Multidisciplinary Problem Solving Environments for
Computational Science

Elias N. Houstis, John R. Rice, Naren Ramakrishnan
Department of Computer Sciences, Purdue University
West Lafayette, IN 47907-1398

email: {enh jrr,naren}@cs.purdue.edu

Tzvetan Drashansky
Juno Online Services, L.P.
120 West 45th Street
New York, NY 10036

email: ttd@staff juno.com,ttd@deshaw.com

Sanjiva Weerawarana
IBM TJ Watson Research Center
Hawthorne, NY 10532

email: sanjiva@watson.ibm.com

Anupam Joshi
Department of Computer Engineering & Computer Science
University of Missouri, Columbia, MO 65211

email: joshi®trinetra.cecs.missouri.edu

C.E. Houstis

Department of Computer Science
University of Crete

email: houstis@csi.forth.gr

Abstract

The process of prototyping is part of every scientific inquiry, product design, and
learning activity. Economic realities require fast, accurate prototyping using knowl-
edge and computational models from multiple disciplines in science and engineering
[1; 3; 49; 15; 47]. Thus rapid multidisciplinary problem solving or prototyping is a
new grand challenge for Computational Science and Engineering (CS&E) [11; 48;

To appear in Advances in Computers. Work supported in part by NSF awards ASC 9404859 and
CCR 9202536, ARPA ARO award DAAHO04-94-G-0010DARPA, Intel Corporation and Purdue

Research Foundation.

14]. In this prototyping scenario it is safe to assume that The Network (The Net)
is the Computer [29] consisting of geographically distributed computational units,
ranging from workstations to massively parallel machines and physical instruments,
and software resources (i.e. libraries and problem solving environments (PSEs)).
Moreover, The Web and its technologies can be viewed as an object-oriented op-
erating system kernel that allows the development of an MPSE as a distributed
application utilizing resources and services from many sources. The realization of
this vision will require the formulation and development of new mathematical and
software frameworks for PSEs [27] and multidisciplinary PSEs (MPSEs) including
the tools, enabling technologies,and underlying theories needed to support physical
prototyping in the classroom, laboratory, desk, and factory. MPSEs will be network
based, adaptable and intelligent with respect to end-users and hardware platforms
and will use collaborating software systems and agent based techniques. They will
allow wholesale reuse of scientific software and provide a natural approach to par-
allel and distributed problem solving. In this chapter, we describe the research
that is needed to realize the MPSE concept and present a software architecture
of an MPSE framework based on the agent approach supported by domain spe-
cific knowledge bases in a networked computing setting. The viability of such a
framework is demonstrated for partial differential equation applications.

1. INTRODUCTION

It is predicted that by the beginning of the next century, the available computa-
tional power will enable anyone with access to a computer to find an answer to
any question that has a known or effectively computable answer. In [9] we have
made several research recommendations for the development of problem solving en-
vironment (PSE) technologies. We believe that PSE technologies will contribute
toward the realization of this prediction for physical modeling in order to provide
students, scientists, and engineers with environments that allow them to spend
more time doing science and engineering, and less time struggling with the details
of the underlying computation.

The predicted growth of computational power and network bandwidth suggests
that computational modeling and experimentation will be one of the main tools
in bizg and small science. In this scenario, computational modeling will shift from
the current single physical component design to the design of a whole physical sys-
tem with a large number of components that have different shapes, obey different
physical laws and manufacturing constraints, and interact with each other through
geometric and physical interfaces. For example, the analysis of an engine involves
the domains of thermodynamics (gives the heat flows throughout the engines), re-
active fluid dynamics, (gives the behavior of the gases in the piston—cylinder as-
semblies), mechanics (gives the kinematic and dynamic behaviors of pistons, links,
cranks, etc.), structures (gives the stresses and strains on the parts) and geometry
(gives the shape of the components and the structural constraints). The design
of the engine requires that these different domain-specific analyses interact in or-
der to find the final solution. The different domains share common parameters
and interfaces but each has its own parameters and constraints. We refer to these
multi-component based physical systems as multidisciplinary applications (MAs)
and their PSEs as multidisciplinary problem solving environments (MPSEs). In

the following, we will specifically concentrate on such environments for physical
systems modeled by partial differential equations (PDEs) and ordinary differential
equations (ODEs).

The realization of the above scenario, which is expected to have significant im-
pact in industry, education, and training, will require (i) the development of new
algorithmic strategies and software for managing the complexity and harvesting the
power of the expected high performance computing and communication (HPCC)
resources, (ii) PSE technology to support programming-in-the-large and reduce the
overhead of HPCC computing, (iii) an active programming paradigm capable of re-
alizing the interactions between the physical and software components in a reusable
mode, (iv) the selection of computational/hardware resources and the determina-
tion of their parameters for the specified simulations. Some of the objectives of
this chapter include review of the research issues involved in the development of
MPSEs, identification of a framework for the numerical simulation of multidisci-
plinary applications, and the specification of some enabling theories and technolo-
gies needed to support and realize this framework in targeted applications. The
MPSE is the software implementation of this framework. It is assumed that its
elements are discipline-specific problem solving environments (PSEs) and libraries.
The MPSE design objective is to allow the natural specification of multidisciplinary
applications and their simulation with interacting PSEs through mathematical and
software interfaces across networks of heterogeneous computational resources.

Another safe prediction is that the future global information infrustructure (GII)
will impact many aspects of life, including the way we learn and do science, ac-
cess information, work, and collaborate. It will allow computing everywhere [17].
Learning and training simulators will be part of every classroom and laboratory.
The concept of the classroom, the laboratory, and the student/scientist/engineer
desk environments will evolve to some virtual form based on an array of multimedia
devices. These virtual environments, sometimes called collaboratories, can be im-
plemented naturally using the MPSE technology. The discipline-specific PSEs will
be used to build learning and training simulators in some areas of computational
science and engineering.

For the scope of this discussion, the network (the Net) is assumed to be the
host for multidisciplinary problem solving. We assume existing network software
infrastructure to support distributed applications, PSEs, libraries of solvers, and
distance learning and collaboratory services over the Net. We envisage that all
these resources and services will take the form of special servers in the network
which are constantly updated by their creators. The problem solving power of
math/engineering libraries wil be encapsulated into PSEs that users will access over
the Net as a routine part of science and engineering. We have already developed
such servers to experiment with web based dissemination and use of PDE software
and PSEs [27; 51].

This chapter is organized as follows. We start by defining the terms of PSEs
and MPSEs and discuss the research issues involved in Sections 2 and 3. Then in
Sections 3 and 4 we present an agent—based approach for designing and building
MPSEs together with the problems of resource and solution methodology selection.
We then introduce, in Section 6, the SciAgents system, which provides the solver
and mediator agents for PDE based application MPSEs. In Section 7, we describe

PYTHIA, a multiagent advisory system that uses a distributed knowledge corpus.
We show how these various agents can interact with each other to automate the
process of solving multi-physics problems. Finally, in Section 8 we consider in
detail two case studies using current prototypes that show the applicability and
the potential of the MPSE concept and that demonstrate our approach for its
implementation.

2. DOMAIN SPECIFIC PSES

Even in the early 1960s, scientists had begun to envision problem-solving computing
environments not only powerful enough to solve complex problems, but also able
to interact with users on human terms. The rationale of the PSE research is that
the dream of the 1960s will be the reality of the 21st: High performance computers
combined with better algorithms and better understanding of computational science
have put PSEs well within our reach.

What are PSEs? A PSE is a computer system that provides all the computational
facilities needed to solve a target class of problems. These facilities include advanced
solution methods, automatic selection of appropriate methods, use of the applica-
tion s language, selection of appropriate hardware and powerful graphics, symbolic
and geometry based code generation for parallel machines, and programming-in-
the-large. The scope of a PSE is the extent of the problem set it addresses. This
scope can be very narrow, making the PSE construction very simple, but even what
appears to be a modest scope can be a serious scientific challenge. For example, we
have created a PSE for bioseparation analysis [13] which has a narrow scope, but
is still a complex challenge as we incorporate both a computational model and an
experimental process supported by physical laboratory instruments. We are also
creating a PSE called PDELab [52] for partial differential equations (PDEs). This
is a far more difficult area than bioseparation and the resulting PSE will be less
powerful (less able to solve all the problems posed to it), less reliable (less able
to guarantee the correctness of results), but more generic (more able to attempt
to solve a broad class of PDE problems). Nevertheless, PDELab will provide a
quantum jump in the PDE solving power delivered into the hands of the working
scientist and engineer. What are the PSE related research issues to be addressed? A
substantive research effort is needed to lay the foundations for building PSEs. This
effort should be directed towards i) a PSE kernel for building scientific PSEs, ii) a
knowledge based framework to address computational intelligence issues for PDE
based PSEs, iii) infrastructure for solving PDEs, and iv) parallel PDE methodolo-
gies and virtual computational environments.

