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Abstract

The field of Math-NLP has witnessed signifi-
cant growth in recent years, motivated by the
desire to expand LLM performance to the lean-
ing of non-linguistic notions (numerals, and
subsequently, arithmetic reasoning). However,
non-linguistic skill injection typically comes
at a cost for LLMs: it leads to catastrophic
forgetting of core linguistic skills, a conse-
quence that often remains unaddressed in the
literature. As Math-NLP has been able to cre-
ate LLMs that can closely approximate the
mathematical skills of a grade-schooler or the
arithmetic reasoning skills of a calculator, the
practicality of these models fail if they con-
comitantly shed their linguistic capabilities. In
this work, we take a closer look into the phe-
nomena of catastrophic forgetting as it per-
tains to LLMs and subsequently offer a novel
framework for non-linguistic skill injection for
LLMs based on information-theoretic interven-
tions and skill-specific losses that enable the
learning of strict arithmetic reasoning. Our
model outperforms the state-of-the-art both on
injected non-linguistic skills and on linguistic
knowledge retention, and does so with a frac-
tion of the non-linguistic training data (1/4)
and zero additional synthetic linguistic training
data. Our models and experimentation code-
bases are anonymously hosted online1.

1 Introduction

Numeracy, involving the comprehension of sizes,
magnitudes, and order, is the most prevalent form
of non-linguistic information embedded in tex-
tual corpora (Joram et al., 1995). Thus, the case
for numerically-capable LLMs is rather easy to
make: as numerals grant objectivity to language
(Porter, 1996), numerically-capable language mod-
els are key to optimal performance in a host of
downstream tasks such as information extraction

1https://github.com/anonymous-scholar/
Skill-LM

Figure 1: LLMs trained for dissimilar skillsets have
different convergence points for their parameters - the
parameterization space for an LLM trained for linguistic
skills θLinguistics lives in the green space while the pa-
rameterization space for an LLM trained for quantitative
reasoning θQuant lives in the red space. The goal of this
work is to approximate a locality of parameterization
θSkill−LM (yellow) where the model reliably learns a
non-linguistic skill (quantitative reasoning) without sac-
rificing its linguistic proficiency.

(Madaan et al., 2016), inference (Naik et al., 2018),
and data-to-text generation (Sharma et al., 2022a).

1.1 Re-thinking the Objective of Math-NLP

Progress in Math-NLP: Several notable publi-
cations in the Math-NLP space have made rapid
strides in numeracy-tinged language-modeling
(Thawani et al., 2021) - from investigations of the
inherent deficiency of numerical reasoning skills
in LLMs induced through unsupervised training,
both for numerals that appear in the training corpus
(Zhang et al., 2020) and OOD (out-of-domain) nu-
merals (Wallace et al., 2019; Razeghi et al., 2022),
to interventions that strengthen the numerical rea-
soning skills of these models (Spithourakis and
Riedel, 2018; Jiang et al., 2020; Geva et al., 2020).

https://github.com/anonymous-scholar/Skill-LM
https://github.com/anonymous-scholar/Skill-LM


Model CoLA STS-B MNLI MNLIMM MRPC QNLI QQP RTE SST-2 WNLI
BERT 0.59 0.89 83.85 84.05 86.76 90.55 90.61 65.34 91.62 56.33
BERTArith 0.08 0.80 32.73 32.95 70.34 50.53 70.49 47.29 88.07 56.33

Table 1: LLMs trained for niche non-linguistic skill-sets forget linguistics: Comparative analysis between the
performance of the base BERT model and the same model further trained on an arithmetic reasoning corpus on
the set of 9 GLUE tasks for natural language understanding. All tasks except WNLI suffer severe performance
degradation as a consequence of continued training on a non-linguistic corpus.

Further, advances in chain-of-thought prompting
in few-shot learning settings (Li et al., 2022) and
task-specific fine-tuning (Lewkowycz et al., 2022)
have shown significant gains in the capacity for
quantitative reasoning in LLMs.

