Adaptive Code Collage:
A Framework to Transparently Modify Scientific Codes

Pilsung Kang', Michael A. Heffner?, Naren Ramakrishnan!,
Calvin J. Ribbens!, and Srinidhi Varadarajan®

! Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
2 Librato Inc., Blacksburg, VA 24060, USA

Abstract

Legacy scientific codes are often re-purposed to fit adaptive needs, such as to dynamically alter
parameters to improve convergence behavior, or to switch algorithms at runtime for greater ac-
curacy of modeling. Given a legacy scientific code, how can we make it adaptive without making
changes to the original source program(s)? We present an approach—Adaptive Code Collage
(ACC)—to achieve this goal using function call interception in a language-neutral way at link
time. ACC transparently ‘catches’ function calls and redirects them so that an existing program
can be made adaptive without causing a significant performance overhead. We demonstrate the
appliction of ACC to designing adaptive SOR algorithms for solving linear systems and to im-
proving the performance, stability, and accuracy of GenIDLEST, a large parallel computational
fluid dynamics code.
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1 Introduction

Adaptive programs are programs that can change their runtime behavior to achieve certain pur-
poses (e.g., performance improvement, better numerical stability) by tracking changes in problem
characteristics, available resources, and execution environments. Almost every computational sci-
entist has encountered the situation wherein they would like to make a legacy code adaptive to
their application context but without making serious changes to the original program(s). (Chang-
ing values of global variables during a computation and switching algorithms at runtime are simple
examples of adaptation needs.) When the adaptivity scenario can be conceived from the start of
the software design process, we can design inherently adaptive algorithms. However, to change
the behavior of an already existing program, modification of the original code is often viewed as
inevitable. We present an alternative solution here.

Typical modifications to make a program adaptive involve changing a function call into an
if-then-else statement where two different functions may be selectively chosen depending on the
runtime value of a predicate. Such rewriting may become tedious or cumbersome in large programs
with a complex adaptive plan, because the programmer has to locate and update all the places
where the modification is needed. Sometimes such changes require restructuring of the whole pro-
gram, which can be quite imposing. In fact, this issue of adding new functionality to existing code
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Figure 1: Adaptive application development under the ACC framework

in a modular way has been identified in the OOP (Object-Oriented Programming) community as
AOP (Aspect-Oriented Programming) [1]. AOP helps abstract out a new functionality or concern
for existing code into an aspect, and the aspect code can be inserted or weaved at the right places
in a program [2]. This code insertion process can work even at the binary level for Java pro-
grams without having the source available. Even for non-OO languages like C, there are tools and
language extensions that enable AOP’s advice weaving constructs for code insertion [3-5]. However,
comparable support for Fortran, which is widely used in scientific computing, is still lacking.

Binary instrumentation tools can overcome this language dependency issue. These tools insert
code to existing programs in a compiled binary form, offering clean separation between the original
and the new code because the two codes are coalesced at the binary level instead of the programming
language level. Still, since they deal with the native processor instructions at the very lowest
level, most of those tools are developed for sophisticated program analysis purposes [6-9] such as
debugging and profiling rather than as a tool to aid programmers in extending existing programs
in a modular way. An exception is Detours [10], a general-purpose package for dynamic function
interception. However, Detours is only available on Windows systems.

In this paper, we present Adaptive Code Collage (ACC), a framework for implementing adaptive
programs on top of non-adaptive existing code without resorting to AOP tools or frameworks.
Instead we use a function call interception technique to monitor and adapt the original function
behavior. As shown in Figure 1, the assembly language version of the original source code is first
patched in order to embed hooks at the desired function calls. Since the patching is applied at the
assembly level, the original source code is not affected and its program structure is maintained.
Each of the intercepted function calls and its parameters are then associated with individual handler
codes, which are separately written to perform the appropriate computations necessary to decide
whether to change the function behavior. Both the patched original and the adaptivity code are
then combined together to produce a complete application.

