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Abstract—This paper presents a new semiautomated soft clas-
sification method that is a hybrid between supervised and unsu-
pervised classification algorithms for the classification of remote
sensing data. Continuous iterative guided spectral class rejection
(IGSCR) (CIGSCR) is based on the IGSCR classification method,
a crisp classification method that automatically locates spectral
classes within information class training data using clustering.
This paper outlines the model and algorithm changes necessary to
convert IGSCR to use soft clustering to produce soft classification
in CIGSCR. This new algorithm addresses specific challenges pre-
sented by remote sensing data including large data sets (millions
of samples), relatively small training data sets, and difficulty in
identifying spectral classes. CIGSCR has many advantages over
IGSCR, such as the ability to produce soft classification, less sensi-
tivity to certain input parameters, potential to correctly classify
regions that are not amply represented in training data, and a
better ability to locate clusters associated with all classes. Further-
more, evidence is presented that the semisupervised clustering in
CIGSCR produces more accurate classifications than classification
based on clustering without supervision.

Index Terms—Fuzzy clustering, land cover classification, par-
tially supervised learning, remote sensing, soft clustering, statisti-
cal learning.

LIST OF SYMBOLS

aij E(Wij).
b2ij Var(Wij).
ci Class i.
k Cluster.
m Number of samples in cluster.
n Number of points.
nc Number of points in class/distribution c.
p Homogeneity threshold.
p() Probability.
p0 User-supplied threshold.
wij Weight.
ŵ Weight in next iteration.
wc,j Sample mean of weights in class c and cluster j.
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wj Sample mean of weights in cluster j.
x Multivariate sample.
z Test statistic.
B Number of bands.
C Number of classes.
E Expected value.
F Cumulative distribution function.
I Index set of class.
J Index set of cluster.
J(ρ) Objective function.
K Number of clusters.
Q Number of distributions.
Sw Sample standard deviation.
T Transpose operation.
U Cluster mean.
V Binomial random variable.
Vc,j Count of samples in class c and cluster j.
Vij Bernoulli random variable.
X Data point random variable.
Y Sum of random variables V and W .
Z Normal random variable.
ρ Distance.
α Type-I error.
αqj Expected value of weights drawn from qth distribution.
Σ Covariance.
δij Kronecker delta.
Φ(i) Label.
Ψ(i) Distribution.
β2
qj Variance of weights from qth distribution.

I. INTRODUCTION

IN REMOTE sensing, the identification of spectral classes
required for supervised classification is a tedious and labo-

rious process. While information/land cover classes (such as
forest or row crop) have physical meaning, spectral classes are
defined mathematically and often have statistical requirements
for good classification. Finding a comprehensive set of spectral
classes that fully represent the image’s spectrum with good
statistical properties (for supervised classification) is nontrivial.
A common strategy for addressing this issue is to use an
unsupervised technique such as clustering to learn the inherent
spectral classes within the image of interest. Clustering has the
advantage of producing mathematically defined spectral classes
that are guaranteed to sufficiently cover the image.

There are multiple examples of using unsupervised learning
of spectral classes within a partially supervised framework
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within the remote sensing community. Perhaps, one of the first
such algorithms is described in [1]. Clustering is used to define
spectral classes, and clusters are manually analyzed using a
variety of statistical methods to determine the spectral classes
to be used for classification. Additionally, unsupervised spectral
class formation can locate missing spectral classes [2], and
unsupervised approaches can even be used to locate all classes
when training data are only present for one class of interest [3]–
[5]. These techniques proved to be suitable for the identification
of one class of interest using supervised classification, with the
advantage of allowing an analyst to focus training resources
on only the class of interest [5]. In some cases, spectral class
training data are unavailable for some images but exist for
similar images/areas of interest such as multiple images taken
from the same scene at different times. Several partially su-
pervised spectral class identification approaches are proposed
to leverage an existing training data set [6]–[9]. In situations
where information class/land cover class training data exist, un-
supervised techniques such as clustering may be used to locate
spectral classes that correspond to information classes, allowing
statistical classification methods to produce a final land cover
classification where the land cover classes do not have desired
statistical properties. Fernandez-Prieto proposed an iterative
method that could learn land cover maps using information
class training samples [10], and Bauer et al. introduced an algo-
rithm called “guided clustering” used to learn spectral classes
from information class training data directly [11]. The training
data are clustered to reveal spectral classes that correspond to
an information class in the original data set. A fully automated
spectral class detection algorithm is the iterative guided spec-
tral class rejection (IGSCR) classification method [12]–[14].
IGSCR applies clustering to the entire input image and uses
information class training data to determine the most likely
information class assignment for each spectral class. Further-
more, training data are used to statistically test spectral classes
for information class purity, providing automatic spectral class
rejection required to form a robust set of spectral classes. Due to
its high accuracy and automation, IGSCR is a frequently used
hybrid classification method in the remote sensing community
[15]–[18].

