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Practically every large IT organization hosts data centers—a mix of computing elements, storage systems,
networking, power, and cooling infrastructure—operated either in-house or outsourced to major vendors. A
significant element of modern data centers is their cooling infrastructure, whose efficient and sustainable
operation is a key ingredient to the “always-on” capability of data centers. We describe the design and
implementation of CAMAS (Chiller Advisory and MAnagement System), a temporal data mining solution
to mine and manage chiller installations. CAMAS embodies a set of algorithms for processing multivariate
time-series data and characterizes sustainability measures of the patterns mined. We demonstrate three key
ingredients of CAMAS—motif mining, association analysis, and dynamic Bayesian network inference—that
help bridge the gap between low-level, raw, sensor streams, and the high-level operating regions and features
needed for an operator to efficiently manage the data center. The effectiveness of CAMAS is demonstrated
by its application to a real-life production data center managed by HP.
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1. INTRODUCTION

Modern IT infrastructure is ubiquitous, especially in the services sector that requires
“always-on” capability. Practically every large IT organization hosts data centers, oper-
ated either in-house or outsourced to major vendors. Over the last decade, data centers
have grown from housing a few hundred multiprocessor systems to tens of thousands
of individual servers today. This growth has been accompanied with steep increases
in power density, resulting in higher heat dissipation, and thus increasing both power
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and cooling costs. According to the EPA, U.S. data centers have become energy hogs
and their continued growth is expected to demand the construction of 10 new power
plants by 2011 [Koomey 2008a, 2008b; Kaplan et al. 2008]. One news report [Leake and
Woods 2009], perhaps alarmist, claims that a single Web search query can use up to half
the equivalent energy of boiling a kettle of water! Globally, data centers currently con-
sume 1–2% of the world’s electricity [Vanderbilt 2009] and are already responsible for
more CO2 emissions than entire countries such as Argentina or The Netherlands. If
these trends hold, data center emissions are expected to quadruple by 2020 [Kaplan
et al. 2008] and some estimates expect the carbon footprint of cloud computing to
surpass aviation [Koomey 2008a].

Data centers constitute a mix of computing elements, networking infrastructure,
storage systems along with power management and cooling capabilities all of which
contribute to energy inefficiency. A plethora of approaches are hence available to curtail
energy usage in each of the different data center subsystems and achieve sustainable
data centers. For instance, huge inefficiencies abound in average server usage (believed
to be in the single digits -to- at most 10–15%), and thus one approach to achieve greener
IT is to use virtualization and migration to automatically provision new systems as
demand spikes and consolidate applications when demand falls. A lot of prior work has
focused on a data center’s cooling infrastructure, which consumes anywhere between
30% to 50% of the total power consumption of a data center. Within the cooling infras-
tructure, most of the energy is spent on chillers, which refrigerate the coolant, typically
water, used to extract heat from the equipment in the data center. Dynamic manage-
ment of an ensemble of chiller units [Patnaik et al. 2009b] in response to varying load
characteristics is an effective strategy to make a data center more energy efficient.
There are even end-to-end methodologies proposed [Sharma et al. 2008] that track
inefficiencies at all levels of the IT infrastructure “stack” and derive overall measures
of the efficiency of energy flow during data center operation.

A key problem is the unavailability, inadequacy, or infeasibility of theoretical models
or “first principles” methodologies to optimize design and usage of data centers. Ad-
mittedly, some components of data centers can be readily modeled (e.g., an operating
curve for an individual chiller unit, a CFD prediction of airflows through rows of racks
for static conditions) but the applicability of these models is severely limited due to
simplifying assumptions and excessive computational time. Consequently, data-driven
approaches to data center management have become more attractive. By mining sen-
sor streams from an installation, we can obtain a real-time perspective into system
behavior and identify strategies to improve efficiency metrics.

In this article, we focus primarily on the cooling infrastructure of a data center,
especially chillers. Chillers are a key ingredient to keeping data centers functioning;
as a case in point, recently, the music service Last.fm had to be shut down due to
overheating in its data center. We present CAMAS (Chiller Advisory and MAnagement
System), a temporal data mining solution to mine and manage chiller installations.
CAMAS embodies a set of algorithms for processing multivariate time-series data
and characterizes sustainability measures of the patterns mined. Thus, we show how
temporal data mining can bridge the gap between low-level, raw, sensor streams and
the high-level operating regions and features needed for an operator to efficiently
manage the data center.

The design and implementation of CAMAS makes the following contributions.

(1) We demonstrate an efficient approach to mine motifs in multivariate time-series
data and which can be used for sustainability characterization. Our algorithm can
accommodate “don’t care” states in its definition of motifs and this enables us to
uncover expressive patterns in multivariate data.
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(2) We describe how simple association analysis can be utilized to identify inefficient
regions of chiller ensemble operation and how protocols for improving the overall
efficiency of the system can be readily derived from the results of such associations.

(3) We describe how we can construct a complete Dynamic Bayesian Network (DBN)
that both captures the operation of the chiller ensemble and also enables reasoning
in what-if and diagnostic scenarios.

This article builds upon two preliminary conference publications [Patnaik et al.
2009b, 2010] by providing an integrated framework for mining and reasoning about
chiller data. In particular, we provide a greater coverage of chiller management issues
throughout the article, demonstrate how our prior work on mining sensor streams is
generalized by the CAMAS framework, and describe how external conditions can be
monitored and mined to identify regions of inefficiency in the data center.

2. BACKGROUND

We present next some background about data center chillers and their chiller installa-
tions with a view toward motivating the underlying operational problems that can be
solved using data mining techniques.

2.1. Architecture of a Data Center

Figure 1(a) shows a data center consisting of IT equipment (servers, storage, network-
ing) fitted in racks arranged as rows. A large data center could contain thousands of
racks occupying several tens of thousands of square feet of space. Also shown in the
figure are Computer Room Air Conditioning (CRAC) units that cool the exhaust hot
air from the IT racks. Energy consumption in data center cooling comprises work done
to distribute the cool air and to extract heat from the hot exhaust air. A refrigerated
or chilled water cooling coil in a CRAC unit extracts the heat from the air and cools it
within a range of 10◦C to 18◦C. The cooling infrastructure of a data center is shown in
Figure 1(b).

Key elements of this infrastructure include CRAC units, plumbing and pumps for
chilled water distribution, chiller units, and cooling towers. Heat dissipated from IT
equipment is extracted by CRAC units and transferred to the chilled water distribution
system. Chillers extract heat from the chilled water system and reject it to the envi-
ronment through cooling towers or heat exchangers. In addition to the IT equipment,
the data center cooling infrastructure can account for up to 50% of the total power
demand [Belady 2007]. The CRAC units provide two actuators that can be controlled.
The Variable Frequency Drive (VFD) controls the blower speed and the chilled water
value regulates the amount of chilled water flowing into a unit (between 0% and 100%).
These built-in flexibilities allow the units to be adjusted according to the workload de-
mand in the data center. The demand is detected via temperature sensors installed on
the racks throughout a data center.