The important features of our ACC framework are as follows:

e Modularity & Transparency: The adaptivity code is written and managed as a separate
module with regard to the original program. The original code, assumed to have been written
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Table 1: Comparison of program modification techniques

in a high level language, is not modified. Instead, code insertion is applied to the compiler-
generated assembly code.

e Fortran support: The assembly code patching works for Fortran as well as C. The method
can be applied as long as the original code can be compiled to generate assembly output.

e Persistency: Code patching is needed only once. Once it is done, the patched code can be
used anew without further manipulation and can be linked with any variants of adaptivity
code as the program evolves. This enables the late binding of adaptivity code.

2 Adaptive Contexts in ACC

ACC is primarily a programmer’s tool for factorizing adaptivity with an existing scientific code base,
to enable the plug-and-play of different adaptive strategies. It is not a specific recommendation for
what needs to be adapted and how (which is the purview of domain-specific information).

Many sophisticated code bases (see an example application to computational fluid dynamics
presented later) have withstood years of use but are being constantly put to the test by being
ported to new computational platforms, and by requiring their extension to new problem contexts
and new physical modeling situations. For instance, the GenIDLEST code described later needs to
be adapted for new memory hierarchies and data distributions, for modeling time-varying flow con-
ditions, and to accommodate the latest linear system solvers. We show how the vanilla GenIDLEST
code base can be made to adapt to these situations by factoring out the adaptivity/control decisions
in a separate code and weaving them into the program execution. Conversely, sophisticated code
bases that already have adaptation built into them are outside the scope of ACC.

Although our methods can be applied to any code base, we focus on scientific codes primarily
because these codes are especially rich in adaptation possibilities. In particular, they often feature
libraries of multiple algorithms for the same problems and there are selective superiorities between
these algorithms. Secondly, adaptation is a long-used technique for improving performance and
methods to automatically switch between algorithms and to pursue alternative lines of computation
are very important. Finally, there is a growing emphasis in scientific computing of bringing best
practices in software engineering (modularity, separation of concerns, to name a few) into scientific
code management, and ACC is a further tool in this tradition.

A variety of adaptation strategies can be realized using ACC: code adaptation on a per-problem
basis, on a per-execution-context basis, or even adaptation steered interactively by the user as



opposed to automatically inside execution. Irrespective of the diversity of these strategies, many
of them often rely on tracking/modifying a single/set of variables, or diverting function calls, in
order to improve performance, stability, or accuracy of the computation. It is toward supporting
these capabilities that ACC is targeted.

Table 1 compares ACC with other program modification or extension tools. Overall, our ap-
proach is very similar to the advice weaving technique of AOP in that modular development and
integration is possible. However, key points of contrast can be made. Unlike AspectJ!, for instance,
ACC supports non-OO languages. Unlike AspeCt-oriented C? or AspectC++2, where source-to-
source translation is used, code modification is performed at the assembly level in ACC.

Since ACC works at the assembly language level, what it can and cannot do needs to be described
at a much lower granularity than that of high-level languages and their features. ACC makes the
following assumptions in supporting an adaptivity scenario. First, the types of parameters that can
be readily supported are those involving the primitive data types such as integers, reals, boolean,
etc. and also include pointers. This enables us to support most C/C++ codes and all Fortran
codes (since Fortran uses call-by-reference to pass parameters to function calls). ACC would not
be directly applicable to adapting those functions that pass parameters of structured data types
unless the parameters are passed by pointers. Second, ACC’s support of C++ is weak in that
we cannot directly apply the assembly patching for C++ methods due to C++’s name mangling,
which is heavily dependent upon compiler implementations. C wrappers for C++ methods can be
used to resolve the issue. Otherwise, it remains a programmer’s burden to manually resolve the
mismatch between different compiler. Finally, certain features that we cannot support currently
include dynamic functions, function parameters passed through registers, and custom orders of
parameter ‘reading’ as implemented by different compilers and languages.

We present two illustrations of how ACC is used: i) an example of adjusting the over-relaxation
parameter w in an adaptive SOR algorithm for linear systems, ii) a more complex example involving
the GenIDLEST code. The former is a trivial example from textbooks but serves as a programmer’s
guide on how to use our framework and, hence, we delve into it in greater detail.