One limitation present in the existing partially supervised
classification methods (including IGSCR) is the dependence on
hard clustering algorithms to produce hard (crisp) classification
results. Crisp classifications assign each pixel or sample to one
class in the particular classification scheme, which can be in-
terpreted as picking the class that has the highest probability of
containing the sample. Alternatively, soft classifications contain
information on possible memberships in multiple classes, not
just the most likely class. Soft or subpixel classifications are
of considerable interest to the remote sensing community as
this type of classification can effectively model geographic data
whose natural boundaries rarely coincide with pixel boundaries.
Pixels can also contain multiple species that are commingled,
leading to classification difficulty (the resolution of the image is
not sufficiently high to ensure that each pixel contains only one
class). Furthermore, individual classes within the classification
scheme can have overlapping electromagnetic reflectance spec-
tra, making it difficult to discriminate between these classes and

locate spectral classes. Scientists have successfully used soft
classification for applications such as land cover mapping [19],
vegetation mapping [20], and the classification of snow [21], to
name a few. Popular methods for obtaining soft classifications
of remote sensing images include fuzzy c-means [22] and
spectral unmixing [23].

The purpose of this paper is to develop a partially su-
pervised classification algorithm that uses soft clustering to
locate difficult-to-detect spectral classes. Note that, when good
spectral class training data exist to perform a supervised clas-
sification, those data should be used in a supervised classifi-
cation. This paper specifically addresses the issue of learning
spectral classes when only information class training data are
available. The approach taken in this work is to adapt the
clustering rejection and refinement framework in IGSCR to use
soft clustering and produce soft classifications. This framework
will potentially affect other classification algorithms that have
labeled data and involve clustering. Soft clustering retains all
information regarding the proximity of data points to clusters
and will therefore directly produce a soft classification and will
potentially provide better training spectral classes for a super-
vised decision rule (DR). The major challenges in converting
the discrete IGSCR to a fully continuous algorithm producing
soft classification are in converting the underlying inherently
discrete models and algorithms to suitable continuous models
and algorithms while preserving the automated spectral class
identification properties of IGSCR. More specifically, a hypoth-
esis test that is fundamental to IGSCR is based on the discrete
binomial probability distribution. A hypothesis test based on
a new continuous probability distribution is necessary in con-
tinuous IGSCR (CIGSCR). IGSCR uses an iterative cluster
refinement framework that breaks down under soft clustering,
and therefore, a new iterative cluster refinement method is
developed for CIGSCR.

The remainder of this paper is organized as follows.
Section II describes IGSCR in detail, and Section III intro-
duces CIGSCR. Section IV rigorously derives the association
significance test, a hypothesis test based on a new distribution
that will be suitable for evaluating the class associations to soft
clusters. Section V discusses changes necessary for the iterative
refinement of soft clusters and precisely states the complete
CIGSCR algorithm. Section VI concerns distance functions,
with experimental results following in Section VII. Section VIII
concludes this paper.

II. IGSCR

IGSCR is a classification method that uses clustering to
generate a classification model p(ci|x) where x is a multivariate
sample to be classified and ci, i = 1, . . . , C, is the ith class
where there are C classes in the classification scheme. IGSCR
uses clustering to estimate p(kj |x) in the expression

p(ci|x) =
K∑
j=1

p(ci, kj |x) =
K∑
j=1

p(ci|kj , x)p(kj |x) (1)

where kj , j = 1, . . . ,K, is the jth cluster out of K total
clusters. IGSCR also uses the clusters to train a DR using
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Bayes’ theorem [24]

p(kj |x) =
p(x|kj)p(kj)

K∑
i=1

p(x|ki)p(ki)
. (2)

The prior probabilities of the clusters p(kj) are assumed to be
equal since no a priori knowledge of the clusters is available.