Linguistic evaluation remains important: As
notable as these accomplishments are, the goal re-
mains not to replicate the reasoning capabilities of
a grade-schooler or to proxy a calculator, but rather
build LLMs that are empowered with these skills.
As such, an area that oftens goes unaddressed in
the Math-NLP space is how these models perform
as general language modelers. With the advent
and popularity of generative conversational mod-
els (OpenAI, 2022), the goal is to have one model
capable of a host of skills - not to load separate
models for conversation/assistance and reasoning.
As depicted in Figure 1, whether a model is de-
signed to perform strict non-linguistic tasks or semi-
linguistic tasks, it should never come at the cost
of core linguistic competency. After all, language
models are intended to model language.

1.2 Necessitating the Re-thinking
LLMs injected with non-linguistic skills forgo
their linguistic skills: Consider the task of strict
arithmetic reasoning as shown in Figure 1, a subset
of possible quantitative reasoning tasks. If a base
BERT model (Devlin et al., 2019) is further trained
on this non-linguistic task, it suffers significant
degradation on 8/9 GLUE tasks (Wang et al., 2018)
that evaluate the natural language understanding
(NLU) capabilties of the model, as showcased in
Table 1. This observation has long been known
in the deep learning literature as catastrophic for-
getting (Kirkpatrick et al., 2017), wherein when a
model pre-trained on task A is further trained on
task B, the parameters in the model vital for task
A adapt their values to meet the requirements of
task B.

LLMs exhibit unconventional forgetting: What
is interesting, based on our findings, is that in the
case of LLMs, the forgetting of linguistic skills

is not evenly spread - the forgetting is rather task-
specific. Akin to other neural network applications,
the forgetting of linguistic skills may likely be
grouped as performance loss over a single task A;
however, as seen in Table 1, the GLUE tasks suffer
various ranges of degradation - the task of finding
the referent of a pronoun (WNLI, Levesque et al.
(2012)) does not seem to suffer at all, while the
grammatical correctness assessment task (CoLA,
Warstadt et al. (2019)) suffers severe degradation.

As proponents for skill-empowered LLMs, we
thus make a case for disclosing the performance
on general NLU tasks when models are trained for
superior performance on niche skill-sets such as
non-linguistics, an area left wanting in the Math-
NLP front. Because of this task-specific forgetting,
quantitative reasoning models trained in a Q&A
fashion may not showcase degradation in similarly
modeled downstream tasks such as SQuAD (Ra-
jpurkar et al., 2016) and DROP (Dua et al., 2019) -
thus disclosing performance across a range of NLU
tasks is crucial.

Substantiating forgetting on the basis of param-
eter sharing: To establish that observed perfor-
mance degradation can indeed be accredited to
catastrophic forgetting, we take an information the-
oretic lens to pry into parameter-sharing tenden-
cies across tasks with the aid of Fisher information
(Rissanen, 1996). For a single sample y drawn
from a distribution with probability desnity f(y; θ),
the Fisher information index I(θ) (1) quantifies
the sensitivity of the parameter θ to the data in-
stance y. Thus, given a task-specific training corpus
(X,Y ) ∈ Dtask, we can estimate the sensitivity of
each model parameter θi ∈ θ for the given task.

I(θi) = Ey∈Y (
d log f(y; θi)

dθi
)2 (1)

= −Ey∈Y (
d2 log f(y; θi)

dθ2i
) (2)

Using this formulation, we compute the Fisher pa-
rameter sensitivities I(θ) for four different mod-
els based on continued training of the base BERT



Figure 2: NLU tasks MRPC, RTE, and CoLA, suffer the most as a consequence of non-linguistic skill-injection,
because these tasks deem the same subset of model parameters to be vital as the non-linguistic (arithmetic) task:
Given Fisher parameter sensitivities I(θ) of the first (left) and last (right) self-attention encoder layers for four
different models based on continued training of the base BERT model on four datasets: Iarith(θ) on an arithmetic
reasoning and ICoLA(θ), IMRPC(θ), IRTE(θ) on GLUE tasks CoLA, MRPC, and RTE respectively, this plot
takes the n = 800 most crucial parameters based on Iarith(θ) and showcases how sensitive those same parameters
are to the GLUE tasks based on ICoLA(θ), IMRPC(θ), and IRTE(θ). These plots correlate to the task-specific
performance degradation showcased in Table 1.