We now present the details of our framework and how we instantiate it toward the above case
studies. In the following, it is important to distinguish the performance of our framework from the
performance of the adapted code. The latter hinges on how cleverly relevant problem characteristics
are tracked by the adaptive segments and used to improve performance. Our focus is on the former,
namely how easy does ACC make adaptation, and how much overhead it introduces.

3 Basic Constructs for Implementing Adaptivity

To realize our goal of a framework that can model complex adaptive scenarios, a key requirement
is to be able to compositionally switch back and forth between the old, unpatched, code and the
newly designed functions. We first present a set of three primitive operations that can be used as
building blocks for such compositional modeling.

3.1 Function Interception

One of the basic goals of ACC is to support procedure-level decomposition of a compiled object
file so that procedure calls within a module become control points at which the application’s
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execution can be adapted. Therefore, the basic construct required in the framework is a method
for intercepting, or catching, the function calls made within an application. There are programs
and projects that support intercepting function calls within an application [7,10]. ACC is different
from these projects in that it intercepts function calls at the location the calls are made. In x86
assembly, function calls within an application are represented by the call instruction, whose single
argument is the address of the function to invoke. The ACC framework targets the assembly
language representation of an application, allowing us to replace any call instruction with a call to
our own interception handler. Then at runtime, the original target function address is saved so that
the interception handler can determine which function was being called. When our interception
handler is called in place of the original function, the handler will determine whether to continue
execution with the original target function or to perform some other operation.

When the application is modified so that function calls are intercepted by ACC, the locations at
which the calls are made are modified instead of the locations associated with the target functions.
This is because the code associated with the callee might not be available at the time the application
is modified. The callee might be located in a dynamic module that is not automatically loaded
at runtime. By modifying the caller instead, we do not require all components of an application
to be loaded at runtime. We convert the original call instructions, which would otherwise require
correct runtime link binding, into lookup references that ACC uses to determine what appropriate
action to take when the calls are made. The original function call location in effect becomes a
place-holder (or “link point,” in the vernacular of the AOP literature) that the framework can
connect to arbitrary procedures during runtime.

In order to allow for the most adaptivity in a procedure-level decomposition, the framework
must also support the ability to catch when a function returns. In ACC, when a function is diverted
through our interception handler we manipulate the return address to point to a return-handler
instead. The return-handler can perform post-function call computation — after which it will
eventually return to the original return address. This is useful because when the function returns,
the outcome of the function call can be queried, including the return value or any values returned
via pass-by-reference parameters. For example, this allows the adaptivity code to massage any
return values before they are passed back to the calling module to fix type differences or influence
the caller.

3.2 Registered Callbacks

When a function call is intercepted or the return of a function is intercepted, the framework passes
control of the application to an adaptation module so that it may make any required adaptive
control decisions. This functionality is supported in ACC using a method of registered callbacks.
An adaptivity module can register either a pre- or post-callback (or both) for a given function which
is executed whenever the function is invoked or a return is made from the function, respectively.
When ACC invokes a callback it passes a reference to the invocation stack entry, an ACC data
structure for bookkeeping function invocation information, which corresponds to that function call.
With the invocation entry reference, the callback can lookup or manipulate parameters, remap
the function call, and search the remaining invocation stack. In other words, the callback has full
control over the current state of the application.

3.3 Function Call Parameter Manipulation

We provide a complete set of controls that allow the application to query and manipulate the
parameters passed to procedure calls. The instantaneous values of parameters passed to a function



at run-time can give insight into whether an application is making sufficient progress or whether
any adaptive decisions should be made to improve the results or performance. For example, the
subinterval indices of a recursive sorting routine can reveal whether it might be beneficial to switch
to a different sorting algorithm. Similarly, tracking the current relative error of a numerical routine
might reveal characteristics of the problem that suggest switching to a different routine to improve
convergence.