Clustering is performed using a discrete clustering method
such as k-means that minimizes the objective function

J(ρ) =

n∑
i=1

K∑
j=1

wijρij (3)

subject to

K∑
j=1

wij = 1

where wij ∈ {0, 1} is the value in the ith row and jth column
of the partition matrix W ∈ �n×K , U (j) ∈ �B is the prototype
for the jth cluster kj , x(i) ∈ �B is the ith data point, and
ρij = ‖x(i) − U (j)‖22. The clusters k1, . . . , kK form a partition
of {x(i)}ni=1. The algorithm for k-means requires K initial
cluster prototypes and iteratively assigns each sample to the
closest cluster using

wij =

{
1, if j = argmin

1≤j≤K
ρij

0, otherwise

followed by the cluster prototype (mean) recalculation

U (j) =
n∑

i=1

(
wijx

(i)
)/ n∑

i=1

wij

once W has been calculated [25]. This process, guaranteed
to terminate in a finite number of iterations, continues until
no further improvement is possible, terminating at a local
minimum point of (3).

IGSCR uses labeled data in a semisupervised clustering
framework to locate clusters that correspond to classes in a
given classification scheme. IGSCR requires a labeled set of
training data composed of individual samples within the image
to be classified and corresponding class labels. Rather than
using the labeled data to train a DR directly, the entire image
is clustered, thereby capturing the inherent structure of all the
data and not just the labeled samples. The clusters represent
spectral classes, and each spectral class ideally corresponds
to exactly one class in the final classification scheme. Once
clusters are generated, each cluster must be mapped to one class
or rejected as impure. While, theoretically, each cluster should
contain samples belonging to only one information class, in
practice, clusters (spectral classes) that contain predominantly
samples of one class can contain a few samples from other
classes because of inherent errors. However, if a cluster con-
tains too many samples from different classes, the cluster itself
is considered confused and should not be labeled with one class.
Impure clusters are rejected and can be further refined in the
iterative part of the algorithm.

Once clusters are generated, the test for cluster purity is
performed using the labeled training set. Let Vc,j be the bino-
mial random variable denoting the number of labeled samples
assigned to the jth cluster that are labeled with a particular cth
class. Let p be the user-supplied cluster homogeneity threshold
(p = 0.9 would indicate that a cluster is 90% pure with respect
to the majority class), and let α be the user-supplied acceptable
one-sided type-I error for a statistical hypothesis test. Then, if c
is the majority class represented in the jth cluster, the jth cluster
is rejected if P (Z < ẑ) < 1− α where Z is a standard normal
random variable, m is the number of labeled samples in the jth
cluster, and

ẑ =
vc,j −mp√
mp(1− p)

. (4)

Typically, a continuity correction of 0.5 is added in the numer-
ator of (4) to closer approximate a binomial distribution when
m is small.

If a cluster is rejected, the samples making up that cluster can
be reclustered in subsequent iterations. All samples belonging
to pure clusters are removed from the image being clustered,
resulting in only samples belonging to impure clusters being
reclustered. Once more clusters are generated, those clusters
are evaluated for purity and removed from the image, and
clustering is performed again until termination criteria are met.
The termination criteria include all samples belonging to pure
clusters, leaving no remaining samples to be clustered. Also, no
pure clusters could be found in the previous iteration, meaning
that the clustering would continue to be performed on the same
data resulting in the same impure clusters (assuming determin-
istic cluster seeding). Finally, a set number of iterations can
be reached resulting in termination of the iteration. Note that
deterministic seeding ensures that the iteration will terminate,
even without specifying a maximum number of iterations.

Once the iterative clustering is complete, one or more clas-
sifications are performed. The first classification is called the
iterative stacked (IS) classification because it is the result of
combining or “stacking” all cluster assignments over all iter-
ations (each sample will be assigned to at most one accepted
cluster). Assume that all samples not assigned to an accepted
cluster are combined to form one cluster kK+1, and the class
assignment for that cluster is “unclassified” or cC+1. Then, the
IS assignment for a pixel using (1) is

IS(x) = argmax
1≤i≤C+1

p(ci|x) = argmax
1≤i≤C+1

K+1∑
j=1

p(ci|kj , x)p(kj |x)

where

p(ci|kj , x) =
{
1, if kj is labeled ci

0, otherwise

p(kj |x) =
{
1, if x ∈ kj

0, otherwise

since cluster assignments are discrete.
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The second possible classification, the DR classification,
uses the pure clusters to form a DR. Recall in (2) that

p(kj |x) =
p(x|kj)∑K
i=1 p(x|ki)

when all the p(kj) values are equal. Traditionally, the maximum
likelihood DR, assuming a multivariate normal distribution

p(x|kj) = 2π−B/2|Σj |−1/2e−
1
2 (x−U(j))

T
Σ−1

j
(x−U(j))

is used where Σj is the covariance matrix of the jth cluster
[26]. Since IGSCR produces hard classifications, the full prob-
ability need not be calculated as determining only the cluster
associated with the maximum probability is necessary. The DR
classification function is

DR(x) = argmax
1≤i≤C

p(ci|x) = argmax
1≤i≤C

K∑
j=1

p(ci|kj , x)p(kj |x)

(5)

where

p(kj |x)=

⎧⎪⎨
⎪⎩

1, if j=argmax
1≤j≤K

×
(
− ln |Σj |−

(
x−U (j)

)T
Σ−1

j

(
x−U (j)

))
0, otherwise.

