-
sults of our experiment wherein the blue bars indicate
the AU-REC values obtained when the PhyDNN model
was trained with a static (predefined) set of hyperpa-
rameters∗. The green bars indicate the setting where
the optimal hyperparameters for pressure and velocity
field prediction for the PhyDNN model were obtained

∗The optimal hyperparameters for the 0.55 training fraction
case were used for all other settings.

through gridsearch on the validation set. We notice
that over all the training fractions, there is no signif-
icant difference between the two models and hence con-
clude that the PhyDNN model is robust across different
hyperparameter settings. Exact hyperparameter values
are detailed in Table. 3.