model on four datasets:

• Iarith(θ): for BERT trained on an arithmetic
reasoning dataset (Geva et al., 2020)

• ICoLA(θ), IMRPC(θ), IRTE(θ): for BERT
trained on three GLUE (Wang et al., 2018)
tasks CoLA, MRPC, and RTE respectively

To ground our hypothesis of task-specific forget-
ting as a consequence of parameter-sharing, first,
we select n = 800 parameters deemed most sen-
sitive for arithmetic reasoning from Iarith(θ), and
compare how important those same parameters are
for the three GLUE tasks based on their respective
Fisher scores ICoLA(θ), IMRPC(θ), IRTE(θ) (see
Appendix §A.1.1 for details on Fisher score com-
putations). As seen in Figure 2, for the first and last
self-attention encoder layers, the sensitivities of
the parameters across tasks correlate well with the
findings of Table 1 - the NLU task that suffers the
least performance degradation (WNLI) also has the
least sensitivity to these (shared) parameters across
the encoder layers, while the NLU tasks that do suf-
fer from performance degradation (MRPC, CoLA,
RTE) have varying ranges of shared sensitivities
across the encoder self-attention layers. These find-
ings hold consistent across all 12 encoder layers of
the BERT model (see Appendix §A.1.2).

Our contributions: In line with the above obser-
vations, we offer the following contributions in the
form of our proposed model, Skill-LM, for non-
linguistic skill injection in LLMs:

• Novel multi-task skill-injection loss that in-
fuses a sense of numeral structure in the
learned representations, leading to better gen-
eralization performance than the state-of-the-
art, all with a significantly lower fraction (n4 )
of training data.

• Weight consolidation schemes for LLMs for
better linguistic retention with 0 additional
linguistic samples compared to 1 million syn-
thetic textual training samples used by the
state-of-the-art.

• Through exhaustive qualitative and quantita-
tive evaluations, we demonstrate the improved
generalization performance of Skill-LM over
the state-of-the-art. Our experiments also
highlight the need for disclosing linguistic per-
formance for models trained on highly-niche
non-linguistic tasks.

2 Designing Skill-LM

2.1 Non-Linguistic Learning

Based on probabilistic modeling, language mod-
els are trained to output the next sequential to-
ken yt at timestep t based on the n tokens al-
ready predicted by the model, formulated as
P (yt|yt−1, ..., yt−n) = P (yt|y<t). This proba-
bility distribution P is often optimized through
measures of uncertainty such as cross-entropy or
KL-divergence. The application of these same loss
functions used for learning linguistic token distribu-



Figure 3: Empirical setting of hyperparameters: For regression loss LREG (left), the loss convergence is evaluated
at four configurations of λ1 on the validation set with both constant {1e−3, 1e−4} and dynamic (update scheduling)
initializations. For EWC loss LEWC (right), the interplay between LEWC and CE loss LCE (color-matched) is
evaluated through a parameter sweep of λ2 within {1e−6, 1e−10} with the best performing configurations plotted.

tions may not necessarily translate to the learning
of non-linguistic entities.

Unlike linguistic tokens, the magnitude of a nu-
meral is especially tied to its meaning (Dehaene
et al., 1998). This magnitude can either be mod-
eled as a continuous linear representation (Dehaene
et al., 1990) or a log-compressive representation
(Dehaene, 2003). Thus, to inject this numeric-scale
representation into a language model, we take a
simplistic approach of augmenting the learning of
tokens through cross-entropy LCE with a regres-
sion loss LREG

2. This regression loss is incorpo-
rated into the quantitative reasoning loss function
LQ as represented in (3, 5).

LQ(θ) = LCE + λ1 .LREG (3)

LCE = −log(P (yt|y<t)) (4)

LREG =

√√√√ n∑
i=1

(y2 − ŷ2) (5)

Figure 3 (left) depicts the convergence of LREG for
different configurations of λ1. Please see Appendix
§A.2.1 for further details on the update schedules
for hyperparameter tuning.