A final classification, the IS plus (IS+) classification, com-
bines the DR and IS classifications. If a sample is labeled as
unclassified in the IS classification, the DR class value is used
for the IS+ classification; otherwise, the IS class value is used
for that particular sample. The IS+ classification function is

IS + (x) =

{
IS(x), if x �∈ kK+1

DR(x), otherwise.

III. CIGSCR

CIGSCR uses a similar semisupervised clustering framework
to the one established in IGSCR to produce a soft or probabilis-
tic classification instead of a hard classification and uses contin-
uous algorithms and models instead of discrete algorithms and
models. Recall in (1) that p(ci|kj , x) and p(kj |x) are either zero
or one (discrete) in practice in IGSCR. p(ci|kj , x) is necessarily
discrete because, while several clusters can comprise one class,
only one class (theoretically) can label the members of a par-
ticular cluster, but there are no similar restrictions on p(kj |x).
In fact, the clustering algorithm and the maximum likelihood
DR indicate positive probabilities that a sample is associated
with each cluster, but IGSCR makes an assignment only to the
cluster with the highest probability.

Consider a soft clustering algorithm that minimizes the ob-
jective function [27]

J(ρ) =
n∑

i=1

K∑
j=1

wp
ijρij subject to:

K∑
j=1

wij = 1 for each i

(6)

where wij ∈ (0, 1) is the value in the ith row and jth column
of the weight matrix W ∈ �n×K [analogous to the partition

matrix W in (3)], U (j) ∈ �B is the jth cluster prototype, p >
1, and ρij = ρ(x(i), U (j)) = ‖x(i) − U (j)‖22 is the Euclidean
distance squared. The algorithm that minimizes this objective
function is similar to that of k-means in that it first calculates

wij =
(1/ρij)

1/(p−1)

K∑
k=1

(1/ρik)1/(p−1)

for all i and j followed by calculating updated cluster proto-
types

U (j) =
n∑

i=1

wp
ijx

(i)

/
n∑

i=1

wp
ij .

This iteration (recalculation of the weights followed by recal-
culation of cluster prototypes, following by recalculation of the
weights, etc.) is guaranteed to converge (with these definitions
of ρij , U (j), and wij) for p > 1 [28].

With a continuous alternative to the discrete hypothesis test
and a continuous alternative to the IGSCR iterative cluster
refinement that follows in Sections V and VI, the classification
function for IS classification is

IS(x) = p(ci|x) =
K∑
j=1

p(ci|kj , x)p(kj |x) (7)

where p(kj |x) is estimated using wij and p(ci|kj , x) does not
change from IGSCR. The classification function for the DR
classification is

DR(x) = p(ci|x) =
K∑
j=1

p(ci|kj , x)p(kj |x)

=

K∑
j=1

p(ci|kj , x)
[

2e
− 1

2 (x−U(j))
T

Σ
−1
j (x−U(j))

πB/2|Σj |1/2

]

K∑
l=1

[
2e

− 1
2 (x−U(l))

T
Σ
−1
l (x−U(l))

πB/2|Σl|1/2

] . (8)

An analog for the IS+ classification is unnecessary in CIGSCR
as all samples will be part of pure clusters and will be classified.

IV. ASSOCIATION SIGNIFICANCE TEST

A key component in the IGSCR semisupervised clustering
framework is the homogeneity test used to determine if a
cluster contains a statistically significant proportion of one
class. This test provides a basis for rejecting a cluster for further
refinement, the second phase of the semisupervised clustering.

A cluster might be composed of more than one class because
the cluster should be split into multiple clusters. A cluster
might also contain more than one class because the initial
clusters were determined in such a way as to prevent a cluster
from moving toward a particular class. It would be useful to
determine which clusters are not spectrally pure (contain more
than one class with high probability) so that the cluster can be
further refined, and if no refinement is possible (any number of
iteration ending criteria are met), the cluster should not be used
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in the classification model. Statistical hypothesis tests provide
a mechanism for determining class purity once an appropriate
statistical model is selected for the data.