3. MPSES FOR PROTOTYPING OF PHYSICAL SYSTEMS

If PSEs are so powerful, what then is an MPSE? In simple terms, an MPSE is a
framework and software kernel for combining PSEs for tailored, flexible multidisci-
plinary applications. A physical system in the real world normally consists of a large
number of components where the physical behavior of each component is modeled
by a PDE or ODE system with various formulations for the geometry, PDE, ODE,
interface/boundary/linkage and constraint conditions in many different geometric
regions. One needs a mathematical/software framework which, first, is applicable
to a wide variety of practical problems, second, allows for software reuse in order

Part 2 \
Part 1 l_ \
Part 4

Part 6 @
Part 3 AI*
I_ Solver 6
Part 5

A physical phenomenon A network of collaborating solvers

Fig. 1: The representation of a physical phenomenon (left) by a mathematical network (right) of
solvers (circles) and interface conditions (arrows).

to achieve lower costs and high quality, and, finally, is suitable for some reasonably
fast numerical methods. Most physical systems can be modeled as a mathematical
network whose nodes represent the physical components in a system or artifact.
Each node has a mathematical model of the physics of the component it represents
and a solver agent for its analysis. The relationship between a physical phenomenon
and the mathematical network is illustrated in Figure 1. Individual components
are chosen so that each node corresponds to a simple PDE or ODE problem defined
on a regular geometry.

What are the mathematical network methodologies required? What are the re-
search issues? There exist many standard, reliable PDE/ODE solvers that can be
applied to these local node problems. In addition there are nodes that correspond
to interfaces (e.g. ODEs, objective functions, relations, common parameters and
their constraints) that model the collaborating parts in the global model. To solve
the global problem, we let these local solvers collaborate with each other to relax
(i.e., resolve) the interface conditions. An interface controller or mediator agent
collects boundary values, dynamic/shape coordinates, and parameters/constraints
from neighboring subdomains and adjusts boundary values and dynamic/shape
coordinates to better satisfy the interface conditions. Therefore, the network ab-
straction of a physical system or artifact allows us to build a software system which
is a network of collaborating well defined numerical objects through a set of inter-
faces. Some of the theoretical issues of this methodology are addressed in [39; 5]
for the case of collaborating PDE models. The results obtained so far verify the
feasibility and potential of network-based prototyping.

What are the software methodologies for implementing the mathematical network?
What are the research issues? A successful architecture for PSEs requires heavy
reuse of existing software within a modular, object oriented framework consisting
of layers of objects. The kernel layer integrates those components common to most
PSEs or MPSEs for physical systems. We observe that this architecture can be
combined with an agent oriented paradigm and collaborating solvers [5] to create
an MPSE as a powerful prototyping tool using a variety of infrastructure tools. The

designs for MPSEs must be application and user driven. We should not restrict
our design just to use the current technology of high performance computers, pow-
erful graphics, modular software engineering, and advanced algorithms. We should
see an MPSE as delivering problem solving services over the Net. This viewpoint
leads naturally to collaborating, agent based methodologies. This, in turn, leads to
very substantial advantages in both software development and quality of service as
follows. We envision that a user of MPSE will receive at his location only the user
interface. Thus, the MPSE server will export to the user’s machine an agent that
provides an interactive user interface while the bulk of the software and computing
is done at the server’s site using software tailored to a known and controlled envi-
ronment. The server site can, in turn, request services from specialized resources
it knows, e.g., a commercial PDE solver, a proprietary optimization package, a
1000 node supercomputer, an ad hoc collection of 122 workstations, a database of
physical properties of materials. Each of these resources is contacted by an agent
from the MPSE and all of this can be managed without involving the user, without
moving software to arbitrary platforms, and without revealing source codes.

What are the design objectives of an MPSE for physical system design? What
are the research issues? These mathematical networks can be very big for major
applications. For a realistic vehicle simulation, there are perhaps 100 million vari-
ables and many different time scales. This problem has very complex geometry and
is very non-homogeneous. The answer is 20 gigabytes in size and requires about
10 teraflops to compute. An answer is a data set that allows one to display an
accurate approximate solution at any point. This data set is much smaller than the
computed numerical solution. The mathematical network has about 10,000 subdo-
mains and 35,000 interfaces. A software network for this simulation is a natural
mapping of a physical system and simulates how the real world evolves. This allows
software reuse for easy software update and evolution, things that are extremely
important in practice. The real world is so complicated and diverse that we believe
it is impractical to build monolithic, universal solvers for such problems. In this
application each physical component can be viewed both as a physical object and
as a software object. In addition. this mathematical network approach is naturally
suitable for parallel computing as it exploits the parallelism in physical systems.
One can handle issues like data partition, assignment, and load balancing on the
physics level using the structure of a given physical system. Synchronization and
communication are controlled by the mathematical network specifications and are
restricted to interfaces of subdomains, which results in a coarse-grained computa-
tional problem.

4. AGENT BASED COMPUTING PARADIGM FOR MPSES

We envisage an MPSE as a mathematical network whose nodes represent the physi-
cal components in a system or artifact. Each node has a mathematical model of the
physics of the component it represents and a solver agent for its analysis. We pro-
pose to use the multi-agent computing framework to provide run-time support for
MPSEs where we replace the multiphysics problem by a set of simple(r) simulation
problems on simple geometries which must be solved simultaneously while satisfying
a set of interface conditions. These simpler problems may reflect the underlying
structure/geometry/physics of the system to be simulated, or may be artifically

created by techniques such as domain decomposition. Given a collection of solver
agents for these smaller problems on simple geometries, we create a network of col-
laborating solvers by introducing mediator agents between them. Each solver deals
with one of the subproblems defined earlier. The original multiphysics problem is
solved when one has all the equations satisfied on the individual components and
these solutions “match properly” on the interfaces between the components. This
latter part is the responsibility of the mediator agents which facilitate the collab-
oration between solver agent pairs. The term “match properly” is defined by the
physics if the interface is where the physics changes. For heat flow, for example,
this means that temperature is the same on both sides of the interface and that the
amount of heat flowing into one component is the same as the amount flowing out
of the other. If the interface is artificial (introduced to make the geometry simple
or the work smaller) then “match properly” is defined mathematically and means
that the solutions join smoothly (have continuous values and derivatives).

Many agent-based systems have been developed[12; 42; 43; 46; 55] which demon-
strate the power of the agent-oriented paradigm. It provides modularity and flexi-
bility, so it is easy to dynamically add or remove agents, to move agents around the
computing network, and to organize the user interface. An agent based architecture
provides a natural method of decomposing large tasks into self-contained modules,
or conversely, of building a system to solve complex problems by a collection of
agents, each of which is responsible for small part of the task. Agent-based systems
can minimize centralized control.

The agent-based paradigm is useful in scientific computing to handle complex
mathematical models in a natural and direct way. It allows distributed problem
solving [32] which is distinct from merely using distributed computing. The ex-
pected behavior of the simple problem solvers, computing locally and interacting
with the neighboring solvers, naturally take on the behavior of a local problem solver
agent. The task of mediating interface conditions between adjacent subproblems
is given to mediator agents and their ability to autonomously pursue their goals
can resolve the problems during the solution process without user intervention and
converge to the global solution.

Several researchers have addressed the issue of coordinating multi-agent systems.
For instance Smith and Davis [44] propose two forms of multi-agent cooperation,
task sharing and result sharing. Task sharing essentially involves creating subtasks,
and then farming them off to other agents. Result sharing is more data directed.
Different agents are solving different tasks, and keep on exchanging partial results
to cooperate. They also proposed using “contract nets” to distribute tasks. Wesson
et al., showed[54] how many intelligent sensor devices could pool their knowledge
to obtain an accurate overall assessment of a situation. The specific task presented
in their work involves detecting moving entities, where each “sensor agent” sees
only a part of the environment. They reported results using both an hierarchical
organization, as well as an “anarchic committee” organization, and found that the
latter was as good as, and sometimes better than the former. Cammarata et al.
[4] present strategies for cooperation by groups of agents involved in distributed
problem solving, and infer a set of requirements on information distribution and
organizational policies. They point out that different agents may have different
capabilities, limited knowledge and resources, and thus differing appropriateness in

solving the problem at hand. Lesser et al. [26] describes the FA/C (functionally
accurate, cooperative) architecture in which agents exchange partial and tentative
results in order to converge to a solution. Joshi [16] presents a learning technique
which enhances the effectiveness of such coordination. It combines neuro-fuzzy
techniques [45] with an epistemic utility criterion.

5. THE RESOURCE SELECTION PARADIGM FOR MPSES

In this paradigm for a networked MPSE environment, the solver and mediator
agents form a potentially large pool of computational objects spread across the
Net. Moreover, there are many possible choices for their instantiation. For ex-
ample the past few decades has seen a huge amount of sophisticated code being
developed to solve specific, homogeneous problems. Mediators today are almost
nonexistant and a large number will have to be created to allow disparate solvers
to interact. Clearly, expecting the user to be aware of all the potentially useful
solvers on the Net is not realistic. Nor is a user likely to know all the hardware
choices available to solve the problem. This problem is an obvious generalization
of the algorithm selection problem formulated by Rice [40], we call it the resource
selection problem in the context of MPSEs. We propose the use of advisory agents
that accept a problem definition and some performance/success criteria from the
user, and that then suggest software components and hardware resources that can
be deployed to solve this problem. This is very similar to the idea of recommender
systems that is being proposed for harnessing distributed information resources.
While the recommender problem has been identified for networked information re-
sources and initial research done[38], the resource selection problem remains largely
ignored for harnessing networked computational resources. Note that the problem is
different from invoking a known method remotely on some object, a problem where
many distributed object oriented techniques are being developed and proposed. To
appreciate the need for advisory agents, consider the present day approximation
to “networked” scientific computing. Several software libraries for scientific com-
puting are available, such as Netlib, Lapack/ScaLapack, etc. There are even some
attempts to make such systems accessible over the web, such as Web //ELLPACK
[from Purdue, http://pellpack.cs.purdue.edu/] and NetSolve [from UTK/ORNL,
http://www.cs.utk.edu/netsolve/]. The GAMS [2] system helps users to identify
and locate the right class of software for their problem. However, the user has to
select the specific routine most appropriate for the given problem, download the
software along with its installation and use instructions, install the software, com-
pile (and possibly port) it, and then learn how to invoke it appropriately. Clearly
this is a non-trivial task even for a single piece of software, and it can be enormously
complex when multiple software components need to be used. Using networked re-
sources today can be viewed as the modern day equivalent of programming ENTAC,
which required direct manipulation of connecting wires. Systems are needed to ab-
stract away the detail of the underlying networked system from the user and allow
interaction with this system in the application domain. This is where MPSEs with
inherent “intelligence” come in. We posit that multiagent systems, consisting of
broad class of solver, mediator, and advisory agents can be used to create MPSEs
with the desired characteristics.