2.2 Linguistic Retention

Among prominent strategies for multitask learning,
a system-level consolidation scheme consists of
stitching-together amalgamated datasets constitut-
ing multiple-shared tasks (Kumaran et al., 2016).

2As in the initial phases of model training, incorrect predic-
tions of target numerals can lead to exceedingly large values
of LREG, thus our choice of seed values for λ1 were set to
{1e−3, 1e−4} as not to exceed the range of LCE {0, 1} by
values greater than an order of magnitude.

However, due to the limitless range of possible
downstream tasks that LLMs are often employed
for, the paradigm consists of building large mod-
els that hold linguistic prowess and are intended
to be fine-tuned on a single downstream task (De-
vlin et al., 2019; Brown et al., 2020), thus suited
for a continual learning paradigm. As depicted in
Figure 1, the high degree of parameterization of
these models leads to the belief that there is a so-
lution for {task B, θB}, a non-linguistic skill, that
is proximal to the linguistic solution space for the
model {task A, θA} (Sharma et al., 2022b). To
enable this continual learning, we adapt the elas-
tic weight consolidation (EWC) regularization to
LLMs - elastic as it functions as a spring, anchoring
the solution space closer to θA (Kirkpatrick et al.,
2017). Thus, EWC penalizes changes to specific
network weights deemed vital for linguistics while
injecting non-linguistic skills into the model.

In line with our task-specific parametric ob-
servations from Introduction §1.2, we compute
F = IBERT (θ), the Fisher information index for
the base BERT model based on a portion of its orig-
inal pre-training corpus - WikiText (Merity et al.,
2016), thus approximating its posterior distribution.
Let us assume that θ∗ling represents the set of param-
eters of a converged base-BERT model pre-trained
for linguistics. We now introduce the quadratic
penalty LEWC (6, 7) that penalizes changes to any
model parameter i crucial to the core linguistic
functionality of the pre-trained model.

L(θ) = LQ(θ) + λ2 .LEWC (6)

LEWC =
∑
i

1

2
Fi(θi − θ∗ling,i)

2 (7)



In this loss formulation, the hyperparameter λ2

is crucial as it dictates both model convergence
and balances the learning of quantitative reasoning
skills θQ with linguistic prowess θling. To evaluate
the sensitivity of model convergence with respect
to λ2, we perform a hyperparameter sweep between
{1e−6, 1e−10} - Figure 3 (right) showcases the in-
terplay between LCE and LEWC (color-matched)
for the best performing values of λ2 on the vali-
dation set. The first sign of model convergence is
observed at λ2 = 1e−7, and although slight im-
provements to model convergence are noted for
even smaller values of λ2, the smallest value that
allows for convergence, theoretically, allows for
balanced learning of θQ with θling.

3 Experiment Setup and Results

3.1 Tasks and Datasets
The goal of Skill-LM is to empower LLMs with
non-linguistic skills in a manner that avoids catas-
trophic forgetting of linguistic skills without the aid
of additional synthetic linguistic training. Thus, we
have two categories of tasks that Skill-LM, along
with the baselines, should be evaluated on:

3.1.1 Quantitative Reasoning
To hold fair comparisons to GenBERT (Geva et al.,
2020), we both train and evaluate all models with
the arithmetic reasoning portion of their dataset.
The data instances take the form of the sample
arithmetic task demonstrated in Figure 1. The cor-
pus consists of Ntrain = 165, 000 training samples
and Nval = 1666 validation samples, where the
numerals are in the range {1, 20e3} with numeral
ranges stratified between the training and valida-
tion sets. For our models, we randomly sample
Ntrain

4 instances for training.

OOD Performance: The out-of-domain (OOD)
performance of all models are evaluated on data
instances generated in the same manner but for
numeral ranges {20e3, 10e6} that are unseen for
all models evaluated.