2.2. Data Center Chillers

As stated earlier, the focus of this article is on chiller units that receive warm water
(at temperature, Tin) from the CRAC units, extract heat from it, and recirculate the
chilled water (at temperature, Tout) back to the CRAC units.

Each chiller is composed of four basic components, namely, evaporator, multistage
centrifugal compressor, economizer, and water-cooled or air-cooled condenser. Liquid
refrigerant is distributed along the length of the evaporator to absorb enough heat from
the water returning from the data center and circulated through the evaporator tubes to
vaporize. The gaseous refrigerant is then drawn into the first stage of the compressor.
Compressed gas passes from the multistage compressor into the condenser. Cooling

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 4, Article 34, Publication date: July 2011.



34:4 D. Patnaik et al.

(b)

Fig. 1. (a) Thermal map of a data center showing racks arranged in rows and CRAC units, and (b) typical
cooling infrastructure of a data center.

tower water circulated through the condenser tubes absorbs heat from the refrigerant,
causing it to condense. The liquid refrigerant then passes through an orifice plate into
the economizer. Flashed gases enter the compressor while the liquid flows into the
evaporator to complete the circuit.

Starting and stopping a chiller is a complex, multistep process. Figure 2 shows the
operational state diagram of a typical chiller. On power-on, the chiller waits for the
compressors to start, after a prescribed delay. On startup, the chiller utilization varies
to match the cooling load. Based on chiller technology, chiller compressors can throttle
in discrete stages or continuously. Feedback control is used to maintain the outlet
temperature, Tout, close to a user-specified set-point temperature.

We define some terms used in the context of a data center chiller unit.

—IT cooling load. This is the amount of heat that is generated (and thus needs to be
dissipated) at a data center. It is approximately equivalent to the power consumed
by the equipment since almost all of it is dissipated as heat. It is commonly specified
in kilowatts (KW).
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Fig. 2. Operational state diagram of a chiller unit.

—COP. The Coefficient Of Performance (COP) of a chiller unit indicates how efficiently
the unit provides cooling, and is defined as the ratio between the cooling provided
and the power consumed, that is,

COPi = Li

Pi
, (1)

where Li is the cooling load on the ith chiller unit and Pi is the power consumed by
it. In the data center studied in this work the typical values of COP for air-cooled
chillers and water-cooled chillers are 3.5 and 6.5, respectively.

—Chiller utilization. This is the percentage of the total capacity of a chiller unit that
is in use. It depends on a variety of factors, mainly, the mass flow rate of water that
passes through a chiller and the degree of cooling provided, that is, the difference
between the inlet and outlet temperatures (Tin − Tout). For a particular Tout, an
administrator can control the utilization at a chiller through power capping or by
changing the mass flow rate of water. The air-cooled chillers are operated in swing-
mode to handle rapidly changing cooling load and their utilizations typically vary in
the range 20–80%. On the other hand the water-cooled chillers are operated at high
utilization ≈80% and handle the base cooling load.

—Chiller power consumption. This is simply the power consumed by a chiller unit.
Although power meters that measure aggregate power consumption of data center
infrastructure elements are usually available, meters that measure power consumed
by an individual entity or a specific group (e.g., chillers) may not always be installed.
In such cases, if the capacity of the unit and average COP are known, they, together
with unit utilization, can be used to estimate power consumed. We have

Pi = Ui ∗ Ci

100 ∗ COPi
, (2)

where Pi is the power consumed, Ui the utilization, and Ci the capacity, all pertaining
to the ith chiller unit.

2.3. Ensembles of Chiller Units

The number of chiller units required depends on the size and thermal density of a
data center. While one unit may be sufficient for a small data center, several units
operating as an ensemble may be required to satisfy the cooling demand of a large data
center. Figure 3 shows an ensemble of chiller units that collectively provide cooling for
a data center. Out of the five units shown, three are air-cooled while the remaining two
are water-cooled. Also, to provide a highly available data center and ensure business
continuity, sufficient spare capacity is usually provisioned to meet the cooling demand
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Fig. 3. Five chiller units work in tandem to provide cooling for a large data center.

in the event of one or more units becoming unavailable as a result of failure or required
maintenance.

Although operating curves for individual chiller units exist, no model is available
for operation of an ensemble, especially one consisting of heterogeneous units. Ad-
ditionally, shift and/or drift of response characteristics with time further complicate
their management. The operational goals are to satisfy the cooling requirements while
minimizing the total power consumption of the ensemble and maximizing the average
lifespan of the units. While multiple factors impact the lifespan of a chiller unit, an
important one is: rapid and large oscillations in utilization value. High amplitude and
frequent variations in utilization due to varying load or some failure condition result
in decreased lifespan, and thus need to be minimized.

2.4. Chiller Management Issues

There are several issues that lead to inefficient chiller operation and these are some of
the topics that motivate the design of CAMAS.

—Short cycling. Frequent start and stop cycles lead to fatigue of mechanical parts
due to high torque requirements, and deterioration of electrical circuitry due to high
inrush current. Moreover, load fluctuations due to cycling can also lead to drop in
power factor and potential penalties from the utility. In case of data centers with
on-site generation, such fluctuations can lead to reliability issues at the generators
as well. Downstream of chillers, pump performance, and cooling tower efficiency can
also be adversely affected. Typically chillers have an MTBF (Mean Time Between
Failure) of 20,000 hours or more, which can reduce exponentially due to oscillations.

—COP dependence on utilization. Chillers show poor energy efficiency at low and high
utilizations. Figure 4 shows a typical variation of efficiency (in terms of coefficient
of performance (COP), see Eq. (1)) with utilization. These curves depend not only on
the type of chiller but also on external factors, such as ambient temperature, supply
temperature of the coolant, etc. Further, these curves may even shift with time over
the typical 15 to 20 years lifespan of a chiller.

—Complex and unknown dependencies between external variables and performance.
The performance of an ensemble of chillers depends on many factors, several of
which are not explicitly monitored. For example, it depends on ambient temperature
and humidity. Further, each installation of chillers is slightly different from other
installations, requiring local domain experts to fine-tune the performance. Further,
these relationships may show a drift with time.
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Fig. 4. Variation of chiller efficiency (COP) with utilization (load).

3. CAMAS: A FRAMEWORK FOR MINING CHILLER INSTALLATIONS

While administration of a single chiller unit is not complicated, configuring an ensemble
of chillers for optimal performance is a challenging task, especially in the presence of
a dynamically varying cooling load [Boucher et al. 2006]. Typically, heuristics and
rules-of-thumb are used to make decisions regarding:

—Which chiller unit(s) should be turned on/off, and when?
—What utilization range should a particular unit be operated at?
—How should the ensemble react to an increase or decrease in cooling demand?

Any guidance regarding questions posed before while maintaining performance and
optimizing the earlier stated goals will be invaluable to a data center facilities
administrator.