As mentioned earlier, our prototype software to validate these ideas is being cre-

ated for PDE based systems. The numerical solution of PDEs depends on many
factors including the nature of the operator, the mathematical behavior of its co-
efficients and its exact solution, the type of boundary and initial conditions. and
the geometry of the space domains of definition. Most numerical solvers for PDEs
normally require a number of parameters (mesh sizes, iteration parameters, sparse
matrix representations) from the user in order to obtain a solution within a speci-
fied error level while satisfying certain resource (e.g., memory and time) constraints.
The problem of selecting a solver and its parameters for a given PDE problem to
satisfy the user’s computational objectives is difficult and of great importance. The
user must also select a machine from among the many available on the network,
including parallel machines. Depending on the mathematical characteristics of the
PDEs, there are “thousands” of numerical methods to apply, since very often there
are several choices of parameters or methods at each of the several phases of the
solution. It is unrealistic to expect that engineers and scientists will or should have
the deep expertise to make “intelligent” combinations of selections of methods, their
parameters, and computational resources that will satisfy their objectives.

The PYTHIA [53] project at Purdue has focussed on creating a knowledge based
system that selects scientific algorithms to achieve desired tasks in computing. It
determines a near—optimal strategy (i.e., a solution method and its parameters)
for solving a given problem within user specified resource (i.e., limits on execution
time and memory usage) and accuracy requirements (i.e., level of error). While
the ideas behind PYTHIA are quite general, our current implementations oper-
ate in conjunction with systems that solve (elliptic) partial differential equations
(PDEs), such as the ELLPACK and //ELLPACK PSEs developed at Purdue. The
methodology of PYTHIA is to gather performance information about PDE solvers
on standardized test problems and use this data plus feature information about
PDE problems to determine good algorithms to solve the PDEs. The efficacy of
this approach is dependent on the breadth and diversity of the method and problem
sets used to create the performance evaluation information.

We now briefly describe some attempts at developing intelligent systems for as-
sisting in various aspects of the PDE solution process. In [41], Rice describes an
abstract model for the algorithm selection problem, which is the problem of deter-
mining a selection (or mapping) from the problem feature space to the algorithm
space. Using this abstract model Rice describes an experimental methodology for
applying this abstract model in the performance evaluation of numerical software.
In [30], Moore et al. describe a strategy for the automatic solution of PDEs at
a different level. They are concerned with the problem of determining (automat-
ically) a geometry discretization that leads to a solution guaranteed to be within
a prescribed accuracy. In [6; 7], Dyksen and Gritter describe a rule based expert
system for selecting solution methods for elliptic PDE problems based on problem
characteristics. This work differs significantly from our approach, which uses only
performance data as the basis of the algorithm selection methodology. While these
rules help some, we argue that using problem characteristics solely is not sufficient
because the performance of a solver depends on quantities which cannot be mea-
sured symbolically and a priori. Further, software performance depends not only
on the algorithms used, but on their implementations as well. In [23], Kamel et
al. describe the expert system ODEXPERT for selecting numerical solvers for ini-

10

tial value ordinary differential equation (ODE) systems. ODEXPERT uses textual
parsing to determine some properties of the ODEs and performs some automatic
tests (e.g., a stiffness test) to determine others. Once all the properties are known,
it uses its knowledge base information about available ODE solution methods (rep-
resented as a set of rules) to recommend a certain method. After a method has
been determined, it selects a particular implementation of that method based on
other criteria and then generates source code (Fortran) for the user. If necessary,
symbolic differentiation is used to generate code for the Jacobian as well. Leake
has recently begun some work in the area of using traditional case based reasoning
systems to select appropriate methods for solving sparse linear systems [24]. Our
group has also been actively involved in using several techniques, such as neural
nets, neuro-fuzzy systems and Bayesian nets ([53; 22; 35; 21; 19; 20]) to address re-
lated issues of classifying PDE problems based on their performance characteristics,
and then using this classification to predict an appropriate solution method for new
problems. We have also formulated the algorithm selection problem as conducting
knowledge discovery in domains of computational science [36; 37]. This work shows
that such data mining approaches can be used to form relational descriptions of
PDE objects which lead to more powerful schemas for resource selection (in terms
of both representation and prediction).

6. SCIAGENTS SYSTEM

In this section, we describe in detail the SciAgents software architecture, and explain
how to use it for complex PDE-based models from MPSEs. As an application
of our MPSE approach, SciAgents employs two major types of computing agents
— solvers and mediators. It interacts with the recommender agents as described
later. Each solver agent is considered a ‘black box’ by the other agents and it
interacts with them using an interagent language for the specific problem. This
feature allows all computational decisions for solving one individual subproblem
to be taken independently from the decisions in any other subproblem — a major
difference from the traditional approaches to multidisciplinary simulations. Each
mediator agent is responsible for adjusting an interface between two neighboring
subproblems. Since the interface between any two subproblems might be complex
in itself, there may be more than one mediator assigned to adjust it, each of them
operating on separate piece of the whole interface. Thus the mediators control
the data exchange between the solvers working on neighboring subproblems by
applying mediating formulas and algorithms to the data coming from and going
to the solvers. Different mediators may apply different mediating formulas and
algorithms depending on the physical nature of their interfaces. The mediators are
also responsible for enforcing global solution strategies and for recognizing (locally)
that some goal (like “end of computations”) has been achieved.

The solvers and mediators form a network of agents to solve the given global
problem. A schematic view of the functional architecture of a SciAgents MPSE
containing an example network is given in Figure 2. The computations (and the
major data exchange) are concentrated in the network of solver (PSE) and me-
diator agents. The solver agents communicate with the recommender agents (as
consultants) through queries to obtain “advice” on computation parameters. The
user interacts with the system through the global and local user interfaces which

11

Fig. 2: Functional architecture of a SciAgents solver for an MPSE. The computations (and the
major data exchange) are concentrated in the network of solver (PSE) and mediator agents. The
solver agents communicate with the recommender ones through queries to obtain “advice” on
computation parameters. The user interacts with the system through the global and local user
interfaces which send queries and receive replies from the various agents.

send queries and receive replies from the various agents. The intelligent controller
and the MPSE constructor can be integrated into a single “agent” which controls
the global state of the computations and instantiates, queries, and manages (if
necessary) the other agents.

We now describe how the user builds (“programs”) this network. The agent
framework provides a natural abstraction to the user in the problem domain and
hides the details of the actual algorithms and software involved in the problem
solving. The user firsts breaks down the geometry of the composite domain into
simple subdomains with simple models to define the subproblems for each subdo-
main. Then the physical conditions along each interface between the subdomains
are identified. All this is done in the terms of the user’s problem domain. The
user is provided with an MPSE constructor (agent instantiator) — a process which
displays information about the templates and creates active agents of both kinds,
capable of computing. Initially, only templates of agents — structures that con-
tain information about solver and mediator agents and how to instantiate them,
are available. Then the user constructs the proper network of computing agents

12

by simply instantiating various agents. The user selects solvers that are capable of
solving the corresponding subproblems and mediators that are capable of mediating
the physical conditions along the specific interfaces, and assigns subproblems and
interfaces, respectively, to each of them. The user interacts with the system using a
visual programming approach which has proved useful in allowing the non-experts
to “program” by manipulating images and objects from their problem domain. In
our case, a visual environment is useful for the MPSE constructor, or when the user
wants to request some action or data.

Once an agent is instantiated, it takes over the communication with the user
and with its environment (the other agents) and tries to acquire all necessary in-
formation for its task. Each PSE (solver agent) retains its own interface and can
interact with the user. It is convenient to think of the user as another agent in these
interactions. The user defines each subproblem independently, interacting with the
corresponding solver agent through its user interface and similarly interacting with
the mediators to specify the physical conditions holding along the various interfaces.

The agents actively exchange partial solutions and data with other agents without
outside control and management. In other words, each solver agent can request
the necessary domain and problem related data from the user and decide what to
do with it (should it, for instance, start the computations or should it wait for
other agents to contact it?). After each mediator agent has been supplied with
the connectivity and mediating data by the user, it contacts the corresponding
solver agents and requests the information it needs. This information includes the
geometry of the interface, the functional capabilities of the solvers with respect to
providing the necessary data for adjusting the interface, visualization capabilities,
etc. All this is done without user involvement. By instantiating the individual
agents (concentrating on the individual subdomains and interfaces) the user builds
the highly interconnected and interoperable network that is tailored to solve the
particular multiphysics problem, by cooperation between individual agents.