3.1.2 Natural Language Understanding
Following standard protocols, we employ all 9
tasks in the GLUE benchmark (Wang et al., 2018)
as metrics for linguistic prowess of a model. The
tasks, as per the benchmark, are categorized into
three groups:

• Single Sentence Tasks: CoLA (the Corpus
of Linguistic Acceptability) (Warstadt et al.,

2019) for grammatical fidelity (Matthews cor-
relation), SST-2 (the Stanford Sentiment Tree-
bank) (Socher et al., 2013) for sentiment pre-
diction

• Similarity and Paraphrase Tasks: MRPC
(the Microsoft Research Paraphrase Corpus)
(Dolan and Brockett, 2005), QQP (the Quora
Question Pairs), and STS-B (the Semantic
Textual Similarity Benchmark) (Cer et al.,
2017) for semantic equivalence

• Inference Tasks: MNLI (the Multi-Genre Nat-
ural Language Inference Corpus) (Williams
et al., 2018) and RTE (Recognizing Textual
Entailment) for textual entailment, QNLI (the
Stanford Question Answering Dataset) (Ra-
jpurkar et al., 2016) for Q&A, and WNLI
(the Winograd Schema Challenge) (Levesque
et al., 2012) for pronoun referent selection.

Evaluation Metrics: Besides CoLA (evaluated
using the Matthews correlation coefficient) and
STS-B (evaluated using a combination of the Spear-
man’s and Pearson’s correlation coefficients), all
result shown represent accuracy for the respective
GLUE task.

3.2 Baselines
For assessment of both quantitative reasoning skills
and linguistic prowess through natural language
understanding, the following three models are used
as the baselines for this experimentation. For the
training specifics, please see Appendix §A.2.2.

• BERT: In this evaluation, this base pre-trained
model establishes the standard for natural lan-
guage understanding that all BERT-derivatives
designed for non-linguistic skills should strive
to achieve. Thus, its performance on the set
of GLUE tasks are italicized in Table 3.

• BERTArith: This is the model generated from
the continued training of the pre-trained BERT
model on the quantitative reasoning dataset
using the standard cross-entropy LCE loss.
This model showcases the current paradigm
of skill-injection where the architecture of
a model is left unchanged and the training
parameters are often adapted to meet perfor-
mance requirements in the target task.

• GenBERT (Geva et al., 2020): This BERT-
based model is trained for numerical reason-



Model Accuracy

Model Training Samples Validation Set [0,203] OOD [203,104] OOD [104,105] OOD [105,106]

GenBERT 165,000 (n) 100% 1.32% 0.06% 0.0%
BERT 41,250 (n/4) 96.63% 7.20% 0.12% 0.0%
Skill-LM (w/o LEWC ) 41,250 (n/4) 95.67% 9.66% 0.12% 0.0%
Skill-LM 41,250 (n/4) 98.01% 19.44% 0.12% 0.0%

Table 2: Comparative analysis of quantitative reasoning performance between the baselines and Skill-LM (that uses
1
4 of the training data) for both the in-domain validation set {1, 20e3} and out-of-domain (OOD) sets for numeral
ranges {20e3, 10e4}, {10e4, 10e5}, and {10e5, 10e6}. Using a fraction (n4 ) of the original training data, Skill-LM
not only closely matches the in-domain performance of GenBERT, it significantly improves the generalization
performance to OOD numerals ranges as well.

Model Training Samples CoLA STS-B MNLI MNLIMM MRPC
BERT - 0.59 0.89 83.85 84.05 86.76
BERTArith 0 0.08 0.80 32.73 32.95 70.34
GenBERT 1 Million 0.540.001 0.880.001 83.000.576 83.401.107 85.040.693
Skill-LM 0 0.580.041 0.890.003 84.070.158 84.661.123 86.881.123

Model Training Samples QNLI QQP RTE SST-2 WNLI

BERT - 90.55 90.61 65.34 91.62 56.33
BERTArith 0 50.53 70.49 47.29 88.07 56.33
GenBERT 1 Million 90.830.012 90.780.316 67.862.042 91.510.648 55.630.995