The primary goal of CAMAS is to aid in precisely this objective. CAMAS links the
multivariate, numeric, time-series data streams gathered from chiller units to high-
level sustainability characterizations. As shown in Figure 5, CAMAS performs such
transduction at many levels. First, it transduces multivariate time-series streams into
symbolic event data from which frequent episodes are mined to yield motifs of chiller
operation. We show how these motifs directly map to sustainability characterizations.
In particular, we can describe states of chiller operations in terms of the motifs they
exhibit and the efficiency regions they involve. Figure 6 describes an example session
with CAMAS in this objective. This constitutes Part 1 of the framework (see Figure 5).
In Part 2 of the framework, by taking external conditions into account, we demonstrate
how we can use association analysis to find inefficient states of operation. In Part 3,
we demonstrate how these ideas can be generalized further into a complete framework
for reasoning about chiller states and their transitions. We demonstrate a Dynamic
Bayesian Network (DBN) approach to infer probabilistic relationships between chiller
variables. Each of these three aspects are covered in the following sections.

4. SUSTAINABILITY CHARACTERIZATION USING MOTIFS

Motifs are repetitive patterns of occurrence in time-series data. In understanding mul-
tivariate time-series data about chiller utilizations, we seek to identify motifs that
underly how different chillers are involved in meeting the varying demand posed by
data centers. We would like to identify regions of time-series progression that demon-
strate better/improved sustainability measures than others.
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Fig. 5. CAMAS framework. Three important building blocks are illustrated: (1) Motif discovery and sus-
tainability characterization, (2) modeling external factors and internal states, and (3) probabilistic modeling
of system variables.

4.1. Approach

Prior work in multivariate change point detection (e.g., see Xuan and Murphy [2007])
has posited statistical models for behavior within a segment and tracks changes in
model parameters to denote qualitative change points. Our task is exacerbated by the
lack of adequate models to characterize chiller behavior and also because of the varying
interpretations that are attachable to multivariate data.

First, a motif or a trend can manifest in a single series or in multiple series. Second,
even when it manifests in multiple series, the specificity with which it manifests can
be fixed or variable. For instance, a motif can be “three chiller units show oscillatory
behavior” versus “first three chiller units show oscillatory behavior.” Since we seek
to mine motifs so that their presence/absence can be cross-correlated with the chiller
design (e.g., air cooled versus water cooled), we seek motifs of the latter form.

Definition 4.1. A multivariate time-series T = 〈v1, . . . , vm〉 is an ordered set of real-
valued vectors. Each real-valued vector vi represents utilizations across all the chiller
units.

The preceding definition assumes a uniform sampling and hence the associated times
are not explicitly recorded in the definition of T .

Definition 4.2. A segment of the time-series T is an ordered subset of consecutive
vectors of T denoted by T [i, j] = 〈vi, vi+1, . . . , vj〉, where 1 ≤ i < j ≤ m.
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Fig. 6. A screenshot of CAMAS used to analyze multivariate time-series data.

Definition 4.3. A motif represents a set of segments of the time-series T , {T [i1, j1],
T [i2, j2], . . . , T [in, jn]}, where 1 ≤ i1 < j1 . . . ≤ ik+1 < jk+1 . . . jn ≤ m, such that any
pair of segments in the set satisfy a similarity requirement and n ≥ θ , where θ is a
user-defined minimum count.

There are many possible instantiations of the similarity measure [Chiu et al. 2003;
Yankov et al. 2007], each leading to a specific formulation of a motif. We will describe
later in this section the specific similarity requirement adopted here.

We decompose our overall goal into motif mining and sustainability characterization
stages. Although a streaming algorithm would be more suitable in the context of time-
series data, the current implementation is intended more as a diagnostic tool than
for prediction. We first transduce the continuous multivariate stream into a discrete
symbol stream amenable for processing by episode mining algorithms. We perform a
k-means clustering on these vectors and use the cluster labels as symbols to encode
the time series. Observe that the multivariate series is now encoded as a single symbol
sequence.

Already we have suitably transformed the multivariate numeric data to discrete
symbols. We raise the level of abstraction further by doing a run-length encoding of the
symbol sequence and noting where transitions from one symbol to another occur. This
gives us a sequence of events for input to serial episode mining as illustrated next.

Symbol Sequence : d d d b a c c d d d d c b
⇓

Event Sequence : 〈(d-b, 4), (b-a, 5), (a-c, 6), (c-d, 8),
(d-c, 12), (c-b, 13)〉

Frequent episode mining is now conducted over this sequence of transitions. We
adopt the framework of serial episodes with interevent constraints. The structure of a
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Fig. 7. Illustration of change detection in multivariate time-series data.

Fig. 8. Illustration of motif mining in a single time-series using frequent episodes.

serial episode α is given as

α = 〈
E1

(0,d1]→ E2 . . .
(0,dn−1]→ En

〉
. (3)

Here E1, . . . , En are the event types participating in the episode α and, for our domain,
these event types are cluster symbol indices. Note that a serial episode requires a
total order among the events. Each pair of event types in α is associated with an
interevent constraint. For example, the pair E1 → E2 is associated with (0, d1] such
that in an occurrence of α, event E2 occurs no later than time d1 after event E1.
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Referring back to our definition of a motif, we see that the similarity requirement is
thus every pair of segments must have an occurrence of the same serial episode defined
over transition events. A key feature of episode mining is that the event occurrences
can be interspersed with “don’t care” states and this enables us to uncover expressive
patterns in the sequential data. While other approaches exist to accommodate don’t
care states [Chiu et al. 2003], our algorithm is deterministic and guarantees finding
repeating patterns in the discrete domain with a given support threshold. However,
some patterns in the raw time-series can go unnoticed due to coarse discretization.

4.2. Algorithms

The mining process follows the level-wise procedure ala Apriori, that is, candidate gen-
eration followed by counting. The candidate generation scheme is based on matching
the n − 1 size suffix of one n-node frequent episode with the n − 1 size prefix of the
another n-node frequent episode at a given level to generate candidates for the next
level. The time complexity of the candidate generation process is O(m2n), where n is the
size of each frequent episode in the given level, m is the number of frequent episodes
in that level, since all pairs of frequent episodes need to be compared for a prefix-suffix
match.

The algorithm for counting the set of candidates episodes is given in Algorithm 1.
The count or frequency measure is based on nonoverlapped occurrences [Laxman et al.
2005]. Two occurrences of an episode are said to be nonoverlapped if the events in
one occurrence appear between the events in the other occurrence. This notion most
naturally eliminates the problem of trivial matches highlighted in Patel et al. [2002]
where a match is found between two slightly shifted segments of the time series.
Algorithm 1 takes as input the event-sequence and a set of candidate episodes and
returns the set of frequent episodes for a given frequency threshold θ . The algorithm
counts the maximum number of nonoverlapped occurrences of each episode with the
interevent time constraint (0, T ]. This approach also allows repeated symbols or events
in the episodes.