The user’s high-level view of the MPSE architecture is shown in Figure 3. The
global communication medium used by all entities in the MPSE is called a software
bus [50]. The MPSE constructor communicates with the user through the user
interface builder and uses the software bus to communicate with the templates in
order to instantiate various agents. Agents communicate with each other through
the software bus and have their own local user interfaces to interact with the user.
The order of instantiating the agents is not important. If a solver agent is in-
stantiated and it does not have all the data it needs to compute a local solution
(i.e., a mediator agent is missing), then it suspends the computations and waits for
some relaxer agent to contact it and to provide the missing values (this is also a
way to “naturally” control the solution process). If a mediator agent is instanti-
ated and a solver agent on either side of its interface is missing, then it suspends
its computations and waits for the solver agents with the necessary characteris-
tics (the right subdomain assigned) to appear. This built in synchronization is,
we believe, an important advantage of the SciAgents architecture. It results from
each agent adapting to its environment. We go into more detail about inter agent
communication later.

Since agent instantiation happens one agent at a time, the data which the user
has to provide (domain, interface, problem definition, etc.) is strictly local, and

13

Local Interfaces

-
Catalog 4 > -
of Modules|_ | o Ca

User Builder Global
Rela I,n,t?l:fec,e, o Execution|
elaxer o A Interface
-] Agent

Template Instantiator
Solver .
Template

Software Bus

Fig. 3: Software architecture of an MPSE: the user’s abstraction. The user initially interacts
with the User Interface Builder to define the global composite problem. Later the interaction is
with the Global Execution Interface to monitor and control the solution of the problem. Direct
interaction with individual solvers and mediators is also possible. The agents communicate with
each other using the software bus.

the agents collaborate in building the computing network. The user actually does
not even need to know the global model. We can easily imagine a situation when
the global problem is very large. Different specialists may only model parts of it.
In such a situation, a user may instantiate a few agents and leave the instantiating
of the rest of the cooperating agents to colleagues. Naturally, some care has to be
taken in order to instantiate all necessary agents for the global solution and not to
define contradictory interface conditions or mediation schemes along the “borders”
between different users.

The collection of agent interfaces that a user interacts with is the only software
the user actually needs to run locally in order to solve a problem. Therefore, this
architecture abstracts successfully from the user the location of the main computa-
tions (the location of the solvers and the mediators) and allows for great flexibility
in this direction, including running the MPSE over the Internet and distributing
the agents over the Net.

This user view of the SciAgents architecture is too abstract for an actual im-
plementation where one has to design the internal architecture of each agent and
the detailed communication among the agents. We refer the reader to [5] for these
important details. We only mention here that the agent architecture utilizes the
locality of the communication patterns described before and the fact that whenever
a mediator is active (computing), the corresponding solvers are idle and vice versa.
Also, the asynchronicity of the communication and the need of implementing the
“pro-active” feature of the agents prompt us to employ many active threads in a
single agent (multithreading).

Coordination of the Solution Process We discuss now some important as-
pects of the cooperation between the agents during the solution process. There are
well-defined global mathematical conditions for terminating the computations, for
example, reaching a specified accuracy, or impossibility to achieve convergence. In

14

most cases, these global conditions can be “localized” either explicitly or implicitly.
For instance, the user may require different accuracy for different subdomains and
the computations may be suspended locally if local convergence is achieved. Note
that local convergence can be achieved and then later lost due to changes from
other agents.

The local computations are governed by the mediators (the solvers simply solve
the PDE problems). The mediator agents collect the errors after each iteration
and, when the desired accuracy is obtained, locally suspend the computations and
report the fact to the intelligent controller. The suspension is done by issuing
an instruction to the solvers on both sides of this interface to use the boundary
conditions for the interface from the previous iteration in any successive iterations
they may perform (the other interfaces of the two subdomains might still not have
converged). The solvers continue to report the required data to the submediators
and the submediators continue to check whether the local interface conditions are
satisfied with the required accuracy. If a solver receives instructions to use the old
iteration boundary conditions for all its interfaces, then it stops the iterations. The
iterations may be restarted if the interface conditions handled by a given mediator
agent are no longer accurately satisfied (even though they once were). In this case,
the mediator issues instructions to the two solvers on both sides of its interface to
resume solving with new boundary conditions. If the maximumnumber of iterations
is reached, the mediator reports failure to the intelligent controller and suspends
the computations. The only global control exercised by the intelligent controller is
to terminate all agents in case all mediators report local convergence or one of them
reports a failure. The messages used in the interagent communication are given in
full detail in [18], we provide a small example in the next section.

The above scheme provides a robust mechanism for cooperation among the com-
puting agents. Using only local knowledge, they perform only local computations
and communicate only with “neighboring” agents. They cooperate in solving a
global, complex problem, and none of them exercises centralized control over the
computations. The global solution “emerges” in a well-defined mathematical way
from the local computations as a result of intelligent decision making done locally
and independently by the mediator agents. The agents may change their goals dy-
namically according to the local status of the solution process — switching between
observing results and computing new data.

Other global control policies can be imposed by the user if desired — the system
architecture allows this to be done easily by distributing the control policy to all
agents involved. Such global policies include continuing the iterations until the all
interface conditions are satisfied, and recomputing the solutions for all subdomains
if the user changes something (conditions, method, etc.) for any domain.

Software Reuse and Evolution One of the major goals of this MPSE approach
is to design a system that allows for low-cost and less time-consuming methods
of building the software to simulate a complex mathematical model of physical
processes. This goal cannot be accomplished if the existing rich variety of problem
solving software for scientific computing is not used. More precisely, there are
many well-tested, powerful, and popular PSEs for solving problems very similar
or identical to the subproblems that appear when breaking the global model into
“simple” subproblems defined on a single subdomain. These PSEs could easily and

15

accurately solve such a “simple” subproblem. It is, therefore, natural to reuse such
PSEs as solver agents. However, our architecture requires the solvers to behave like
agents (e.g., understand agent languages, use them to communicate data to other
agents), something the existing PSEs in scientific computing do not do.

Our solution to this problem is to provide an agent wrapper for PSEs and other
software modules, which takes care of the interaction with the other agents and
with the other aspects of emulating agent behavior. The wrapper encapsulates the
original PSE and is responsible for running it and for the necessary interpretation
of parameters and results. This is not simply a “preprocessor” that prepares the
PSE’s input and a “postprocessor” that interprets the results, since the mediation
between subproblems may require communicating intermediate results to the me-
diators and/or accepting some additional data from them. Designing the wrapper
is sometimes complicated by the “closed” nature of extant PSEs — their original
design is not flexible or “open” enough to allow access to various parts of the code
and the processed data. However, it is our opinion that the PSE developers can
design and build such a wrapper for a very small fraction of the time and the cost of
designing and building entire new PSE or custom software for every new problem.
The wrapper, once written, will enable the reuse of this PSE as a solver agent in
different MPSEs, thus amortizing the cost further. As part of the specifications of
the wrapper the developers have to consider the mediation schemes involving sub-
models within the power of the PSE. An additional task is to evaluate the PSE’s
user interface — since the user defines the local submodel through it, it is important
that the interface facilitates the problem definition in user’s terms well enough. Our
experience with //ELLPACK was that building a wrapper for a substantial (more
than a million lines of code), diverse, and non-homogeneous PDE solver could be
done efficiently, it required about a thousand lines of code.

7. PYTHIA SYSTEM

We see that the role played by the recommender agents is paramount for the effec-
tiveness of SciAgents. When queried by the solver agents, they provide consulting
advice on a suitable scheme (and associated computation parameters) to solve a
given problem so as to achieve desired performance criteria. An example PDE
problem is given in Figure 4. A prescribed solution strategy could be “Use the
d-point star algorithm with a 200 x 200 grid on an nCube/2 with 16 processors.
Confidence: 0.90”7 (Notice that a recommender agent provides a level of confidence
in the selected strategy). In essence, the recommender agents serve as knowledge
engines that provide domain—specific inference for PDE problems. If any particular
recommender agent lacks the expertise to provide this recommendation, it will col-
laborate with other recommender agents and select the best answer. These agents
can also be made to interact directly with the user, via the agent instantiator. Thus
PYTHIA is a collaborative, multi-agent system [33] that uses collective knowledge
to prescribe a strategy to solve a given problem in scientific computation. The
agents themselves are referred to as PYTHIA agents and are implemented by a
combination of C language routines, shell scripts and systems such as CLIPS (the
C Language Integrated Production System) [10]. The agents communicate using
the Knowledge Query and Manipulation Language (KQML) [8], using protocol de-
fined performatives. All PYTHIA agents understand and utilize a private language

16

PROBLEM #28 (wug), + (wuy), =1,
a, if 0<z,y<1
where w = —. -
1, otherwise.
DomaIN [-1,1] x [-1,1]
BC u=20
TRUE unknown
OPERATOR Self-adjoint, discontinuous coefficients
RIGHT SIDE Constant
BoUNDARY CONDITIONS Dirichlet, homogeneous
SOLUTION Approximate solutions given for o = 1, 10, 100. Strong wave fronts
fora > 1.
PARAMETER a adjusts size of discontinuity in operator coefficients which intro-
duces large, sharp jumps in solution.

Fig. 4. A problem from the PDE population.

(PYTHIA-Talk) that describes the meaning (content) of the KQML performa-
tives. This design allows the seamless integration of the recommender agents into
the MPSE architecture.