Skill-LM 0 91.540.207 90.960.043 65.701.531 92.370.081 56.180.216

Table 3: Comparative analysis of linguistic performance between the baselines and Skill-LM (that uses 0 additional
linguistic training data) for the set of 9 GLUE benchmarks, each addressing a certain aspect of natural language
understanding (see §3.1.2). To further authenticate the performance increase of Skill-LM over GenBERT, the results
are presented as µσ (mean and standard deviation) across two runs of training-validation with different seeds for
model initialization.

ing with a multitask setup wherein a conjunc-
tion 1 million synthetic numerical reasoning
samples (165,000 of which are strict arith-
metic) is used for numeric skill injection while
an additional 1 million synthetic textual sam-
ples are used to avoid catastrophic forgetting
of linguistics as a consequence of the non-
linguistic skill injection. Please note, that
for this experimentation, the pre-trained Gen-
BERT model has been used as-is, thus ensur-
ing no performance degradation as a conse-
quence of in-house replication.

3.3 Quantitative Results

3.3.1 Numerical Reasoning
From Table 2, we observe that using only 1

4 th of
the training dataset, Skill-LM closely resembles
the performance of GenBERT while significantly
improving the performance on out-of-domain nu-
meral ranges. This leads to two deductions:

• It is known in the literature that LLMs often
struggle to extrapolate numeral ranges that are
absent from the training corpus (OOD) (Wal-
lace et al., 2019; Razeghi et al., 2022). The

significant improvement in quantitative rea-
soning in OOD numerals from Skill-LM (w/o
LEWC) (row 3) establishes the vital role that
skill-specific regression loss LREG plays in
not just learning the correct tokens to predict
in response to a quantitative prompt, but cap-
turing the magnitude of each numeral tokens
in their representations.

• The significant jump in OOD improvement
in addition to the increased in-domain perfor-
mance from Skill-LM (row 4) suggests that
LEWC not only minimizes the loss of linguis-
tic prowess, but also acts as a universal regular-
izer that prevents the model from over-fitting
on the target task.

3.3.2 Natural Language Understanding
Recall that our goal with Skill-LM is to prevent the
loss of linguistic prowess as a consequence of non-
linguistic skill injection. The premise therein is that
BERT-derivatives, empowered with non-linguistic
skills, should at least strive to have linguistic perfor-
mances of the base model. Thus, the performance
of the base BERT model is italicized in Table 3.



Figure 4: Skill-LM consistently predicts the correct order of magnitude for the numerals: From Table 2, Skill-LM
significantly improves predictive performance for OOD range [203, 104], however, all models see a drastic drop in
performance for the OOD ranges [104, 105] and [105, 106]. Although these models are unable to predict the exact
numerals, the KDE plots above showcase how close these models are to predicting the correct order of magnitude
for the numerals - [104, 105] on the left and [105, 106] on the right. Skill-LM consistently predicts the correct order
of magnitude for the numerals as marked by the vertical dashed red line. This is evident from the fact that the largest
mode of Skill-LM coincides with the correct order of magnitude (red line).

In §1.2, we established the degradation of lin-
guistic performance in LLMs as a consequence
of non-linguistic skill injection. Thus, the goal
of weight consolidation LEWC was to revitalize
the linguistic performance of the model back to
baseline. However, from Table 3, we observe that
employing LEWC that uses 0 additional training
data outperforms GenBERT that uses 1 Million
additional linguistic training data on 8/9 of the stan-
dardized GLUE benchmarks. To further authenti-
cate these findings, the results are presented as µσ

(mean and standard deviation) across two runs of
training-validation with different seeds for model
initialization. Thus Skill-LM showcases improved
performance coupled with significant savings in
GPU compute costs compared to previous related
efforts that train on an additional 1 Million linguis-
tic training samples (Geva et al., 2020).