ACC supports the ability to query and manipulate the parameters to a function before and
after its lifetime. Before any operations on the parameters can be performed, the size and type of
each parameter must be specified so that the framework can calculate the correct memory offset of
each parameter, or the predefined parameter types which represent both type and size can be used.
Once all the parameters for a function are specified to ACC, simple query functions will return
pointers to the parameters in memory, and by dereferencing these pointers, the application can
read /write the parameters in memory. Also, parameters that are passed by reference to a function
can be manipulated when a function returns if the user desires to massage the values returned.

However, the most useful parameter construct of our ACC framework is the ability to remap the
entire parameter list of a function. For example, when an adaptation scheme intends to remap one
function to another, the function signatures typically have to be the same because the parameters
are already on the stack. This severely limits the flexibility to abstractly connect components
of the system without having to know the correct semantics beforehand. If the adaptation code
specifies the size and type of the parameters of both the original function and the new function
the programmer can overcome this barrier by simply (1) calculating the difference in lengths of the
two parameter lists, (2) adjusting the frame pointer by the difference in lengths, and (3) copying
the new parameters onto the stack.

4 Application Development Process

The adaptive application development process under ACC consists of three stages: patching the
compiler-generated assembly language from the original code, writing the code for an adaptation
scenario, and writing the glue code that connects the adaptivity component to the original code
through the ACC APIs.

4.1 Patching the Original Code

Our approach is to perform the necessary code modification over the GCC assembler output gen-
erated from the source before it is assembled to an object file. Applying a simple pattern matching
and substitution Perl script over the assembly code, we replace every function call of interest with
a call to the framework’s acc_func_intercept function, a general hook for branching to individual
handler code to adapt the original behavior of functions. As explained earlier, we apply the patch
to the program code that calls the target function, not to the function code itself.

Since the code patching is done at the assembly level, the adaptive application development
process is cleanly separated from the development activity of the original program. As long as the
original program is written in high level languages such as Fortran or C, the source and its program
structure are unaffected.

Another advantage of our code patching technique is the persistency of the hooks inserted into
the original program. Once the code is patched and compiled into an object file, because the hooks
are now in there, it can be linked with different versions of the handler code without recompiling
the original application code as the handler code evolves.



4.2 Writing Handler Code for an Adaptation Scenario

After the original code is patched to intercept specific function calls, the user of ACC needs to write
the handler code to implement any adaptive operations that will be performed at the trapped calls;
the user can choose to trap before and/or after the execution of the function call. The operations
in the handler code will be uniquely determined depending on the associated original function and
the given application. Any handler code, however, will need to do two things: check the current
program state as seen at the time of function call and change the function behavior if needed. To
support these operations at the level of functions, our API provides the following functions:

/* return a pointer to the pos’th parameter on the function call stack */
void *acc_get_param (struct acc_invoke_entry *ie, int pos)

/* remap from the current trapped function to a new function, remap_func */
void acc_remap (struct acc_invoke_entry *ie, acc_invoke_func_t *remap_func)

When a function call is trapped, acc_func_intercept passes to the associated handler an instance
of struct acc_invoke_entry, a data structure that keeps track of an intercepted function and stores
its accompanying information such as the address of the original arguments.

acc_get_param takes the acc_invoke_entry instance and returns a pointer to pos” input parameter
to the original function, allowing the user to access and modify its value. Macros for different data
types are also provided for easy access. For example, ACC_.GET_PARAM_DOUBLE(ie, pos) returns
the value of post" parameter, which is known to be of type double.

Other than dealing with input parameters, the function behavior can be completely redefined
through the use of acc_remap which replaces the current call to the original function with a call to
a new function, remap_func. acc_invoke_func_t is a type used in ACC for generic functions.

While the behavior of a function is changed through intercepting function calls, global variables
that are not communicated through function parameters can be accessed by declaring them as
external variables. For instance, the variables in a Fortran common block can be accessed by
defining a C extern struct global variable that matches the common block. Or, in cases where only
a few of the variables in a common block are needed, simple ‘getter’ and ‘setter’ Fortran subroutines
with the same common block can be employed to read and write the variables.