A PYTHIA agent relies heavily on the problem set used in its performance eva-
lution knowledge base so the effectiveness of a recommender agent depends on its
‘experience’. For example, one agent’s expertise might come from its test base of
computational fluid dynamics PDE solvers and problems while a second agent’s
expertise might be based on heat conduction problems. Our mulit-agent method-
ology recognizes that there are many, many different kinds of PDE problems and
any single recommender agent is likely to be limited by its knowledge base. Thus,
the approach taken is to create several different PYTHIA agents, each of which has
information about some class(es) of PDE problems and can predict an appropriate
solver for a given PDE of those classes. If a PYTHIA agent discovers that it does
not have enough confidence in the prediction it is making, it could query all other
PYTHIA agents, obtain answers from all of them and use this information to decide
which one is “most reasonable”. This could entail a huge amount of network traffic
and inordinate delays. A better approach is to use the information obtained by the
initial broadcast type of queries to infer the most experienced PYTHIA agent for
the problem at hand. This naturally raises the following issues:

(1) Given more than one applicable agent, how does one determine the best agent(s)

for a given PDE problem? In other words, what is the mapping from a given
problem to the best PYTHIA agent?

(2) Can the notion of best agent be inferred automatically or does it require user
input?

(3) How does one learn and adapt to the changing dynamics of the scenario? Agents
may come into existence, some may go extinct, their knowledge corpus may
change dynamically etc. How do we learn the mapping in this case and update
it suitably?

We use a quantitative measure of reasonableness [16; 34], to automatically gener-
ate exemplars to learn the mapping from PDE problems to PYTHIA agents. This
is needed because the computational scientist cannot be expected to have such
information in this dynamic scenario. For example, in response to a query from

17

the user about a particular PDE problem, each PYTHIA agent might suggest a
different method with varying levels of confidence in the recommended strategy.
Moreover, each of these agents might have different levels of expertise (such as the
kind of PDEs it knows about) and different ‘training’ history. The user, thus, can-
not be expected to know which one of them is most suitable for the problem if all
these responses are supplied. Our measure of reasonableness allows the automatic
‘ranking’ of the PYTHIA agents for a particular problem (class). This measure
combines two factors, the probability of an agent’s prediction ¢ being true, and
the predictor’s utility. Specifically, the reasonableness of a proposition is defined as
follows [25]:

r(q) = p(¢)U(q) + p(~ ¢)Us(q),

where Uy;(q) denotes the positive utility of accepting ¢ if it is true, Uy(¢q) denotes
the negative utility of accepting ¢ if it is false and p(q) be the probability that ¢ is
true.

In the case of PYTHIA, each agent produces a number denoting confidence in its
recommendation being correct, so p(g) is trivially available, and p(~ ¢) is simply
1 —p(q). For the utility, we use the following definition:

Ui(g) = =Us(q) = F(Ne).

where f is some squashing function mapping the domain of (0,0oc) to a range of
(0,1], and N, is the number of exemplars of a given type (that of the problem being
considered) that the agent has seen. We chose f(z) = H% — 1 because it reflects
the number (z = N,) of problems of the present type that it has seen.

Having defined our notion of reasonableness, we still need a way to learn a map-
ping from a PDE problem to the most reasonable PYTHIA agent. We have eval-
uated standard statistical methods, gradient descent methods, machine learning
techniques and other classes of algorithms [22], but it has been our experience that
specialized techniques developed for this domain perform better than conventional
off-the—shelf approaches [20]. In particular, we have designed a neuro—fuzzy tech-
nique that infers efficient mappings, caters to mutually non—exclusive classes (as
the PDE problem classes naturally are) and learns the classifications in an on-line
manner [22]. For the purposes of this paper, it is sufficient to understand that this
scheme provides a mapping from a PDE problem to the best available recommender
agent and that the mappings can be learnt in an incremental fashion using this rea-
sonableness measure. While this mapping could be done by any of the PYTHIA
agents by ‘housing’ a copy of the learned classification in each of them, we chose
to create a central agent, PYTHIA-C whose main task is to perform this mapping.
This just serves to demonstrate the learning aspect of the agents as distinct from
their other capabilities.

8. CASE STUDIES
8.1 Solving Composite PDE Problems

The main issue is what mediation schemes can be applied to a composite PDE prob-
lem — in other words, how to obtain a global solution out of the local solutions
produced by the single-domain solvers. To do this, SciAgents uses interface relax-
ation [5; 28]. Important mathematical questions of the convergence of the method,

18

the behavior of the solution in special cases, etc., are addressed in [31]. Typically,
for second order PDEs, there are two physical or mathematical interface condi-
tions involving values and normal derivatives of the solutions on the neighboring
subdomains. The interface relaxation technique is as follows.

. Step 1. Make initial guesses as boundary conditions to determine the subprob-
lem solutions.

. Step 2. Solve the subproblem in each subdomain and obtain a local solution.

. Step 3. Use the solution values on the interfaces to evaluate how well the
interface conditions are satisfied. Use a relazation formula to compute new values
of the boundary conditions.

. Step 4. Iterate steps 2 and 3 until convergence.

We now describe the solution of a composite PDE problem using four solvers
and five mediators. It models the heat distribution in the walls of a chemical or a
nuclear reactor and in the surrounding isolating and cooling structures, see Figure
5. The subdomains are shown, with the solver agents S;, ¢ = 0, ..., 3 simulating
the local process in each subdomain and the mediators M;, 7 =0,...,4 mediating
the interface piece they are written on. The unknown function is 7" and the exterior
boundary conditions are shown next to the corresponding boundary pieces. The
reactor keeps the inside temperature of its wall at 1000 degrees and the outside walls
of the cooling structures are kept at, more or less, room temperature. The boundary
conditions along the z and y axes reflect the symmetry of the construction. We
denote by I';x the k-th boundary piece of the i-th subdomain. The differential
operators L;, 1 = 1,2,3 are

Ly Tpr + Tyy + a1 = 62(]32 + y2 - 2)
Ly Tog + Ty + 02T =0 (1)
L3 : T:c:c + Tyy — 73(Tx + Ty) + (lgT =0

The parameters are: a; = 0.2, ay = 0.4, az = 0.3, f2 = —60, 73 = 10. We denote
by Q; the subdomain associated with S;, ¢ = 0, ..., 3. We use as interface conditions
the continuity of temperature and heat flow across the subdomain interfaces. Note
that even though the interface between Qy and Q;, Q5. and Q3 looks like a single
curve from the point of view of g, it is divided into three pieces I'gs., '3 and
o4, so that the mediators My, My, and M» can each be assigned a single piece to
mediate. The time we spent from writing down the problem on paper to getting a
contour plot of the solution on the screen was 5 hours (this includes some manual
calculations and adjusting the relaxation formulas for better convergence).

A user begins solving this problem by drawing Figure 5. The sketch identifies the
subdomains (the solvers), the mediators, each boundary piece in every subdomain,
and the endpoints of the interfaces. The sketch is necessary since the currently
implemented version of SciAgents requires input as a script file. However, we believe
that (with the possible exception of the boundary piece identifiers) such a sketch
will be necessary even with the best imaginable graphical user interface. We only
expect the user to annotate this initial sketch.

3!7 T = 60
©5) Ty, T = 100-20(y-3)
Lo—o [
5 =
o [F2 S r T = 100
i 3 2 T T = 100
r r
~ r - 2 40
Il M3 Ly=0 T = 100 - —(x —3.25)
o S I'ys 275
T
o S 2 T I'4
R A\ 4 13 T = 60
06 r
L =0 M, Ly =0 Sy 13
=| 1000 Tos Fou Ty Iy 60 x
e T =0

Fig. 5: A sketch of a composite PDE problem modeling the heat distribution in the walls of

a chemical or a nuclear reactor and in the surrounding isolating and cooling structures.
subdomains are shown, with the solver agents S;,
subdomain and the mediators M,

The

. 3 simulating the local process in each

4 medlatlng the interface piece they are written

on. The unknown function is 7' and the exterlor boundary conditions are shown next to the

corresponding boundaries. We denote by I';x the k-th boundary piece of the ¢-th subdomain.

JELLPACK 2D Finite Elernent

March 1997

HELLPACK

TR
1

»

|| fpeoneirt-e

JELLPAGK 2D Finite Element

1ol
| —1

Call
%]

)

HELLPAGK

[[pomaird..e

“=="UED THU FR1 SAT
o=
|

JELLPACK 2D Finite Element

HELLPACK

| fpronaire.

Tdidezn

Click here to edit session

PTIONS.
clockuise = .true.
agents

equation.

UXX+U¥¥+0.40000000000000002%U = O

207 i00a1 L 1 Br00Sea2e torslzcontent

o,u_z oet for £=0.0.to 3.0
=5.0 For t: iator3 tcontent

r £20.0 to 2.0
1o2b 7551020 8
r 206 610
nesh.
read fan fron File &
(Filanane="sub3.nesh
Lindi -§nnnt.433. finein=r04, tintupst, itmen=d, 8
i3nind
nashtupes?, nesnedges0.103 e
agents.
sck agant Files &
Cagentdon = 3,
bpointsinfile = *bpoints-in3.bp?s &
bualussinfile = *bualues-in3.bp”>
discretization.

Bi-Linear FEM

indexing.
As Is

solubion.
Jacobi CG tord content (o
save

" set output File Coutputfile = *bualues-out3.bu”> bt |

Fig. 6: Four copies of the //ELLPACK interface are presented to the user for

PDE subproblems.