ALGORITHM 1: Counting occurrences of serial episodes with interevent time constraint [0, T )
Input: Candidate episodes C = {α1, . . . , αm}, where αi = Eαi (1) → . . . Eαi (N) is a N-node episode,

Inter-event time constraint T and frequency threshold θ , Event sequence S = {(Ei, ti)}.
Output: Frequent episodes F : α ∈ F if α.count ≥ θ
1: /*Initialize*/
2: waits = φ
3: for all α ∈ C do
4: α.count = 0
5: s = Array of size N, each cell initialized to -∞
6: for i = 1 to|α| do
7: waits[Eα(i)].append(α, s, i)
8: for all (Ek, tk) ∈ S do
9: for all (α, s, i) ∈ waits[Ek] do
10: if (i = 1) or (tk − s[i − 1] ≤ T ) then
11: /*First event or Satisfies the time constraint*/
12: if (i = |α|) then
13: α.count = α.count + 1
14: Reinitialize all elements of s to −∞
15: else
16: s[i] = tk
17: Output F = {α : α ∈ C such that α.count ≥ θ}
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Fig. 9. Illustration of the proposed motif mining algorithm using example data.

To illustrate how the overall multivariate motif mining approach works, we use
some synthetic examples. In Figure 9(a), we demonstrate a multivariate time series
consisting of two components. A motif (corrupted by Gaussian noise) is embedded
in this data. The motif comprises of a triangular waveform in the first series and
simultaneously exhibits an “H”-shaped waveform in the second time series. This motif
repeats five times in the given data.

First, the time information is stripped from the data and clustering is performed
with number of clusters, k = 5. The cluster transitions are overlaid in the plot. These
transitions are used to encode the multivariate numeric data into symbolic form and
serve as the input to frequent episode mining. One episode is discovered which occurs
five times and this episode is unpacked into the original data and overlaid on the
dataset as shown. This serves as an example of a motif that we embedded and were
able to uncover.

Next in Figure 9(b), we take the preceding time-series data and randomize the time
points so that the higher-order information necessary to exhibit the motif is destroyed.
The clusters still remain the same but there are no frequent episodes discovered in the
data, and hence there are no motifs.

The worst-case time complexity of the counting algorithm is given by O(lnm), where
l is the number of events in the data sequence, m is number of candidate episodes,
and n is the size of the episode. The algorithm makes one pass of all the events in
the event sequence and every time an event that belongs to an episode is seen, the
data structure s for the episode is updated. A hash map is used to efficiently locate
only a subset of relevant episodes for each event seen in the event sequence. Since our
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method allows repeated symbols, in the case of such episodes the same event can update
s structure at most n times. Therefore if the level-wise growth of candidates is suffi-
ciently arrested by a suitably chosen threshold, the algorithm scales linearly with data
size.

Recall here that the events in mined frequent episodes correspond to transitions from
one symbol to another. Our hypothesis here is that if motif occurrences are matched at
transitions under an intertransition gap constraint, then the corresponding time-series
subsequences will match under a suitable distance metric. In addition the episode min-
ing framework allows for robustness to noise and scaling. The distance metric under
which such motifs can be shown to be similar needs further investigation. Nonetheless
this technique is found to be very effective in unearthing similar time-series subse-
quences in real datasets.

4.3. Sustainability Characterization

It is difficult (and subjective) to compare two motifs in terms of their sustainability
impact by inspecting them visually. Therefore, it is necessary to quantify the sustain-
ability of all motifs by computing a sustainability metric for them. This would enable
quantitative comparisons between motifs; their categorization as “good” or “bad” from
the sustainability metric point-of-view; and, furthermore, this information could be
used to provide guidance to an administrator or a management system regarding the
most “sustainable” configurations of the chiller ensemble under a particular load. There
are several sustainability metrics, such as power consumed, carbon footprint, and ex-
ergy loss [Shah et al. 2008], where exergy is defined as the energy that is available to be
used. Note that typically optimizing a sustainability metric, such as power consumed,
also minimizes the total cost of operation.

In this article, we estimate two sustainability metrics for each motif: (1) the average
COP of the motif; and, (2) a metric reflecting the frequency and amplitude of oscillations
in utilization values. The average COP is calculated using Eq. (1), where the load
during motif i, averaged over all its occurrences, is used as Li and the averaged power
consumption of the motif as Pi. The power is estimated using Eq. (2) with an averaged
constant COP of 3.5 for the air-cooled and 6 for the water-cooled chillers. The COP of
a motif quantifies the cooling effectiveness of the ensemble during that motif. In order
to estimate the frequency of oscillations of a motif, we compute the number of mean-
crossings, that is, the number of times the utilization crosses the mean value. This is
very similar to number of zero-crossings that is commonly used in speech processing
for estimation of frequency. This, together with standard deviation of a motif, allows
oscillatory behavior to be compared.

4.4. Results

We applied our motif mining methodology to chiller data obtained from a large HP
production data center covering 70,000 square feet with 2000 racks of IT equipment.
Its cooling demand is met by an ensemble of five chiller units. The ensemble consists of
two types of chillers: three are air-cooled and the remaining two are water-cooled. The
data characteristics are given in Table II. We mined 20 clusters from this data, with a
view toward identifying well-separated clusters.

4.4.1. Motifs. All the parameters using in mining motifs in multivariate time-series
data is shown in Table I. In all, 22 motifs were discovered in the chiller utilization data
whose qualitative properties are summarized in Table V (more on this later). From
a quantitative point of view these motifs can be clustered into groups based on load.
One such group (Group II) is depicted in Table III with other quantitative measures.
Although each group has very similar load levels, the COP within a group varies with
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Fig. 10. Characterization of operating states of the ensemble of chillers using clustering.

Table I. Parameters Used in Mining Time-Series Motifs

Parameter Value
Number of clusters 20
Support Threshold 10 or more occurrences
Inter-event gap lower-bound 5 min
Inter-event gap upper-bound 60 min

Table II. Dataset I

Number of
data points Date range

Number of
Air-cooled Chillers

Number of
Water-cooled Chillers

28,663
(≈ 480 hours)

July 2, 2008 to July 7, 2008;
Nov 27, 2008 to Nov 30,2008;
Dec 16, 2008 to Dec 26, 2008

3 2

the motifs. In Group II, for instance, motif 8 has a COP of 4.87, while motif 5 is
significantly more efficient at a COP of 5.4. This information provides key insights to
an administrator regarding motifs that are more energy efficient compared to others.
Furthermore, this information could be codified into rules for setting chiller ensemble
configuration based on the current load.

Table IV shows the most efficient and the least efficient motifs for Group II based
on power consumption, determined by the motif ’s COP value. Also shown are the
potential power savings assuming that the least efficient motif could be transformed
into the most efficient one.
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Table III. Summary of the Quantitative Measures Associated with Motifs

Load Power Span
Motif (KW) (KW) COP MC Std (min) N

Group II
8 2028 417 4.87 .042 5.05 50 10
2 2073 400 5.18 .048 4.28 113 17
5 2076 384 5.4 .048 4.25 49 35
4 2083 387 5.38 .048 4.31 82 23
6 2119 422 5.02 .044 4.08 51 23
3 2121 414 5.13 .042 4.31 119 11
1 2123 395 5.38 .046 4.39 172 10

Shown here are statistics for motif in one of the load groups.
MC – number of mean-crossings per minute.
N – number of occurrences of the motif.