4.3 Writing the Glue Code

The glue code performs any initialization necessary to combine the patched original code with its
handler code into a complete adaptive application. The functions to be intercepted are added to the
symbol table managed by ACC, and their corresponding handler functions are associated through
the registration API. In addition, to retrieve the intercepted function parameters from the stack,
the type information of each parameter needs to be specified so that ACC can determine the correct
memory offsets for the parameters.

These initialization steps can be performed in the main function of the glue code if the original
code does not have the C main entry, which is typical for software library packages or Fortran
applications that use MAIN__ as its starting entry when compiled with GNU or Intel compilers. For
C applications with a main, this is the one place where the source code must be modified to include
the initialization steps.

Consider a simple function called sort,

void sort (int *data, int first, int last)



where data is the input array of unsorted integers, and first /last is the index of the first/last
element, respectively, which signifies the local subarray to sort. Then, the code below shows the
initialization for dynamically intercepting the sort calls and accessing its parameters using the ACC
APIs.

ACC_PARAM_TYPE params[3]; /* 3 parameters for sort */
struct acc_symbol_entry *se; /* symbol entry for a function */

/* create and add symbol "sort" for sort x/
se = acc_add_symbol("sort", (acc_invoke_func_t *)sort);

/* assign type for each parameter */

params [0] = ACC_PARAM_POINTER;
params[1] = ACC_PARAM_INT;
params[2] = ACC_PARAM_INT;

/* associate the parameter list with gsort symbol entry,
specifying the size of the list x/
acc_add_params_list(se, params, 3);

/* register a pre-handler for sort */
acc_add_handler (ACC_HT_PRE, "sort", sort_handler);

ACC_PARAM_TYPE is an enumerated type that abstracts a set of different data types of C
function parameters. For instance, ACC_PARAM_POINTER and ACC_PARAM_NT are used for C
pointers and integers, respectively, in the above code. As described earlier, only primitive data
types are currently supported by ACC.

After each parameter’s data type is assigned, acc_add_params_list associates the parameter list
with the sort function’s symbol entry, which has been previously constructed through the acc_add_symbol
function:

struct acc_symbol_entry *acc_add_symbol(const char *name
acc_invoke_func_t *func)

For a given function func, it takes an additional parameter to construct a symbol: name for a
user-defined symbol name.

Finally, we use the acc_add_handler API to register sort_handler as a callback for sort that is
identified by the “sort” symbol. This is done with ACC_HT_PRE to transfer the execution control
to sort_handler before the call to sort executes, which is similar to the before advice in AOP. In the
same manner, ACC_HT_POST can be used to operate like the after advice in AOP.

The programmer can implement a desired adaptation logic in the body of the sort_handler
function for adapting the original sort function.

5 Case Study 1: Adaptive SOR

We applied ACC to the SOR (Successive Over-Relaxation) routine found in ITPACK 2C [11], a
package of Fortran subroutines for solving linear systems by adaptive iterative methods. Like many
iterative solvers, the convergence rate of SOR is heavily influenced by a parameter, in this case the
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Figure 2: Adaptive SOR system through interception of ITSOR calls using ACC

over-relaxation parameter w. ITPACK includes an internal algorithm for automatically adapting
w. However, this algorithm is based on a simple heuristic that works reasonably well for a wide
range of matrices, but that cannot take advantage of problem-specific information that may be
available in a given instance. With ACC, we can externally adapt the algorithm by controlling
the choice of w without modifying user code or the ITPACK library. In this section we illustrate
this use of our framework, comparing a new approach to adapting w using ACC against ITPACK’s
own version of adaptivity. The purpose of this example is not to propose a new adaptive SOR
algorithm, but rather to show ACC’s applicability to changing the behavior of scientific code using
an external model. This is similar to Hovland and Heath [12] that applies automatic differentiation
to a Fortran SOR code to adjust the w parameter.