In hard IGSCR with hard clustering, the notion of a pure
cluster is clear. Each sample will belong to one and only one
cluster. A cluster can be 100% homogeneous when all labeled
samples contained within that cluster belong to only one class.
Although this is possible, it is unlikely that one cluster contains
only one class because of inherent error in the labeling process,
two different information class categories can contain spectrally
similar samples, and one pixel can be spectrally mixed. Once a
homogeneity level is determined, a rigorous hypothesis test can
be applied to select clusters that contain a certain percentage
of one class, with that percentage unlikely to be observed in a
particular cluster randomly.

Using soft clusters introduces complications to assessing
and determining cluster purity. The first question might be
whether a soft cluster can be spectrally pure, because being soft
might indicate that clusters are naturally composed of multiple
classes. However, just as the goal in IGSCR is to determine
clusters that are representative of just one predominant class,
that goal holds in CIGSCR with soft clusters. Soft clusters
are composed of different portions of each sample or pixel
within an image, meaning that each sample has a positive
probability of being in different individual classes or clusters.
When samples labeled with different classes have a positive
probability of belonging to the same cluster, that does not
indicate that the cluster really contains two different classes,
but rather perhaps that, while the pixels have strong associations
with different classes, there is also a positive (although possibly
small) probability that each pixel actually belongs to or partially
belongs to the majority class within the cluster. Both cases (the
cluster is confused or the cluster is not confused but the pixels
labeled with different classes still have small associations with
the same class) are possible in soft clustering. The appropriate
test for soft clusters is not which pixels “belong” to a particular
cluster (they all “belong” to some degree) rather how strongly
pixels from different classes belong to a particular cluster. If
pixels from only one class have strong associations with a
cluster when compared to pixels labeled with other classes, then
the cluster should be labeled with that most strongly associated
class. In this manner, each pixel/sample is associated by varying
degrees with multiple spectrally pure clusters that are mapped
to individual classes, ultimately producing a soft classification
output when each sample is then mapped to different individual
classes with varying probabilities.

A. Distribution

Developing a hypothesis test to assess the purity of clusters
requires a random variable and knowledge of the distribution
of that random variable. In IGSCR, a cluster can be considered
pure and labeled with a class if the number of labeled samples
belonging to the class is high compared to the number of labeled
samples not belonging to the class. The random variable of
interest, Vc,j =

∑
i∈Ij Vic, is the count of the number of labeled

samples belonging to the cth class for a particular jth cluster
where i is the pixel index, Ij is the index set of labeled pixels in

Fig. 1. Histogram of cluster weights m for all data in one cluster K = 2.

the jth cluster, and Vic is the Bernoulli random variable corre-
sponding to the ith pixel being associated with the cth class. A
hypothesis test can be developed using the binomial distribution
or the less computationally intensive normal distribution, which
approximates the binomial distribution well when the number
of labeled samples is large.

In CIGSCR, the random variable and distribution are more
complicated as there are class memberships (either zero or one)
and cluster memberships (between zero and one). Building a
test on only the class memberships is not useful as each labeled
sample will have some positive probability of belonging to a
particular cluster, making the results of the test the same for
each cluster unless memberships are also considered. In this
case, the association of a sample to a particular class (the
majority class, for example) is still a Bernoulli trial. Each
pixel also has a weight vector wi· indicating the probability of
membership to each cluster. The random variable of interest is
the sum of the memberships for the cth class and weights to the
jth cluster

Yc,j = V1cW1j + V2cW2j + · · ·+ VncWnj

where n is the total number of labeled samples. The labels of the
classified pixels are independent of cluster assignment, making
an assumption that Vic and Wij are independent reasonable.
Furthermore, the training samples are labeled prior to cluster-
ing, making the random variable of interest

Yc,j |(V1c, V2c, . . . , Vnc) =

n∑
i=1

Wijδφ(i),c

where φ(i) is the label of the ith pixel and

δφ(i),c =

{
0 if φ(i) �= c
1 if φ(i) = c

is the Kronecker delta. The probability density function (pdf) of
Yc,j |(Vic, i = 1, . . . , n) =

∑n
i=1 Wijδφ(i),c is the pdf of a sum

of individual cluster weights.
Fig. 1 shows the experimental frequency histograms of

weights wij for two clusters (K = 2) of the satellite image used
to generate experimental results in this paper. The distribution
of the cluster weights appears to be multimodal, which is con-
sistent with the data having multiple inherent classes, indicating
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Fig. 2. Pdf of Y (with sample mean subtracted and divided by the standard
deviation) compared to a standard normal distribution.

that Wij , i = 1, . . . , n, j = 1, . . . ,K, would not be identically
distributed. A closed-form distribution is not readily available
for Wij , but a closed-form distribution, or at least a reasonable
approximate closed-form distribution, for W+j =

∑n
i=1 Wij

exists, as will be shown in the next section.