Table IV. The Most and Least Efficient Motif for Each Group and the Potential Power Savings if
the Operational State of the Chiller Ensemble Could be Transformed from the Least to the Most
Efficient Motif

Load (KW) Most Efficient Least Efficient Potential Power Savings
Ave. Std Motif Motif KW %

Group II 2089 35 5 8 41 9.83%

Table V provides a qualitative description of all the motifs. They are grouped together
manually based on similar utilization behavior of each of the chillers in the ensemble.
Two factors are considered: the average utilization during the motif, and the oscillatory
behavior. The utilization level is labeled as low (L), medium (M), or high (H) based
on the average utilization ranges of (0, 35), (35, 65), or (65, 100), respectively. The
oscillatory behavior is marked (1) none (N) – which indicates steady values with minor
variations; (2) small (S) – which indicates the values show oscillations that have a
small amplitude; and finally, (3) large (L) – which indicates oscillations with a large
amplitude. Furthermore, units that are not operating are marked “OFF”.

4.4.2. Comparing Motifs 5 and 8. We investigate now in more detail the differences be-
tween motifs 5 and 8 of Group II. While both motifs 5 and 8 have three chillers turned
on, they are of different types. In motif 8, all three operating chillers (C1, C2, and C3)
are air-cooled. In motif 5, two air-cooled (C1 and C2) and one water-cooled chiller (C4)
are running. The qualitative behavior of the chillers in the two motifs are shown in
Table V. In motif 5, one chiller runs at high utilization (C4 at 66.5%), while the other
two run at low utilizations (11.3% and 33.8%). In motif 8, one chiller runs at low uti-
lization (17.63) while the other two operate at the medium range (49.1% and 44.3%).
The amount of oscillatory behavior in the two motifs is about the same as indicated
by the average rate of mean-crossings and standard deviation in Table III. In both the
motifs, one air-cooled chiller shows large oscillations.

4.4.3. Economical Incentives for Sustainable Operation. Business growth is an important
factor in planning for investment in infrastructure. Chillers, of the kind described in
this article, can cost upwards of $150k and typically depreciate over 15–20 years. In the
absence of intelligent management, the annual operating cost, even at 50% load, can
be equally high. Maximizing utilization and efficiency is crucial to achieve a favorable
return on investment. Operating chillers among favorable motifs that satisfy these
conditions will enable IT administrators to sustain growth in business without major
capital or maintenance costs. It will not only prolong the useful life of the existing
equipment but postpone expensive retrofits and further infrastructure investments.

The cost savings by operating in favorable motif regimes can be quite easily charac-
terized by multiplying the kW savings by 0.11×24×365 to obtain the annual savings in
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Fig. 11. Two motifs with similar load but widely varying levels of efficiency. Observe how the least efficient
motif transitions to the most efficient motif in the given time period.

Table V. Summary of the Qualitative Behavior of all the Motifs

Chiller behavior
Num of C1 C2 C3 C4 C5

Motifs Units ON Util. Oscil. Util. Oscil. Util. Oscil. Util. Oscil. Util. Oscil.
7, 15 2 M L OFF H S OFF OFF
13 2 L L OFF M S OFF OFF
1,2,4,5,9,10 3 L N L L OFF H N OFF
3,6,11,12 3 OFF L N L L H N OFF
8,14 3 L L M N M S OFF OFF
16 3 L S M N M S OFF OFF
17 4 M N M L OFF H N H S
18 4 M N M S L L H N OFF
19 4 M S L L OFF H N H L
20 4 M N L L L L H N OFF
21 4 OFF M S L L H N H L
22 4 OFF H N M L H N H S

The ones showing similar behavior are grouped together.
Utilization (Util.) – Low (L), Medium (M), High (H).
Oscillations (Oscil.) – None (N), Small (S), Large (L).

dollars ($). Here, $0.11 is assumed to be the cost per KWh (kilo watt hour) of electricity.
In this case switching from motif 8 to motif 5 gives us a nearly $40,000 in potential
annual savings! Extrapolating this cost saving to other similar motifs gives us an idea
of the utility of data mining algorithms in helping achieve cost effectiveness.

4.4.4. Carbon Footprint Calculation. Saving 1kWh of energy is equivalent to preventing
release of 0.8 kg of carbon dioxide into the atmosphere. Based on the energy savings
number, we can calculate the reduced carbon footprint.

Saved Power = 41kW
Saved Energy (annually) = 41kW × 8760 hrs

Reduction in Carbon footprint = 41kW × 8760 × 0.8
= 287328 kg CO2

Observe that this is just the operational footprint; there is also an “embedded carbon
footprint” of the chiller unit (as added in its manufacturing process). By maximiz-
ing operational life and utilization, we are managing this embedded carbon in the
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equipment as well. In other words, we are limiting the increase in embedded carbon in
the environment while delivering the cooling required.

5. MODELING THE INFLUENCE OF EXTERNAL VARIABLES

While motifs are very useful in assessing repetitive patterns of occurrence, they con-
stitute only a relative minority of the state space that the chiller ensemble operates in.
Another interesting goal is to characterize the regions of state space occupied by the
chiller ensemble and correlate them to the external conditions that the data center,
and in particular, the chiller ensemble is subjected to. Once again, we focus on the
utilization vectors of the same chiller system. But after a recent upgrade, the installa-
tion now has seven chillers instead of five as described earlier: five air-cooled and two
water-cooled. We demonstrate the use of association analysis techniques to identify key
conditions that underlie sources of inefficiency.

5.1. Approach

We discretize the utilization state space of chillers by clustering using seed prototype
vectors. The seed prototypes are obtained by combining low, medium, and high utiliza-
tion values for individual chiller units to obtain a total of 37 = 2187 prototype utilization
vectors. These prototypes are used to seed clusters for a k-means algorithm and clusters
that are assigned zero members are removed from the analysis. The resulting clusters
are still too numerous for human consumption; consequently, we applied hierarchical
clustering with distance between pairs of clusters as the average distance between all
pairs of points across the two clusters. The agglomerative process of merging clusters
was stopped at a level where there was sufficient separation between the clusters be-
ing merged. This ensures that the states represent qualitatively distinct regions. The
prototypes for the final states are shown in Figure 12. Each state is annotated with the
percentage fraction of total time spent by the system in that state, the average time
spent there before moving into a different state, and the average power consumed. The
states are colored using the rainbow palette based on the power consumed in a state,
red being the highest power consuming state and blue the lowest power state.

As a preliminary analysis, we can organize the states from Figure 12 in many differ-
ent ways and assess their characteristics. For example, we can group the states based
on power consumption and investigate the fraction of time that is spent in, say, high
power states. We can assess the states by asking where the system spends most of its
time and determine the profile of these states in terms of the different chillers. This can
be used to validate if the load balancing objectives of the system are being met. Finally,
we can also investigate which chillers are on/off in different states. In states 1, 5, and 8
none of the water cooled chillers is running. This is unusual for this installation since
the scheduling policy mandates the use of at least one water-cooled chiller at all times
to handle the base cooling load.

Given the same external conditions, the chiller ensemble is expected to exhibit similar
power consumption characteristics. For example, for a given cooling load the chiller
system should ideally consume the same amount of power. In practice, the system may
not be able to operate in the most optimal mode to meet the required load under given
external conditions. In CAMAS, we analyze the distribution of states observed under
given external conditions and investigate its characteristics.