5.1 Implementation

Each iteration of the SOR algorithm in ITPACK is performed by the ITSOR subroutine. Therefore,
we patch the SOR code to intercept the ITSOR calls, thereby transferring program control to ACC
(Figure 2). In this way we can access and examine the whole set of subroutine parameters, including
the solution vector, at the time of the call. More importantly, since ACC acquires program control at
each ITSOR call, we can augment the desired adaptivity computation externally and transparently
to both the ITPACK library and the user’s code. The patched SOR code is then assembled and
linked with the rest of the ITPACK code to build a complete object module, thereby enabling
interception of the ITSOR calls within the SOR routine.

In order to access w, which is internal to ITSOR and not communicated through any of the
subroutine arguments, we supply simple getter and setter routines where we declare ITPACK’s
common block ITCOM3 to which the parameter belongs. The getter routine checks the value of w
at the current step and the setter updates w with a new value for the next iteration.

We apply our adaptive SOR code to the two dimensional Poisson problem

Pu  0%u
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posed on the unit square with Dirichlet boundary conditions. Applying an N x N finite difference
mesh and standard centered finite-differences, the SOR iteration is given by

U(ng) = (h2f(i,j) F U1, (i—1,5) T Uk, (i4+1,5) T Ukt1,(i,5—1) T Ui, (i,5+1)) /45

Upg1, (i) = (1 — w)ug 5.5) + wugg),

where 1 <4 < N, h =1/(N +1), and uy, (; ;) is the element of the solution vector u;, corresponding
to the mesh point (i, ;) at iteration k. The residual norm for the Poisson problem at the k' step



is given by
Te = ||b - AUkH,

where b is the right-hand side vector and A is the discrete Laplacian.

Two questions need to be addressed in implementing adaptive SOR: when to change w and
how to obtain its new value. In order to decide the right time to change w, we simply borrow
ITPACK’s scheme based on convergence rate estimation [13] and implement it in our handler code.
Since the purpose of this example is to illustrate the applicability of ACC in composing an adaptive
application, rather than to devise a new adaptive algorithm, adopting an already established scheme
suits our needs well. Once it is decided to change w, we fetch the intermediate solution vector from
the parameter list of ITSOR and calculate the residual norm 7, which is then used in a simple
method to chose the new value of w:

1

1 2
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where we view the residual rj as a function of w, so that w, /, is the next value given by a secant

iteration seeking to solve 71 1(w) = 0, and w,(jzl is the next value given by a secant iteration seeking

to minimize 741 (w) (by looking for a root of an approximation to 7, (w)). Since both estimates
w,(glll and w,(jzl require values from two previous iterations, we bootstrap the process by using the

default ITPACK scheme for computing a new w the first time w is adjusted.

5.2 Experimental Results

We use f(x,y) = 0 and constant Dirichlet boundary conditions for the Poisson problem. We apply
the ITPACK SOR solver to the discretized problem with our adaptivity framework turned on and
the internal adaptivity capability of ITPACK turned off. The iteration terminates according to
ITSOR’s stopping test as described in [13].

On a 32 bit, x86 Linux machine running Fedora Core 6 with an Intel Pentium D dual-core
3.60GHz CPU and 2GB RAM, we compare the performance of our version of adaptive SOR with
that of ITPACK, both of which are compiled with GNU Fortran 95 (gfortran) 4.1.1 with O3
optimization turned on. We also measure the case where w is fixed at the optimal value; the
optimal value of w for an N x N Poisson problem is known analytically to be

2
Wort =17 sin(§og)

Table 2 shows both the execution time (average of 3 runs) and the number of iterations taken
to converge for different problem sizes ranging from N = 300 to N = 1000, along with (, the error
tolerance parameter, ranging from 1072 to 10~*. The value of w was initially set to 1.5 for both
adaptive SOR programs. We see that our adaptive SOR performed better than ITPACK’s in all
cases, with speedup as high as 36% in terms of execution time.