3.4 Qualitative Results

In §2.1, we theorized that regression loss, in the
context of numerical skill injection, would inject a
sense of numeric scale and magnitude estimation
(Dehaene et al., 1998) to the general learning of
numerical representations. From Table 2 we quan-
tified the gains from this skill-specific loss in OOD
generalization of numerals, however, in this section
we further investigate whether the extrapolation to
OOD numerals is indeed due to this learnt sense of
numeric scale.

OOD numerals closer to the training range: In
Table 2, Skill-LM boosts the predictive perfor-
mance for OOD numerals in the range [203, 104]
from 1.32% to 19.44% - but where does the base-
line fail? In Figure 5, as common-case failure sce-
narios, we showcase 3 sample responses from Skill-
LM vs baseline to prompts from the OOD range
[203, 104]: while the baseline does capture the nu-
ances in difference of the operands (the numerals
closer the decimal are correct), it severely fails to
extrapolate to the scale of the operands.

OOD numerals further from the training range:
In Table 2, the evaluation metric used is accuracy,
thus evaluating the capabilities of these models to
output the exact token in response to the quantita-
tive reasoning prompts. For larger OOD ranges
[104, 105] and [105, 106], all models struggle to
predict the exact output - but how close do they
get? Figure 4 showcase the distribution of the pre-
dicted output based on their powers of 10s - for the
OOD range [104, 105], the outputs should mostly
center around 105 (left figure) while for the range
[105, 106] they should center around 106 (right fig-
ure). Although unable to predict the exact tokens,
Skill-LM tends to predict tokens closer in magni-
tude to the ground truth consistently compared to
our baseline.



Figure 5: For the OOD range [203, 104] immediate to
the training numeral range [0, 203], this figure show-
cases, qualitatively, the predictive behaviors of Skill-LM
vs GenBERT. Although GenBERT is able to capture the
nuances in difference of the operands, it fails to extrapo-
late to the scale of the operands.

4 Conclusions

Our study shows that LLMs are capable of demon-
strating quantiative reasoning without sacrificing
the broad palette of linguistic skills that they are
traditionally evaluated against. This multi-task
framework, together with the weight consolidation
strategy, highlights that this framework can be sys-
tematized beyond the studies described here. As a
result, non-linguistic tasks and linguistic tasks need
not be seen as being at odds for LLMs and we can
begin thinking about richer integrations of qualita-
tive and quantitative reasoning. Our experimental
results also highlight that the improvements show-
cased here do not require exorbitant training data
and in fact require just a fraction of what previous
studies have leveraged.

Our future work will be organized in three di-
rections. First, we intend to study at a more fine-
grained level the dovetailing of different arithmetic
reasoning tasks vis-a-vis linguistic counterparts,
and any synergies that can be exploited while learn-
ing. Second, there are situations where linguistics
can help numerical reasoning (math word prob-
lems, data-to-text generation) and multi-task for-
mulations that capture the underlying semantics
can be developed. Finally, there are other forms of
non-linguistic reasoning (diagrammatic reasoning)
that can potentially be studied using the multi-task
framework that we have described here.

Limitations

In our study, we address the issue of linguistic for-
getting via the injection of the strict non-linguistic
skill of quantitative reasoning. Although quanti-
tative reasoning with LLMs is an active research
area, as discussed above, further fine-grained stud-
ies are required to extrapolate this behavior to tasks
that leverage synergies between aspects of both lin-
guistics and non-linguistics - such as math word
problems or data-to-text generation. Further, inves-
tigations into the linguistic forgetting tendencies of
different languages would lend an insight into the
role of linguistic morphology in this behavior. The
restrictions from our in-house GPU resources does
not allow scaling this study to more recent models
that exceed 100 Billion parameters, although, due
to the sharing of similar architectures, we forecast
our findings to hold despite of model scaling.