The external conditions known to influence the operations of chiller are cooling load,
supply water temperature, ambient air temperature, and ambient water temperature.
The cooling load is the total cooling requirement of the data center and office spaces that
are served by the chiller ensemble. The supply water temperature is the temperature
at which chiller water is supplied to the air-conditioning units. The set point of the
supply water temperature impacts the coefficient of performance (COP) of the chillers.
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Fig. 12. Prototype vectors of the 20 discrete states of the chiller ensemble. Each bar represents a particular
chiller and its mean utilization level in a given state of the system. The first five bars in each plot indicate
the air-cooled chillers and the last two indicate the water-cooled ones.

Fig. 13. External factors affecting chiller performance.

Table VI. Dataset II

Number of Number of Number of
data points Date range Air-cooled Chillers Water-cooled Chillers
77,356 Apr 15, 2010 to July 14, 2010 5 2

Similarly ambient air temperature and ambient water temperature (for water-cooled
chillers only) affect COP. Once these external factors are held fixed, the distribution of
states exhibited by the system exposes inefficiencies in operation; in particular, it can
help identify high power states that can potentially be substituted by low power states
(e.g., where fewer chillers are operating) to meet the same load under similar external
conditions.

5.2. Results

The details of the data used in this analysis is given in Table VI. For the purposes
of this analysis, we discretize the time-series for load, supply temperature, ambient
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Table VII. Parameters Used in Analysis of the Effect
of External Factors

Parameter Value
Number of clusters(discrete states) 20
Number of (equal-frequency) bins

Load 3
Supply Temperature 2
Ambient-water Temperature 3
Ambient-air Temperature 3

Fig. 14. Frequency distribution of different states under a given external condition.

water temperature, and ambient air temperature into three, two, three, and three lev-
els, respectively (see Table VII). We use equal frequency bins for each level. Note that
only two levels of discretization are used for supply temperature since the dynamic
range of this variable is very narrow. Our hypothesis is that, under the same operat-
ing conditions, if we observe multiple states with widely varying power consumption
profiles then this is an indicator of inefficiencies that exist in the system. It should be
potentially possible to move the system from an inefficient high power state to a more
efficient state to meet the same operation conditions.

Consider Figure 14 which depicts the distribution of states for a given setting of
external conditions (i.e., load is high, supply temperature is low, ambient water tem-
perature is high, and ambient air temperature is low). Under these conditions, notice
that State 2 (with average power consumption = 1256kW) and State 12 (with average
power = 904kW) are observed with relatively high frequency. In this example if we are
able to switch from State 2 to State 12, the energy savings over a three-month period
is roughly about 20,336 kWh. More examples of such skewed distributions are shown
in Figure 15.

Furthermore, we can use the external factors as a handle to reason about how the
system can be moved from its current state to a more desired state. For example, we
can investigate if the system can be moved from State 2 to State 12, by changing some
of the external conditions. The example in Figure 16 shows such a scenario where load
decreases with other factors remaining the same. We see that the high power states
are no longer seen. Here the focus is on changes in state distribution given a change in
external conditions.

These examples illustrate that there are numerous opportunities over the course of
a chiller ensemble operation where changes in modes of operation (states) would result
in energy savings. Our next step is to use these ideas to develop a comprehensive
framework for reasoning about chiller states and transitions.
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Fig. 15. More examples of skewed state distributions. It can be seen that there are high power states and
low power states under similar external conditions.

Fig. 16. Change in state distribution with change in load.

6. REASONING ABOUT STATES AND TRANSITIONS

In this section, we demonstrate the overarching framework of CAMAS to help monitor
and analyze a chiller ensemble, while keeping the formulation general enough so that
it could be extended to any similar infrastructure.
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6.1. Approach

As shown in Figure 5, data reduction is performed in a few different ways. The raw
time-series data is compressed using piece-wise aggregate approximation following
discretization using equal frequency bins. This helps capture the average dynamics of
the variables. A higher-order aspect of the time series involves repeating or oscillatory
behavior. This is inferred by mining frequently repeating motifs or patterns in the
time series, as described in Section 4. This information is integrated with the average
behavior by recording the windows in which a time series exhibits motif patterns.
Finally, it is also pertinent to mine relationships involving “control” actions that were
taken during the operation of the chiller units. In this article, we focus on ON/OFF
actions.

A graphical model in the form of a Dynamic Bayesian Network (DBN) is learnt from
the preceding data. This model captures the dependencies between the variables in the
system over different time lags. Here, we focus on the target variable of utilization and
seek to identify suitable parents for modeling in the DBN. Unlike classical methods to
learn BNs [Friedman et al. 1999], we demonstrate a powerful approach to learn DBNs
by creating bridges to the frequent episode mining literature [Patnaik et al. 2009a]. To
apply the learned DBN, we define states of the system by clustering together the com-
bined utilization of the chiller units. This allows the operation of the chiller ensemble
to be represented as a sequence of state transitions. We now use the dependencies and
(conditional) independency relationships found in learning the graphical model to find
the most probable explanation behind the state transitions. This framework can then
be applied for activities like data center diagnostics, performance improvement, load
balancing, and preventive maintenance.

As is well known, a Bayesian Network (BN) is a graphical model denoted by
B = (G, P) where G is a Directed Acyclic Graph (DAG) and P is a set of conditional
probability distributions. The graph G = (V, E) consists of a set of nodes V represent-
ing the random variables {X1, . . . , XN} in the system and a set of directed edges E. Each
directed edge in E, denoted by i → j, indicates that random variable Xi is a parent of
random variable Xj . The conditional probabilities in P are used to capture statistical
dependence relationships between child nodes and parent nodes. In particular, given a
random variable Xi in the graph, we denote by par(Xi) the set of random variables that
are parents of Xi . The statistical dependence between Xi and its parent nodes par(Xi)
is captured by the conditional probabilities P(Xi|par(Xi).

To model a discrete-time random process X(t), t = 1, . . . , T ; X(t) = [X1(t)X2(t)
· · · XN(t)] as studied here, we use the more expressive formalism of dynamic Bayesian
networks. In particular, we focus on time-bounded causal networks, where for a given
w > 0, the nodes in par(Xi(t)), parents for the node, Xi(t), belong to a w-length history
window, [t − w, t). Note that parent nodes cannot belong to the current time slice t for
Xi(t).

This assumption limits the range-of-influence of a random variable, Xk(t), to variables
within w time slices of t and also indicates that the random variables Xi(t) and Xj(t) are
conditionally independent given their corresponding parent sets in the history window.
Further, we also assume that the underlying data generation model is stationary, so
that joint statistics can be estimated using contingency tables.