TCPsend sending: GET /agent/solverl

defining the four

20

KN AR =TT
MRS S e
KRR

A RKOEERY
RN

Eaw P
o

deg < angle < 120 deg)

Baints

4

K]
7\/
N\
7
K

>
VAN
K
o

%
i
Sk
NS
\VAY;
S

Hesh Setuns

1.
Elements: 329 Nodes
2,00

Z

‘
&
D

5 A
%

Fig. 7: A snapshot of the display during the subproblem definition process. Parts of three //ELL-
PACK domain tools containing three of the subdomain geometries and finite element meshes are
visible. The user can discretize each subdomain completely independently from the others. For
example, the densities of the above meshes are different.

After making the sketch the user constructs the SciAgents input file and starts
SciAgents. This starts the global controller (containing the agent instantiator) and
it instantiates the agents on the appropriate machines and builds the network of
four solvers and five mediators that is to solve the problem. After that. the “com-
puting” thread of the global controller starts a shell-like interface with two major
commands: pause and tolerance for control and steering the computations. The
pause prompts the controller to issue messages to all agents to save their current
state and to exit. The tolerance command changes dynamically the tolerance of
a given mediator or of all mediators.

After the initial exchange of data to check that all agents are ready, the user
sees four copies of the //ELLPACK user interface (see Figure 6). All four subprob-
lems are defined (see Figure 7 for a snapshot during this process) and selecting a
discretizer, linear solver, etc., in one subdomain does not lead to any requirement
or necessity about selections in the neighboring subdomains. If a subdomain is
huge, one may choose to use a 32-node Intel Paragon for it, while the neighboring
tiny subdomain may be simulated on the same host where the wrapper is running.
There are only two requirements for global synchronization of the local definitions:
each subdomain geometry has to be input in terms of the global coordinate system
(hence the need of the coordinates of the boundary pieces in the sketch), and for
each interface piece, the right-hand side of the boundary conditions has to be the
function rinterface(x,y). It is the user’s responsibility to make sure that the
relaxation formulas used for each interface piece correspond to the left-hand sides

21

of the boundary conditions entered in the two solver’s user interfaces. For the ex-
ample, the boundary condition used at all interfaces is T = rinterface(x,y) and
the relaxation formula is (U is the solution on the “left” side, V' is the solution
on the “right” side; U, is the normal derivative; f is a factor given below; the
formula is always applied pointwise for each point from any solver’s grid/mesh on
the interface):

1
[rew — ynew — §(Uold 4 Vold) _ f % (U;lyld _ Vnold) (2)

old rold
The form of the factor fis f = % which scales the relaxation properly

(and avoids dependencies on the choice of the coordinate system) and regulates
the rate of change of the boundary conditions along the interface from iteration to
iteration by changing fy. It is sometimes hard to predict the “optimal”, or even
the acceptable, values of fj.

The user input results in writing the script for the actual future runs. The user
exits the //ELLPACK interface which prompts the wrapper to collect the initial
data and to send them to the mediators. They compute initial right-hand sides
of the boundary conditions. After the mediators provide all necessary boundary
conditions, the wrapper runs the script which, in turn, runs the executable(s).
When the iteration is completed the wrapper takes over again and extracts all
required data from the computed solution and sends it to the mediators, waiting
for the new boundary conditions from them. Thus. at the next iteration, no new
compilation and user actions are necessary, since the same script (and executable(s))
is run by the wrapper.

For this example, we had to change the factor fy twice before the process began
to converge, especially for mediators M3 and M4. This seems to be due to the
natural singularity that occurs at the reentrant corners of the global domain which
affects the stability of the convergence.

When a mediator observes convergence (the change of the boundary conditions
for the next iteration is smaller than the tolerance), it reports this to the global
controller, and after all mediators report convergence, the global controller issues a
message to all agents to stop. In this case we had convergence after 53 iterations.
Figure 8 shows a combined picture of all four subdomain solutions. Note that
all contour lines match when crossing from one subdomain to another, there are
even a few which go through three subdomains, and one going through all four
subdomains. This is solid evidence that the interface relaxation technique works in
this problem.

To experiment with the applicability of SciAgents to more difficult problems we
solved several variations of the above example replacing L1, Lo, and Lz with nonlin-
ear operators (exhibiting different nonlinearity for different L;). Since //ELLPACK
uses a Newton iterative procedure to solve a nonlinear problem, the global solu-
tion process becomes a multi-level iteration where one SciAgents step involves a
complete Newton iteration in it. Also, while one can plausibly handle the linear
example above by considering a single PDE with discontinuous coefficients on a
single domain, this approach is not feasible for nonlinear problems. Using SciA-
gents we were able to solve the following sets of PDEs (the increased complexity is

22

[RRRRY

[T
RRAAN!

Fig. 8: A combined picture of all subdomain solutions of the example problem in Equation (1).
The global solution corresponds to the physical intuition about the behavior of the modeled real-
world system. All contour lines match when crossing from one subdomain to another, there are
even a few which go through three subdomains and one going through all four subdomains.

23

reflected in a two to three—fold increase of the number of iterations necessary for
the convergence to the global solution).

—Set 1
—Ly :TTee + (1 + T)Tyy + aT(l +T) = b(,r? + y2 — 2)
Ly Tow /(14 (x — 9)*) + Ty /(1 + (42 — 5y)*) 4+ ¢T/(101 +) = 0

— Ly Ty + Ty + ae®t9FTT/500 — p(22 4 42— 2)
Ly TTag + TTyy + (T + 20)T, + 2(T — 20)T = 0
—Lg Tye +Tyy —b(To +Ty)+aT =0

—L1 : Typ + Tyy + a1 T(1 + T/1000) = Bo(2? + y* — 2)
fLQ . Tx:t: +Tyy + QQT =0
—Lg : Tye + (1 +7/1000)Tyy + (13 /500 + 3)Ty + asT =0

8.2 Intelligent PDE Computing with PYTHIA

In this section, we describe how PYTHIA can be used to determine reasonable
strategies for PDE problem solving. In our prototype implementation, our PYTHIA
agents’ expertise stems from the following classes of PDEs (we also list the number
of samples in each class from our study that involves about 167 PDE problems):

(1) SINGULAR: PDE problems whose solutions have at least one singularity (6
exemplars).

(2) ANALYTIC: PDE problems whose solutions are analytic (35 exemplars).
(3) OSCILLATORY: PDE problems whose solutions oscillate (34 exemplars).

(4) BOUNDARY-LAYER: Problems with a boundary layer in their solutions (32
exemplars).

(5) BOUNDARY-CONDITIONS-MIXED: Problems that have mixed bound-

ary conditions in their solutions (74 exemplars).
(6) SPECTIAL: Problems that do not belong to the above classes (10 problems).

Lo

Note that these classes are not mutually—exclusive, so their total membership is
191 problems. In other words, there are different PYTHIA agents, each of which can
recommend a solver for a PDE belonging to its representative class(es) of problems.
Also, a problem can belong to more than one class simultaneously (a given PDE
can both be analytic and have mixed boundary conditions). Detecting the presence
of such mutually non—exclusive classes is critical to selecting a good solver for the
PDE.

To test our ideas, we made five experiments, with 2, 3, 4, 5 and 6 PYTHIA
agents respectively. In each experiment, each PYTHIA agent knows about a cer-
tain class(es) of PDE problems. For example, with 6 PYTHIA agents, each agent
knows about one of the above classes of PDEs. In the ‘3—agent’ experiment, agent
1 knows about problem classes 1 and 2, agent 2 knows about classes 3 and 4 and
the third agent knows about classes 5 and 6. The population of 167 PDE prob-
lems was split into two parts: a large set of 111 problems and a smaller set of
56 problems. We conducted two sets of experiments: In each scenario, we first

24

Larger Trg. Set Smaller Trg. Set
100 100
I Our Technique [Our Technique

90 RProp 90 RProp

80 Plain BProp 80 Plain BProp

70 70
oy oy
g e g
51 5
2 w0 3 s
2 2
o 40 o 40
S &

30 30

20 20

10 10

0 0
6 5 4 3 2 6 5 4 3 2
No. of Agents No. of Agents

Fig. 9: Performance of learning algorithms. The graph on the left depicts the results with the
larger training set and the one on the right shows the results with the smaller training set. In
each case, recommendation accuracy figures for the 5 experiments (with 2, 3, 4, 5 and 6 agents)
are presented for all the three learning algorithms considered in this paper.

trained our technique on the larger set of {problem, agent} pairs (using the notion
of reasonableness defined earlier) and tested our learning on the smaller set of 56
exemplars. In the second experiment, the roles of these two sets were reversed. We
also compared our technique with two very popular gradient descent techniques
for training feedforward neural networks, namely, Vanilla (Plain) Backpropagation
(BProp) and Resilient Propagation (RProp). Figure 9 summarizes the results.

It can be easily seen that our method consistently outperforms BProp and RProp
on learning the mapping from problems to agents. Also, performance on the larger
training set was expectedly better than that on the smaller training set. Moreover,
our algorithm operates in an on-line mode; new data do not require retraining
on the old. Our technique was also tested for this ability; for the larger training
set, we incrementally trained our algorithm on the 111 PDEs and the accuracy
figures on the test set were found to rise steadily to the figures shown in Fig. 9.
In the collaborative networked scenario of an MPSE, where the resources change
dynamically, this feature of our neuro—fuzzy system enables us to automatically
infer the capabilities of multiple PYTHIA agents. If the capabilities of agent 1
were to change, for example, in the 6-agent scenario, then our network could infer
the new mappings without losing the information already learnt. This feature is
absent in most other methods of classification such as BProp and RProp in which
the dimensionality of the network is fixed and it is imperative that the old data be
kept around if these networks are to update their learning with new data.