In addition, we find that using the ACC framework does not cause significant overhead. For
instance, intercepting ITSOR function calls for a 300 x 300 problem with ¢ set to 1072 (the smallest
problem, where the framework overhead would be the most obvious) increased execution time by
0.01 seconds on average, i.e., less than 0.7%.

Figure 3 (top) shows the adaptive progress of w over iteration for a 500 x 500 Poisson problem
with ¢ set to 1073, starting from w = 1.5. In all, w is adapted seven times in this example, but we
only show the last five to highlight the differences between our method and the default ITPACK
scheme, and because our first two adaptive steps actually use the ITPACK scheme because two
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N w ¢ Fixed w=w; ITPACK Ours Speedup
opt Niter | time(sec) | Ny, | time(sec) | Ny, | time(sec) (time)
300 1.979 283 0.73 601 1.52 438 1.12 36%
400 1.984 385 1.80 800 3.68 587 2.73 35%
500 1.987 | 1072 | 493 3.62 1087 7.88 802 5.92 34%
750 1.992 866 14.2 1579 25.7 1268 20.9 23%
1000 1.994 1189 34.4 2222 63.1 1884 53.0 19%
300 1.979 422 1.07 735 1.85 630 1.59 16%
400 1.984 568 2.66 965 4.45 718 3.34 33%
500 1.987 | 1073 717 5.33 1279 9.30 988 7.24 28%
750 1.992 1172 19.2 1855 30.3 1549 25.4 19%
1000 1.994 1590 46.4 2848 82.1 2281 66.1 24%
300 1.979 555 1.39 859 2.19 728 1.95 12%
400 1.984 746 3.45 1117 5.16 813 4.10 26%
500 1.987 | 107* | 943 6.94 1495 10.88 1268 9.23 18%
750 1.992 1503 24.6 2193 36.0 1788 30.2 19%
1000 || 1.994 2003 58.1 3599 103.1 2694 77.0 34%

Table 2: Comparison of adaptive SOR algorithms for Poisson problems

initial points are needed by our estimator. The figure shows that our adaptivity method adjusts
w more quickly toward w,y,; than ITPACK, although it overestimates a bit at the end. While the
execution time improves by 28%, the handler function for ITSOR consumes only 0.044 seconds
on average during the whole execution, which amounts to 0.6% out of the total 7.24 seconds.
Figure 3 (bottom) shows the reduction in residual as the computations proceed. (The residuals
were computed explicitly at each iteration in a separate run.) We see that our adaptive approach
succeeds in improving the rate of residual reduction compared to ITPACK’s adaptive scheme.
Note that ITPACK uses a relative error estimate, rather than a residual estimate, to terminate the
iterative process. This explains why the w,,; case terminates first, despite having a larger residual
for a given iteration than the other two cases, both of which focus on minimizing the residual when
adapting w.

6 Case Study 2: Parallel CFD Codes

We have used the ACC framework to implement a variety of adaptivity scenarios in the context of
real scientific computing codes, including applications in biochemical network simulation [14] and
computational fluid dynamics (CFD) [15,16].

In [15] we describe how ACC is used to improve the performance, stability and accuracy of
GenIDLEST [17], a large parallel CFD code. GenIDLEST is written in Fortran 90 with MPI, and
solves the time-dependent incompressible Navier-Stokes and energy or temperature equations. The
stability of the GenIDLEST time integrator depends on the time step used, but it is difficult to
identify a single adaptation scheme that will automatically and successfully adjust the timestep for
the wide variety of problems that engineers use GenIDLEST to solve. Hence, in practice users save
checkpointed solutions periodically during the long simulation runs, so that if instability occurs
the simulation can be restarted from the last stable state with a smaller time-step. By using ACC
to plug in a separately written stability module, we factor out the time-step adjusting strategy
from the main code base, allowing different strategies to be used and easily experimented with, as
appropriate.