The learning of network structures involves learning the parent set, par(Xi(t)), for
each Xi(t), i = 1, . . . , N. In this work we assume that there are no spurious indepen-
dencies in the data, that is, if a random variable Xj(t − τ ) is a parent of Xi(t), then the
mutual information I(Xi(t); Xj(t − τ )|S) conditioned on a subset S ⊆ par(X) is always
greater than zero. Moreover time-bounded causality enables us to learn the parents of
each node Xi(t) independent of any other node in the same time slice. We use a greedy
approach to learn the parent set of each node Xi(t). And proceed by adding a node which
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Fig. 17. Illustration of rendering multivariate time-series data as a sequence of state transitions us-
ing clustering. The arrows are drawn between corresponding vectors on the time-series plot and the
3D plot.

has the highest conditional mutual information to the parent set of Xi(t) as shown in
Eq. (4).

pari+1(Xi(t)) ← pari(Xi(t)) ∪ arg max I(Xi(t); Xj(t − τ )|pari(Xi(t))) (4)

The search is continued until the number of nodes in the parent set is k (where k is
an user-defined parameter) or the conditional mutual information drops to zero. The
structure learning is then followed by maximum likelihood estimation of the conditional
probability tables.

6.2. State Transition Modeling

In analyzing complex systems it is usual to try and summarize the operating char-
acteristics into a finite set of states where the systems spends most of its time. The
utilization information of the chiller ensemble is important from both the aspect of
efficiency and sustainability. Therefore we define the states of our system in terms of
the combined utilization of all the chiller units.

In order to obtain a finite set of states, we fist perform a k-means clustering on the
utilization vectors and use the cluster labels as symbols to encode the multivariate
time series of the combined utilization. Thus the multivariate series of utilizations is
now encoded as a single long state sequence.

Over the state sequence the points of interest are the times where the system moves
from one state to another. The exact transition times can be affected by the clustering
scheme used (e.g., number of clusters) but on the average they capture changes in the
operating characteristics.

An interesting question to ask now is: What causes the state transitions to take
place? In the context of our modeling, this question translates to: what factors in the
system cause the utilization of the chiller to go up or down? This can be answered
by observing the changes that take place in the system around the state transitions.
The problem with this approach is the lack of availability of sufficient data around the
change points. We propose an alternative approach where we decompose the question
by asking what causes each of the changes in the chiller units. From the graphical
model already learnt we know the set of variables in the system that directly affect
the utilization. These variables belong to the parent set of the utilization nodes. The
task of finding the most probable causes for a transition amounts to evaluating the
following probability distribution:

Pr(S) =
∏

i∈UtilizationVariables

Pr(Si|Xi(t) = ai, Xi(t − 1) = bi), (5)
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Table VIII. Dataset III

Number of Number of Number of
data points Date range Air-cooled Chillers Water-cooled Chillers
28,289 Oct 21, 2009 to Nov 13, 2009 3 2
(≈ 576 hrs)

Table IX. Parameters Used in State Transition Modeling

Parameter Value
Number of clusters k (discrete states) 10
Window size (for piece-wise avg. aggregation) 15 min
Number of history windows (used in DBN learning) 5

Table X. A Few Important System Variables in the Chiller Ensemble Data

System Variable Description
AC CH(i) EVAP E TEMP Temperature of water entering air-cooled chiller i
MAIN HEADER TEMP 1 F Water temperature at distribution header
WC CH(i) IN TEMP Temperature of water entering water-cooled chiller i
WC CH(i) OUT TEMP Temperature of water leaving water-cooled chiller i
AC CH(i) RLA Percentage utilization of air-cooled chiller i
WC CH(i) RLA Percentage utilization of water-cooled chiller i

where Si = par(Xi(t)) \ Xi(t − 1) and S = ∪Si. The most likely values that S takes can
be considered the best explanation of the transition. Here t is the time at which a state
transition occurs, ai, bi are the discrete values the utilization variable takes before and
after the state transitions. These can be approximated by the cluster centers of each
cluster used to define a state.

6.3. Results

We applied our methods to chiller data obtained from a the same data center described
in Section 4.4. All the parameters used in state transition modeling using DBNs are
listed in Table IX.

During the period from October 21, 2009 to November 13, 2009 the cooling demand
of the data center was met by an ensemble of five chiller units (see Table VIII). The
ensemble consists of two types of chillers: three air-cooled and the remaining two water-
cooled. The data collected over this period totaled to over 576 hours of data consisting
of over 47 variables.

6.3.1. Graphical Model. For learning the graphical models, the raw time-series data
was aggregated over windows of 15 minutes and augmented with results from motif
mining conducted over the same data. The motif information is in form of a binary
valued sequence for each time series. The binary values indicate whether or not motif
occurrences were seen in each 15 minute window. A finer-grained representation of the
motifs will be explored in the future.

Since utilization of a chiller mostly determines its energy consumption, we have
shown that portion of the learned dynamic Bayesian network in Figure 18. Three air-
cooled chiller utilization variables: AC CH1 RLA, AC CH2 RLA, AC CH3 RLA; and
two water-cooled ones: WC CH1 RLA and WC CH2 RLA are shown together with their
parents and grandparents. In the DBN, almost every node has itself from the previous
time slice as one of its parents, which is expected since the data is continuous valued
time-series data. In order to assist in creation of a causal Bayesian network, partial
domain information was incorporated through constraints such as limiting nodes that
could become parents. Three utilization variables show direct dependency on water
temperature. This is, again, expected since the aim of the chiller ensemble is to main-
tain water temperature close to the set point.
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Fig. 18. Graphical model learned from the discretized time-series data. Shown are the parent nodes for only
the utilization variables of the five chiller units.

Fig. 19. Transitions in the state-based representation of the combined utilization of the chiller ensemble.
Edges representing 5 or fewer transitions are not shown. And edges representing more than 5 transitions
are labeled by the actual counts.

More interesting relationships are revealed by two air-cooled units (1 and 3) that
directly depend on the utilization of a water-cooled chiller. This would indicate that
these two chillers ramp up or down based on how the water-cooled chiller (which has
higher capacity) is operating.

6.3.2. State Transitions. The operational states of the system, as shown in Figure 19,
are obtained by clustering together the combined utilization of all the chillers in the
ensemble. Here we use k-means clustering with k = 10 and organize the states in de-
creasing order of total power consumption. Since the objective of this work is to operate
a chiller ensemble more energy efficiently, we color code the system states to reflect
their power consumption. The color red indicates the maximum power consumption
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Table XI. List of Most Likely Value Assignments of the Parent-Set of Node
AC CH1 RLA i.e. Utilization of Air-Cooled Chiller 1

par(Xi(t)) Delay Value Pr(par(Xi(t))|Xi(t), Xi(t − 1))
WC CH1 RLA 1 (75.37, 77.38] 0.27
WC CH1 RLA 1 (72.36, 75.37] 0.18
WC CH1 RLA 1 (77.38, 79.71] 0.18

(about 3298 KW) while the color blue indicates the least consumption (2148 KW). Also
shown, for each state, are the average utilization values of the five chillers as a his-
togram with first three (starting from the left) being air-cooled ones and the last two
being water-cooled units. The time spent by the system in each state is also listed
(maximum in state 9, while least in state). The arrows show the transitions between
states, with the gray-scale indicating the frequency of the transition (darkest implying
most often).