The PYTHIA project web pages at http://www.cs.purdue.edu/research/cse/pythia
provide information about this collaborative PYTHIA methodology and facilities
to invoke it remotely. At the outset, there is a facility to provide feature informa-
tion about a PDE problem. In particular, there are forms that guide the user in
providing information about the operator, function, domain geometry and bound-
ary conditions. Once these details are given, the information is submitted to the
central PYTHIA agent, PYTHIA-C, that performs further processing. As men-
tioned before, it first classifies the given PDE problem into categories of problems
as described above. Having classified the problem into one or more of these classes,

25

the PDE is taken to an appropriate PYTHIA agent for this class of problems, which
in turn predicts an optimal strategy and reports back to the user.

8.3 Learning and Adaptation in MultiAgent Systems

The above experiment can be visualized as an example where the central agent
PYTHIA-C is in a learning mode, cycles through the training set, and learns map-
pings from the given PDEs to appropriate agents. From this point on PYTHIA-C
is in the stable mode. It will only ask the best agent to answer a particular question.
If PYTHIA-C finds a PYTHIA agent’s recommendation unacceptable, it will ask
the next best agent, until all agents are exhausted. This is facilitated by our neuro—
fuzzy learning algorithm. By varying an acceptance threshold in the algorithm, we
can get an enumeration of “not so good” agents for a problem type. If PYTHIA-C
determines no plausible solution exists among its agents or itself, then PYTHIA-C
gives the answer that “is best”. When giving such an answer, the user is notified
of PYTHIA-C’s lack of confidence.

While this scheme serves most purposes, an issue still pending is the mode of
switching between the learning and stable modes. PYTHIA-C switches from learn-
ing to stable mode after an a priori fixed number of problems (this was 111 in our
first set of experiments, for example). The timing of the reverse switch back to
learning is a more interesting problem; we report on three different methods.

Time based: This simple approach is where PYTHIA-C reverts to learning
after a fixed time period. At such points, PYTHIA-C cycles through its train-
ing set, queries other agents, gets back answers, determines reasonableness values
and finally learns new mappings for the PDE problems. Figure. 10 depicts the re-
sults with the six—agent case and the time based approach using the larger training
set. Initially, each agent starts up with approximately 1/3 of their total knowledge
base and this knowledge steadily increases with time. At periodic time intervals,
PYTHIA-C switches to learning mode and cycles through the larger training set
with each of the agents in the experiment. The performance is then measured with
the smaller training set. As can be seen, the accuracy figure steadily improves for
each of the six individual agents to the accuracy observed in the previous static
experiment. PYTHIA-C’s accuracy improves from 40.85% to 98.20% in this exper-
iment.

We conducted another experiment with this method, one more realistic for multi—
agent systems. We begin the experiment with no ‘known’ agents, i.e., PYTHIA-C
initially does not know about the existence of any agents or their capabilities. Then,
each agent is introduced into the experiment with a small initial knowledge base
and then their knowledge base is slowly increased. For example, Agent 1 comes into
the setup with a small knowledge base and announces its existence to PYTHIA-C
which creates a class for Agent 1. It then reverts to learning mode (though wasteful)
and learns mappings from PDE problems to agents (in this case, there is only one
agent). After some time, Agent 3 comes into the experiment and this process is
repeated. This is repeated until all six agents are introduced. While the addition
of new agents and associated classes is taking place, the abilities of existing agents
(like Agent 1) also increase simultaneously. Thus, these events happen in parallel;
i.e., addition of new agents and additions to the knowledge base of existing agents.
Because our neuro—fuzzy scheme has the ability to introduce new classes on the fly,

Incremental Addition of Knowledge — Time Based Scheme Incremental Improvement in Accuracy — Time Based Scheme

100

% Information about a class

% Accuracy of PYTHIA-C

30 40 50 60 0 10 20 30 40 50 60
Time Steps

Fig. 10: Results with the time based scheme for 6 agents using the larger training set. The
graphs on the left show the systematic increase in the abilities for each of the agents individually
and the one on the right shows the corresponding improvement in accuracy of the central agent,

PYTHIA-C

Incremental Addition of Knowledge — Reactive Scheme Incremental Improvement in Accuracy — Reactive Scheme
100

% Information about a class

% Accuracy of PYTHIA-C

0 10 20 40 50 60 0 10 20 30 40 50 60

30
Time Steps

Fig. 11: Results with the reactive method for 6 agents using the larger training set. The graphs
on the left show the systematic increase in the abilities for each of the agents and the one on the
right shows the corresponding improvement in accuracy of PYTHIA-C

PYTHIA-C can handle this situation well. The accuracy figures converge to the
values previously obtained.

Reactive: In this method, a PYTHIA agent notifies PYTHIA-C whenever its
confidence for some class of problems has changed significantly. PYTHIA-C reverts
to learning when it next receives a query about this class of problems. Each agent
started with the same initial knowledge base as before and this is slowly increased.
As the agents indicate the resulting increase in confidence to PYTHIA-C, it reverts
to learning mode from time to time. The accuracy figures for PYTHIA-C approach
the same values as before; they follow a monotonic pattern, but a more slowly
increasing pattern, see Figure 11.

Time based reactive: This is a combination of the two methods above where
PYTHIA-C sends out a “has anyone’s abilities changed significantly” message at
fixed time intervals, and switches to learning if it receives a positive response. Each
agent, starts with the same knowledge base and this is slowly increased. Figure 12
shows that the accuracy figures for PYTHIA-C are again a monotonic increasing

217

Addition of ige - Time-Based Reactive Scheme in Accuracy - Time-Based Reactive Scheme

% Information about a class
%
% Accuracy of PYTHIA-C

30 40 50 60 0 10 20 30 40 50 60
Time Steps

Fig. 12: Results with the time based reactive method for 6 agents using the larger training set.
The graphs on the left show the systematic increase in the abilities for each of the PYTHIA agents
and the one on the right shows the corresponding improvement in accuracy of PYTHIA-C.

and rising slightly faster than for the reactive method.

Our experiments with the three methods show that they enable the central agent
PYTHIA-C to keep track of the dynamic capabilities (in our case, the knowledge
base) of other agents. These methods also enable PYTHIA-C to handle situations
where agents appear and disappear over time.

9. CONCLUSION

In this chapter, we have described an agent oriented architecture for MPSEs, con-
sisting of solver, mediator and recommender agents. This architecture enables us to
combine existing PSEs and libraries into MPSEs. The SciAgents [5] and PYTHIA
[33] systems provide the solver, mediator and recommender agents required to real-
ize multidisciplinary problem solving environments. Our ongoing research focusses
on many more aspects of these problems. We are extending the functionality of the
SciAgents system to address more complex problem domains and are also investi-
gating strategies to choose interface relaxation schemes. In the PYTHIA system,
we are working on enhancing the knowledge bases to provide more flexible resource
selection schemes. In the PDE domain, for instance, PYTHIA can be used to select
partitioning strategies (for parallel PDE solving), mesh refinement techniques and
selecting solvers for linear systems that arise from the discretization of PDEs. We
are also interfacing the PYTHIA system with the GAMS system for mathemati-
cal software to facilitate software delivery. Together, the systems presented here
address rapid multidisciplinary prototyping — one of the most important grand
challenge problems in computational science and engineering.

REFERENCES

[1] K. C. Bernard. Ordering Chaos: Supercomputing at the edge. In D. Leebaert, editor, Tech-
nology 2061: The Future of Computing and Communications. MIT Press, Cambridge,
MA, 1992.

[2] R.F. Boisvert, S.E. Howe, and D.K. Kahaner. The Guide to Available Mathematical Software
Problem Classification System. Comm. Stat. - Simul. Comp., vol.20(4):pp.811-842,1991.

[3] R. E. Burkart. Reducing the R&D Cycle Time. Technical report, Research Tech. Mgmt.,
1994.

28

10]

(11]

(12]

(13]

(14]

15]

(16]

18]

(19]

(20]

(21]

(22]

S. Cammarata et al. Strategies of Cooperation in Distributed Problem Solving. In Bond and
Gasser, editors, Readings in Distributed Artificial Intelligence, pages 102—-105. Morgan
Kaufmann, 1988.

T. T. Drashansky. An Agent-Based Approach to Building Multidisciplinary Problem Solving
Environments. PhD thesis, Dept. Comp. Sci., Purdue University, December 1996.

Wayne R. Dyksen and Carl R. Gritter. Elliptic Expert: An Expert System for Elliptic Partial
Differential Equations. Mathematics and Computers in Stmulation, 31:333-343, 1989.

Wayne R. Dyksen and Carl R. Gritter. Scientific Computing and the Algorithm Selection
Problem. In E. N. Houstis, J. R. Rice, and R. Vichnevetsky, editors, Ezpert Systems for
Scientific Computing, pages 19-31. North—Holland, 1992.

Fritzson, R. KQML- A Language and Protocol for Knowledge and Information Exchange. In
Proc. 13th Intl. Distributed Artificial Intelligence Workshop, pages 134-143. Springer-
Verlag, 1994.

E. Gallopoulos, E. N. Houstis, and J. R. Rice. Computer as Thinker/Doer: Problem-Solving
Environments for Computational Science. IEEE Computational Science and Engineer-
ing, 1(2):11-23, 1994,

J. C. Giarratano. CLIPS User’s Guide, Version 5.1. NASA Lyndon B. Johnson Space Center,
1991.

S.S. Grimajl. The First ICASE/LARC Industry Roundtable: Session Proceedings. Technical
Report ICASE Interim Report 26, ICASE, NASA Langley Research Center, Hampton,
VA, 1995.