In [15] we show how one particular set of CFD computations can be stabilized effectively by a
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simple multiplicative increase/decrease algorithm, where the time step is increased (to reduce time-
to-solution) or decreased (to maintain numerical stability) by a preset factor if the computed CFL
(Courant-Friedrich-Levi) indicator goes above or below preset upper and lower CFL thresholds.
Figure 4 shows the results for GenIDLEST enhanced with the adaptivity module for a typical
simulation, with different initial values of time step ranging from 1073 to 107°. The CFL lower
and upper thresholds were set to 0.25 and 0.50, respectively. The graphs show how the CFL value
changes as the time step parameter is controlled by the new module, thereby maintaining the
stability of the simulation.

In addition to automatic time-step adaptation, we also use ACC to facilitate an interactive, user-
controlled adaptation of the flow model used in GenIDLEST, resulting in more accurate simulations.
In CFD simulations, the predicted flow characteristics depend on the selection of the appropriate
flow model. In problems of interest, it is critical to choose an appropriate model when the simulated
flow is in the transition region between laminar and turbulent. Our ACC-enabled mechanism allows
the user to monitor the variation with time of the stream-wise velocity, which can be used to
infer when to switch from a laminar flow model to a turbulent model, and when to switch from
one turbulent flow model to a more accurate but computationally expensive alternative. Since
GenIDLEST already implements all the flow models, with a particular one selected by setting a
single parameter, it is easy to use ACC to change models by controlling this parameter, which
requires no modification to the original code.

We also are using ACC to support dynamic methods for performance tuning of algorithmic
parameters in parallel scientific codes. An important trend in high performance scientific computing
is the use of auto-tuned or self-adaptively optimized algorithms and implementations. Approaches
include language extensions [18], model-driven compiler optimizations [19], and empirical search-
based schemes [20]. While these methods have been successful in limited domains (e.g., numerical
linear algebra kernels), there is still a need for better support for application-specific adaption
schemes, where the unique context of a particular computation—including the code, the data, and
the computing resource—can be taken into account.

In [16] we show how ACC can be used to implement a dynamic method for tuning algorithmic
parameters in codes such as GenIDLEST. For example, we insert adaptive schemes to adjust two
parameters that strongly influence the performance of the preconditioner used in an important
linear solution step. The first parameter is the size of a subdomain block, represented by the triple
(nbj, nbj, nby). This parameter defines the structure of the domain decomposition preconditioner;
it influences, often in nonobvious ways, both the quality of the preconditioner as an approximation
to the original discrete PDE operator and the floating point performance of the computation, e.g.,
through memory hierarchy effects. The second parameter is ns, the number of inner relaxation
sweeps used in the multilevel preconditioner.

Figure 5 shows the performance of GenIDLEST for a typical problem for 3000 time steps, where
each point corresponds to the elapsed time measured at every 50 steps during the simulation. The
thick gray solid line corresponds to the tuned algorithm, and the colored lines show the performance
for other typical fixed choices of the parameters. The tuned curve is labeled at various points to
show the history of the simple adaption scheme used, where the parameters {(nb;, nb;, nby),ns} are
adjusted automatically to test and improve performance as the simulation proceeds. Overall time-
to-solution for the full 10000 time step run in this case is improved by 26% over the performance
of the non-adapted code, with typical choices of the parameters.

Modern numerical methods often have several such parameters whose influence on accuracy
and performance is hard to predict for realistic problems running on a particular computational
resource. Dynamic tuning is often the only effective approach. With ACC, we can factor out this
important concern from the standard code base, allowing much greater flexibility in deciding what
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and how to adapt.

7 Conclusion

Our ACC framework is a lightweight function call interception and parameter manipulation library
that offers a modular way to extend static scientific code through composition with new program
components. Instead of modifying or restructuring the original source code, the compiler-generated
assembly output of an original program is patched to transfer the execution control to ACC at the
calls to functions a user wants to catch, where the input parameters as well as return values can
be accessed. Therefore it allows one to change the program behavior transparently to the original
program structure by manipulating the input and output of any function, or by remapping a
function to another at the intercepted calls. The overhead from intercepting functions is very small.
The ACC framework is therefore well suited to abstracting out new functionality and integrating
it with existing non-OO scientific code to realize an adaptive application.
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