The system states are mainly characterized by the number and kind of chiller units
operating, their utilization levels, and power consumption. Some states are quite sim-
ilar, for example, states 3 and 7, which have the same chiller units operating with not
much difference in their utilization levels. Other states show marked difference, for
instance, state 10 has three chillers operating (one air-cooled and two water-cooled)
while state 6 has four working units (two air-cooled and two water-cooled). Note that
consequently state 10 consumes less power than state 6. A data center chiller operator
will be interested in understanding the variables that influence transitions from state
10 to 6.

Transition: State 10 → State 6. When the chiller ensemble makes a transition from state
10 to state 6, air-cooled chiller-1 turns on. The graphical model can be queried to provide
the most probable explanation for this change. Using the model from Section 6.3.1, we
estimate values of parent of utilization node when these state transitions take place,
as listed in Table XI. Note that utilization levels of the parent (WC CH1 RLA) are high
when these transitions take place. These and other similar insights would facilitate
more energy-efficient management of the chiller resources.

The preceding models can be generalized to incorporate system alarms as nodes
in the graphical model with the objective of discovering the variables that most sig-
nificantly influence a particular alarm. This causal inference would provide valuable
information to a data center chiller operator on corrective steps needed to handle the
alarm. Furthermore, operator actions would be added to the model to enable discovery
of dependencies between state transitions and such actions. This would allow an oper-
ator to query what actions could be taken (if any at all) to move the system from a less
energy-efficient state to a more efficient one.

7. RELATED WORK

7.1. Mining Systems and Installations

Many researchers have explored the use of data mining and machine learning to trou-
bleshoot, analyze, and optimize computer systems and installations. There are a variety
of projects with a diversity of foci, ranging from the mechanical equipment that power
and cool the data center, to network-level diagnostics, to user-level applications and
the system calls they make. For instance, modeling of rack-level temperature data
specifically in relation to CRAC (computer room air conditioning) layout has been
undertaken in Bautista and Sharma [2007] and Sharma et al. [2007]. Optimization
opportunities at multiple levels of smart center architecture have also been studied
in Sharma et al. [2008]. More recent work [Marwah et al. 2010] focuses on sensor
data mining to identify anomalous and deviant behavior. Other related work includes
the InteMon system from CMU [Hoke et al. 2006a, 2006b] that dynamically tracks
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correlations among multivariate time series [Papadimitriou et al. 2005], a characteris-
tic of many sensor streams. Interactive visualizations for system management have also
been investigated [McLachlan et al. 2008]. Diagnosing network-level traffic, for exam-
ple, for volume anomalies, has been studied in Lakhina et al. [2004]. The performance of
Internet-scale applications deployed over multiple data centers is characterized using
automatically mined signatures in Bodik et al. [2008]. Online failure prediction with
applications to network security is discussed in Gu et al. [2008]. Failure prediction
using event logs has also been explored [Liang et al. 2007], especially in the context of
IBM Blue Gene systems. Xu et al. [2009] use text analysis and mining capabilities, in
conjunction with some source-code analysis, to study console logs from applications.

7.2. Approaches to Model Time-Series Data

There are numerous formalisms available to model time-series data and good surveys
are in Ding et al. [2008] and Lin et al. [2003]. One broad class of representations con-
ducts global decompositions of the time-series (e.g., PCA, DFT, wavelets) and aims to
use only the most significant components to model the series. Alternatively, piece-wise
representations are easier to compute and also lend themselves to a streaming mode
of operation. SAX [Lin et al. 2007] performs a piece-wise aggregate approximation (the
aggregate refers to the notion of modeling the given single time series by a linear
combination of multiple time-series, each expressed as a box basis function) and sym-
bolize the resulting representation so that techniques from discrete algorithms can be
adapted toward querying, matching, and mining the time series. In our work, we have
aimed to identify appropriate representations of multivariate time-series data that are
efficient to compute as well as amenable to characterizing sustainability.

7.3. Finding Motifs in Time-Series

Motif mining is the task of finding approximately repeated subsequences in time se-
ries, and studied in various works, such as Chiu et al. [2003], Lin et al. [2002], Patel
et al. [2002], and Yankov et al. [2007]. Mining motifs in symbolized representations
of the time series can drawn upon the rich body of literature in bioinformatics, where
motifs have been used to characterize regulatory regions in the genome. As the work
closest to ours, we explicitly focus on the SAX representation, which also provides some
significant advantages for mining motifs. First, a random projection algorithm is used
to hash segments of the original time-series into a map. If two segments are hashed
into the same bucket, they are considered as candidate motifs. In a refinement step
all candidate motif subsequences are compared using a distance metric to find the set
of motifs with the highest number of nontrivial matches. A contrasting framework,
referred to as frequent episode discovery, is an event-based framework that is most
applicable to symbolic data that is not uniformly sampled [Laxman et al. 2005, 2008;
Mannila et al. 1997; Patnaik et al. 2008]. This enables the introduction of junk, or
“don’t care” states, into the definition of what constitutes a frequent episode. We have
shown how by mining motifs in change point data, we can identify suitable oscillatory
patterns and how they can be related to sustainability metrics.

7.4. Dynamic Bayesian Networks

As a class of probabilistic models, Dynamic Bayesian Networks (DBNs) are an out-
growth of Bayesian networks research, although specific forms of DBNs (e.g., HMMs)
have a long and checkered history. Most examples of DBNs can be found in specific
state space and dynamic modeling contexts [Wang et al. 2008]. In contrast to their
static counterparts, exact and efficient inference for general classes of DBNs has not
been studied well. Similar to our work, Nielsen and Jensen [2005] use a (dynamic)
Bayesian network model of a production plant to detect faults and anomalies. Unlike
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this work, however, we show how such networks can be efficiently learned using fre-
quent episode mining over sensor streams. Furthermore, our networks are defined over
clustered representations of the time-series data rather than raw sensor signals.

8. DISCUSSION

We have demonstrated a powerful approach to data mining for data centers that helps
situate trends gathered from sensor streams in the context of sustainability metrics
useful for the data center engineer. In particular, we have attempted to raise the level
of abstraction with which a data center administrator interacts with sensor streams.
In CAMAS, we have demonstrated the ability to: (i) compose event occurrences to
recognize episodes of recurring behavior, (ii) distinguish energy-efficient behavior pat-
terns from others, and (iii) identify and suggest opportunities for better sustainable
operation.

Our future work objectives fall into two categories. First, we would like to use tempo-
ral data mining to uncover a complete model of the data center cooling infrastructure
which can then be tuned/controlled/optimized, thus making data mining an integral
part of the data center architecture. To achieve this, we need to model the transfer
function in a way that encapsulates workload changes, manual steering of chiller op-
eration, and other intermittent transients and recoverable faults. One approach is to
develop a hidden state transition model (e.g., a hidden process model [Shi et al. 2007])
where the actions by an operator or other changes in the operational environment de-
note the hidden states (since these are often not recorded) and the observed transitions
could be the emissions emitted by the probabilistic model. As our second objective, we
would like to analyze more components of a data center, including the IT and power
subsystems. Although our current studies have focused on the chiller subsystem, we
posit that our methods are general and can be targeted toward these other complex
system modeling tasks.

Data Availability

All the datasets reported in this work are available for download at
http://nostoc.cs.vt.edu/files/camas-paper.
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