B. Hayes-Roth et al. Guardian. A Prototype Intelligent Agent for Intensive-care Monitoring.
Artif. Intell. Med, 4(2):165-185, 1992.

C. M. Hoffmann, E. N. Houstis, J. R. Rice, A. C. Catlin, M. Gaitatzes, S. Weerawarana, N.-H.
Wang, C. Takoudis, and D. Taylor. SoftLab - A Virtual Laboratory for Computational
Science. Math. Comp. in Svmulation, 36, 1994.

E.N. Houstis, A. Joshi, J.R. Rice, and S. Weerawarana. MPSEs: Multidisciplinary Problem
Solving Environments. White Paper presented at the America in the Age of Informa-
tton: A forum, Committee on Information and Communications, National Science and
Technology Council, 1996.

Industrial Research Institute. Proceedings: Roundtable Meeting on Reducing R&D Cycle
Time. Technical report, Industrial Research Inst., Washington DC, 1992.

A. Joshi. To Learn or Not to Learn ... In G. Weiss and S. Sen, editors, Adaptation and
Learning in Multiagent Systems, volume 1042 of Lecture Notes in Artificial Intelligence,
pages 127-139. Springer Verlag, 1996.

A. Joshi, T. Drashansky, E. Houstis, and S. Weerawarana. SciencePad: An Intelligent Elec-
tronic Notepad for Ubiquitous Scientific Computing. In International Conference on
Inteligent Information Management Systems, June 1995.

A. Joshi, T.T. Drashansky, J.R. Rice, S. Weerawarana, and E.N. Houstis. On Learning
and Adaptation in Multiagent Systems: A Scientific Computing Perspective. Technical
Report TR-95-040, Dept. Comp. Sci., Purdue University, 1995.

A. Joshi, N. Ramakrishnan, J.R. Rice, and E. Houstis. A Neuro-Fuzzy Approach to Agglo-
morative Clustering. In Proc. IEEE Intl. Conf. on Neural Networks, volume 2, pages
1028-1033. IEEE Press, July 1996.

A. Joshi, N. Ramakrishnan, J.R. Rice, and E. Houstis. On Neurobiological, Neuro—Fuzzy,
Machine Learning and Statistical Pattern Recognition Techniques. IEEE Trans. Neural
Networks, 8(1):18-31, 1996.

A. Joshi, S. Weerawarana, and E.N. Houstis. The Use of Neural Networks to Support “Intelli-
gent” Scientific Computing. In Proceedings Int. Conf. Neural Networks, World Congress
on Computational Intelligence, volume IV, pages 411-416, 1994. (Orlando, Florida).

A. Joshi, S. Weerawarana, N. Ramakrishnan, E.N. Houstis, and J.R. Rice. Neuro—Fuzzy
Support for PSEs: A Step Toward the Automated Solution of PDEs. Special Joint Issue
of IEEE Computer & IEEE Computational Science and Engineering, 3(1):pp.44-56,
1996.

29

[23] M. S. Kamel, K. S. Ma, and W. H. Enright. ODEXPERT: An Expert System to Select
Numerical Solvers for Initial Value ODE Systems. ACM Trans. Math. Software, 19:44—
62, 1993.

[24] D. Leake. Case-based selection of Problem Solving Methods for Scientific Computation.
http://www.cs.indiana.edu/hyplan/leake/cbmatrix.html, 1996.

[25] K. Lehrer. Theory of Knowledge. Westview Press, Boulder, CO, USA, 1990.

[26] V.R. Lesser. A Retrospective View of FA/C Distributed Problem Solving. IEEE Transactions
on Systems, Man, and Cybernetics, 21(6):1347-1363, 1991.

[27] S. Markus, S. Weerawarana, E.N. Houstis, and J.R. Rice. Scientific Computing via the World
Wide Web: The Net//ELLPACK PSE Server. Technical Report CSD TR-97-022, De-
partment of Computer Sciences, Purdue University, 1997.

S. McFaddin and J. Rice. Collaborating PDE Solvers. Appl. Num. Math, 10:279-295, 1992.

Sun Microsystems. The Network is the Computer. Trademark, 1996.

Peter K. Moore, Can Ozturan, and Joseph E. Flaherty. Towards the Automatic Numerical So-
lution of Partial Differential Equations. In E. N. Houstis, J. R. Rice, and R. Vichnevetsky,
editors, Intelligent Mathematical Software Systems, pages 15—22. North—Holland, 1990.

[31] Mo Mu and J. R. Rice. Modeling with Collaborating PDE Solvers — Theory and Practice.
Computing Systems in Engineering, 6:87-95, 1995.

[32] T. Oates et al. Cooperative Information Gathering: A Distributed Problem Solving Ap-
proach. Technical Report TR-94-66, Computer Science, University of Massachusetts,
Ambherst, 1994.

[33] N. Ramakrishnan. Recommender Systems for Problem Solving Environments. PhD thesis,
Dept. Comp. Sci., Purdue University, 1997.

[34] N. Ramakrishnan, A. Joshi, E.N. Houstis, and J.R. Rice. Neuro-Fuzzy Approaches to Col-
laborative Scientific Computing. In Proceedings of the IEEE International Conference
on Neural Networks, volume I, pages 473-478. IEEE Press, 1997.

[35] N. Ramakrishnan, A. Joshi, S. Weerawarana, E.N. Houstis, and J.R. Rice. Neuro-Fuzzy
Systems for Intelligent Scientific Computing. In Proc. Artificial Neural Networks in En-
gineering ANNIE ’55 pages 279-284, 1995.

[36] N. Ramakrishnan and J.R. Rice. GAUSS: An Automatic Algorithm Selection System for
Quadrature. Technical Report TR-96-048, Dept. Computer Sciences, Purdue University,
1996.

[37] N. Ramakrishnan, J.R. Rice, and E.N. Houstis. Knowledge Discovery in Computational Sci-
ence: A Case Study in Algorithm Selection. Technical Report TR-96-081, Dept. Com-
puter Sciences, Purdue University, 1996.

. Resnick and H. Varian. Recommender Systems. Comm. ACM, 40(3):56-58, March 1997.

R. Rice. Processing PDE Interface Conditons. Technical Report TR-94-041, Dept. Comp.

Sci., Purdue University, 1994.

[40] J.R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:pp.65-118, 1976.
[41] J.R. Rice. Methodology for the algorithm selection problem. In L. Fosdick, editor, Perfor-
mance Evaluation of Numerical Software, pages 301-307. North Holland, 1979.

[42] J.C. Schlimmer and L. A. Hermens. Software Agents: Completing Patterns and Constructing

User Interfaces. Journal of Artificial Intelligence Research, 1(61-89), 1993.

[43] Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60(1):51-92, 1993.

[44] R. G. Smith and R. Davis. Frameworks for Cooperation in Distributed Problem Solving. In
Bond and Gasser, editors, Readings tn Distributed Artificial Intelligence, pages 61-70.
Morgan Kaufmann, 1988.

[45] L.H. Tsoukalas and R.E. Uhrig. Fuzzy and Neural Approaches in Engineering. John Wiley
and Sons, Inc., Third Avenue, New York, 1997.

[46] L. Z. Varga ¢t al. Integrating Intelligent Systems into a Cooperating Community for Elec-
tricity Distribution Management. Intl. J. Ezpert Systems with Applications, 7(4):42-49,
1994.

[47] J. T. Vessey. Speed—to—Market Distinguishes the New Competitors. Technical report, Re-
search Tech. Mgmt., 1991.

W W
AR

(38]
(39]

~ g

30

48]

(49]

[50]

[51]

(52]

(53]

(54]

53]

R.G. Voigt. Requirements for Multidisciplinary Design of Aerospace Vehicles on High Perfor-
mance Computers. Technical Report ICASE Report No. 89-70, ICASE, NASA Langley
Research Center, Hampton, VA, 1989.

Jr. W. R. Johnson. Anything, Anytime, Anywhere: The Future of Networking. In D. Lee-
baert, editor, Technology 2661: The Future of Computing and Communications. MIT
Press, Cambridge, MA, 1992.

S. Weerawarana. Problem Solving Environments for Partial Differential Fquation Based Sys-
tems. PhD thesis, Dept. Comp. Sci., Purdue University, 1994.

S. Weerawarana, E. Houstis, J. Rice, M. Gaitatzes, S. Markus, and A. Joshi.
Web//ELLPACK: A Networked Computing Service on the World Wide Web. Techni-
cal Report TR 96-011, Department of Computer Sciences, Purdue University, 1996.

S. Weerawarana, E. N. Houstis, J. R. Rice, A. C. Catlin, C. L. Crabill, C. C. Chui, and
S. Markus. PDELab: An Object-Oriented Framework for Building Problem Solving En-
vironments for PDE Based Applications. In Proc. Second Annual Object—Oriented Nu-
merics Conference, pages 79-92, Rogue—Wave Software, Corvallis, OR, 1994.

S. Weerawarana, E.N. Houstis, J.R. Rice, A. Joshi, and Houstis C.E. PYTHIA: A knowledge
based system to select scientific algorithms. ACM Trans. Math. Software, 22(4):447—468,
1996.

R. Wesson et al. Network Structures for Distributed Situation Assessment. In Bond and
Gasser, editors, Readings in Distributed Artificial Intelligence, pages 71-89. Morgan
Kaufmann, 1988.

M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. (submitted to
Knowledge Engineering Review).