B. Normal Approximation to Yc,j

Suppose that an image x contains n pixels x(i) ∈ �B , i = 1,
. . . , n. For K fixed cluster centers, U (k) ∈ �B , k = 1, . . . ,
K, the assigned weight of the ith pixel to the jth cluster is

wij =
1
/∥∥x(i) − U (j)

∥∥2
2

1

/
K∑

k=1

∥∥x(i) − U (k)
∥∥2
2

which is the inverse of the distance squared over the sum of
the inverse squared distances (such inverse distance weights
are widely used, e.g., by Shepard’s algorithm for sparse data
interpolation) [29]. Note that this is the specific case in the soft
clustering algorithm described earlier when p = 2. In this case,
where a remote sensing image is to be clustered, it is reasonable
to assume that x(i), i = 1, . . . , n, values are generated from
a finite number of multivariate normal distributions. The act
of clustering assumes that the data are generated from a finite
number of distributions, and remote sensing Earth data are as-
sumed to be generated from normal distributions. The proof in
Appendix A demonstrates that, under these assumptions (pixels
are generated from a finite number of normal distributions),
the Lindeberg condition is satisfied, and therefore, the central
limit theorem applies to the sum of a sequence of cluster weight
random variables

∑n
i=1 Wij .

Experimental results match this theoretical result, as illus-
trated by one experiment in Fig. 2.

C. Association Significance Test

The hypothesis test used in IGSCR to assess the significance
of a cluster association to a class is based on the normal approx-
imation to the binomial distribution (4). The null hypothesis is
that the true probability of a pixel belonging to the majority
class (for the cluster of interest) is less than p0, a user-supplied
value. If P (Z > ẑ) < α, where α is the user-provided type-I

error, then the null hypothesis is rejected. The null hypothesis
corresponds to the case when the cluster is impure, and rejecting
the null hypothesis equates with labeling the cluster pure; if the
null hypothesis is not rejected, the cluster is impure and the
cluster is “rejected.”

The hypothesis test for pure clusters in CIGSCR is different
as the Bernoulli trials are fixed and testing the probability p
of a success is no longer relevant. A pure soft cluster should
have large weights for the majority class and comparatively
small weights for other classes. One possible hypothesis test
compares the average weight for one particular cth class with
the overall average weight for all classes in the jth cluster.
Starting with the normal approximation for the sum of the
cluster weights, the standard normal test statistic would be

ẑ =

∑
i∈Jc

(wij − E[Wij ])√∑
i∈Jc

Var[Wij ]

where Jc is the index set of pixels prelabeled with the cth
class. E[Wij ] and Var[Wij ] are unknown but can be reasonably
approximated using the sample mean

wj =
1

n

n∑
i=1

wij

and sample unbiased standard deviation

Swj
=

√√√√ 1

n− 1

n∑
i=1

(wij − wj)2.

The Wald statistic is then

ẑ =

√
nc(wc,j − wj)

Swj

(9)

where nc = |Jc| and

wc,j =
1

nc

∑
i∈Jc

wij .

Since ẑ is generated (approximately) by the standard normal
distribution, a hypothesis test can be formed where the null
hypothesis is that the average cluster weights corresponding to
the cth class are not significantly different from the average
cluster weights corresponding to all classes, and the alternate
hypothesis is that the average cluster weights corresponding to
the cth class are significantly different from the average cluster
weights corresponding to all classes. Again, since class mem-
berships are known a priori and all pixels have some positive
membership with all clusters, testing for class memberships is
not meaningful, but testing for significantly different cluster
weights is meaningful. If P (Z > ẑ) < α, the probability of
observing the difference in the average cluster weights associ-
ated with c and the average cluster weights associated with all
classes in the jth cluster is significant, and the null hypothesis is
rejected. If the null hypothesis is not rejected, the cluster itself
is rejected as impure, and further refinement is necessary.
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V. ITERATION

Together with the cluster association significance test, the
iteration forms the semisupervised clustering framework in
CIGSCR. The application of a hypothesis test determines which
clusters should be used for classification, and an iteration
works to produce a set of associated clusters with each class
being represented by at least one associated cluster. This is
accomplished by introducing new clusters that are likely to be
associated and, when necessary, are associated with a class not
already represented by a cluster.