Ethics Statement

Although the ethical waters of the development and
deployment of LLMs are difficult to nagivate, we
can ascertain that our study does not bring forth
further complications. The datasets we use in this
study are established benchmark datasets from pub-
licly accessible websites and do not contain any
personally identifiable information. Our analyses
does not constitute human subjects and thus is not
within the purview of the IRB. Further, in the land-
scape of increasing emission costs from large-scale
computation, our study offers avenues for severely
restricting the size of the training data - both lin-
guistic and non-linguistic.
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A Appendix

A.1 Substantial Forgetting on the Basis of
Parameter Sharing

A.1.1 Fisher Information Computation
The Fisher information score, as depicted in (1) is
the expected value of the square of the gradient for
a sample y ∈ Y . Thus, to compute the Fisher sensi-
tivity of a model θ to a task A, we compute the sum
of the squared gradients averaged by the number of

parameters in θ. In our case, where θ is a pretrained
transformer-based LLM, the model cross-entropy
loss dlogf(y; θ) (4) for each sample y is computed,
through which the gradient dlogf(y;θ)

dθ can then be
computed. The sum of these squared gradients
gives us the Fisher information score for each pa-
rameter θi in a model θ with respect to a task A.

A.1.2 Parameter Sensitivities for the
Self-Attention Encoder Layers

In §1.2, we substantiated the linguistic forgetting
of LLMs through parameter sharing tendencies of
the model with illustrations of the parameter sensi-
tivities across different tasks for the first (1st) and
last (12th) self-attention encoder layer of the trans-
former. Here, through Figure 6, we show that the
findings hold across all self-attention encoder lay-
ers of model. Further, it is interesting to observe
that the task CoLA shares more parameters with
the Arithmetic task in the earlier layers compared
to the latter layers.

A.2 Designing Skill-LM

A.2.1 Hyperparameterization for LREG

The intuition for the selection of hyperparameter
λ1 within the range {1e−3, 1e−4} was to scale-
match the exceedingly large values of regression
loss LREG to the cross-entropy loss LCE during
the intial phases of training where incorrect predic-
tions of target numerals are frequent. In addition
to evaluating the model convergence with λ1 set
to these constants, we also evaluate the following
update schedule configurations for λ1:

Algorithm 1 Update Schedule 1

λprev ← 1e−4

for i in epochs do
λcurrent ← LREG

LCE+LREG

λ1 ← 0.99 ∗ λprev + 0.01 ∗ λcurrent

λprev ← λ1

end for

Algorithm 2 Update Schedule 2

λprev ← 1e−4

for i in epochs do
λcurrent ← LREG

LCE+LREG

λ1 ← 0.01 ∗ λprev + 0.99 ∗ λcurrent

λprev ← λ1

end for



A.2.2 Model Training Configurations
The models BERTArith, GenBERT, and Skill-LM
all share the base BERT architecture. The baseline
GenBERT has been employed as-is with the model
that the authors provide used for comparative evalu-
ation. For models BERTArith and Skill-LM, these
are initialized as pre-trained base BERT models
with 160M parameters and further trained on ran-
domly sampled n

4 th of the arithmetic portion of
GenBERT’s training data. The pre-trained base
BERT model is loaded from the HuggingFace li-
brary (Wolf et al., 2019).

The scheme for training follows BERT’s stan-
dard training protocol of using masked-language
modeling. However, instead of randomly masking
15% of the tokens as done in BERT, we mask the
result of the each sample quantitative prompt. For
instance, from Figure 5, for the sample 61176.23 -
46741.95 = 14434.28, the models BERTArith and
Skill-LM are trained to predict 14434.28 for the
masked prompt 61176.23 - 46741.95 = [MASK].
With the standard sequence size of 512 for BERT,
the models were trained for 60 epochs in a cluster
of 4 Tesla P100 GPUs.



Figure 6: Given Fisher parameter sensitivities I(θ) the self-attention encoder layers for four different models based
on continued training of the base BERT model on four datasets: Iarith(θ) on an arithmetic reasoning and ICoLA(θ),
IMRPC(θ), IRTE(θ) on GLUE tasks CoLA, MRPC, and RTE respectively, this plot takes the n = 800 most crucial
parameters based on Iarith(θ) and showcases how sensitive those same parameters are to the GLUE tasks based on
ICoLA(θ), IMRPC(θ), and IRTE(θ).