In IGSCR, pure hard clusters are removed from the image
that is clustered in subsequent iterations, focusing further re-
finement on clusters that failed to pass the purity test. K clusters
are used for each iteration, presumably producing smaller clus-
ters as less data are divided into the same number of clusters.
The underlying assumption is that clusters that fail to pass
the purity test could actually be composed of multiple clusters
that would pass the purity test individually, and clustering the
remaining data into K more clusters will reveal these smaller
clusters. This method will not directly work on soft clusters as
soft clusters cannot be removed simply by removing any sample
associated with a pure cluster—all samples have a positive
probability of belonging to any particular cluster.

In CIGSCR, unassociated clusters are targeted for refinement
by using their information to create new clusters that will likely
be associated. IGSCR is effectively locating smaller clusters
that, when combined to form a larger cluster, would have been
rejected. IGSCR accomplishes this by finding the same number
of clusters (K) in the original data set and then in successively
smaller subsets of that original data set. A similar approach
that would locate smaller pure clusters in rejected clusters is
“splitting” a cluster, employed by Ball and Hall [30] in Iter-
ative Self-Organizing Data Analysis Techniques (ISODATA).
Clusters are split by partitioning a cluster into two new clusters
and recalculating new means. Soft clusters are represented by
cluster means, and splitting a soft cluster would equate with
replacing one cluster mean with two cluster means (calculated
based on data associated with a cluster).

A cleaner algorithmic solution is to add one new cluster using
the information contained in the target cluster (the cluster that
would be split), which effectively splits the cluster into two
clusters. When using a clustering algorithm based on objective
function (6), adding a new cluster guarantees a smaller function
value (shown hereinafter) when p = 2. Using only the labeled
samples belonging to the majority class (as determined in the
cluster association significance test) to seed a new cluster would
have the effect of pulling the new cluster toward those samples.
Once another clustering iteration is completed, the targeted
cluster would produce one cluster that is likely to be associated
with the majority class and another cluster that retains relatively
strong associations with all other classes. In CIGSCR, once
the association significance test is performed, if at least one
cluster is unassociated (and there are no unassociated classes),
the cluster with the lowest value of ẑ is used to generate a new
cluster. The new cluster mean is determined using

U (K+1) =

∑
i∈φ−1(ck)

wikX
(i)

∑
i∈φ−1(ck)

wik
(10)

where k is the cluster with the lowest value of ẑ and ck is the
majority class in cluster k, and recall that φ−1(c) is the index
set of labeled samples whose label is c. This formula also works
when a class other than the majority class is used to seed a new
cluster mean.

A shortcoming in IGSCR is that there is no guarantee that any
clusters will be created and labeled with any particular class,
and if a particular class is not represented by a cluster, the de-
sired classification cannot be performed. In CIGSCR, this issue
is addressed by adding a new cluster using the information from
a particular class if that class is not represented in the associated
clusters. If a class c is not represented in the associated clusters,
the cluster that is closest to being associated with c is used to
generate a new cluster using (10) with ck = c. The “closest”
cluster is determined to be the cluster with the highest ratio of
the average membership of class c to the average membership
of the majority class.

When there are classes not represented by associated clusters
and there are unassociated clusters, only one method can be
used to determine the creation of a new cluster. If a cluster is
unassociated, it is simply not used in classification. It is more
important to have each class represented by the associated clus-
ters than to refine an unassociated cluster, because the desired
classification cannot be applied unless all classes are repre-
sented by associated clusters. Therefore, adding a new cluster
so that all classes will be represented takes precedence over
adding a new cluster because an existing cluster is unassociated.

Finally, the theorem proving that adding one cluster mean
will result in a smaller value of (6) is presented in Appendix A.

Assuming that the clustering algorithm locates a local min-
imum point of the objective function, the combination of the
clustering algorithm and this cluster prototype addition are
guaranteed to move toward a smaller objective function value.
If left unchecked, infinitely many clusters could be added, and
the algorithm would continue to find smaller objective function
values. The association significance test plays a crucial role in
the termination of this iterative process. Once all clusters pass
the association significance test and each class has at least one
associated cluster, the iteration stops because the higher level
objective has been met: Clusters that significantly correspond
to all classes have been located. The iteration also terminates
when a maximum number of clusters is reached, and only those
clusters that pass the association significance test are used for
classification. Pseudocode for the full CIGSCR algorithm is
presented in Appendix B.

VI. DISTANCE FUNCTIONS

In [28], Bezdek suggests that other functions may be used to
calculate ρij in place of squared Euclidean distance. To more
accurately model the assumed normal probability distribution
of the data, ρij = exp(‖x(i) − U (j)‖q2) will be used. Note that,
in the previous proof, showing that adding a soft cluster will
result in a smaller objective function value, the proof holds
for positive values of ρij (ρij is not required to be squared
Euclidean distance). When using a crisp clustering function
such as k-means, calculating the exponential function is not
necessary as each sample is simply assigned to the cluster that
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Fig. 3. Landsat ETM+ path 17/row 34 over Virginia, U.S., with the area of
interest highlighted.

maximizes the posterior probability. Since the soft member-
ships are being retained as probability estimates, calculating the
exponential function is necessary (and results in more accurate
clustering, as shown in the result section).

VII. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results for IGSCR and CIGSCR were obtained
using a mosaicked Landsat Enhanced Thematic Mapper Plus
(ETM+) satellite image taken from Landsat Worldwide Refer-
ence System path 17, row 34, located in Virginia, U.S., shown
in Fig. 3 [31]. This image, hereafter referred to as VA1734, was
acquired on November 2, 2003 and consists largely of forested
mountainous regions and a few urban areas that are predom-
inantly light blue and light pink in Fig. 3. Fig. 3 contains a
three-color representation of VA1734 where the red color band
corresponds to the near-infrared wavelength in VA1734, the
green color band corresponds to the red wavelength in VA1734,
and the blue color band corresponds to the green wavelength in
VA1734. Fig. 4 shows a zoomed area of interest. VA1734 has a
resolution of 30 m, 8720 rows, 8575 columns, and 6 bands.

The training data for this image were created by the
interpretation of point locations from a systematic hexagonal
grid over Virginia base mapping program true color digital
orthophotographs [32], [33]. Twenty-nine thousand points
were included in the training data set (approximately 8000 non-
forest and 21 000 forest). A two-class classification was
performed (forest/nonforest), and the classification parameters
and results are given in Table I (DR classification) and Table II
(IS/IS+ classification). Classification images for this data set
are given in Figs. 5–9.

Test data in the form of point locations at the center of
U.S. Department of Agriculture Forest Service Forest Inven-
tory and Analysis (FIA) ground plots were used to assess
the accuracy of this classification. Nine hundred fifty-nine

Fig. 4. Landsat ETM+ path 17/row 34 area of interest over Virginia, U.S.

uniformly scattered (throughout the image) points were in-
cluded in the test set. Since these test data are typically
used to evaluate crisp classifications, only homogeneous
FIA plots were used (either 100% forest or nonforest), and
these plots were obtained between 1997 and 2001. Accu-
racy was assessed based on an error matrix where classification
results for specific points (not included in the training data
set) are compared against known class values. The accuracies
reported in Tables I and II were obtained by first converting
all soft classifications to hard classifications for the purpose
of comparing hard classification values to hard ground truth
values. The classification results reported in Tables I and II
used 10, 15, 20, and 25 initial clusters for IGSCR and CIGSCR.
Experimental runs of IGSCR used homogeneity thresholds (test
probabilities of observing the majority class in a particular
cluster) of 0.5 and 0.9, with α = 0.01 for all IGSCR classi-
fications. A threshold of 0.9 would indicate a homogeneous
cluster, but a threshold of 0.5 is perhaps more analogous to
the new association significance test used in CIGSCR. Experi-
mental runs of CIGSCR used ρij = ‖X(i,j) − U (k)‖2 (squared
Euclidean distance) and ρij = exp(‖X(i,j) − U (k)‖2). For all
reported CIGSCR runs, α = 0.0001 (values of ẑ tend to be
high for the association significance test). Finally, classification
was performed using just clustering without the semisupervised
framework to evaluate the effect of the combination of the
association significance test and iteration in CIGSCR on clas-
sification accuracies. Results for this classification are found in
the last column of Tables I and II. Comparisons between IGSCR
and supervised and unsupervised classifications are avail-
able in [13].

While fuzzy k-means is described earlier as an analog to
k-means in IGSCR and was used to acquire the experimental
results, other soft clustering methods could be used instead.
Fuzzy k-means has the advantage of being efficient and is
straightforward to use for the derivations in this paper. A more
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TABLE I
IGSCR AND CIGSCR DR CLASSIFICATION ACCURACIES FOR VA1734

TABLE II
IGSCR IS+ AND CIGSCR IS CLASSIFICATION ACCURACIES FOR VA1734

Fig. 5. IGSCR DR classification using ten initial clusters and a homogeneity
threshold of 90%. Tan is nonforest, and green is forest.

computationally expensive method such as Gaussian mixture
model clustering may provide better clustering results. Further-
more, such a soft clustering approach could also be used in
IGSCR if the soft memberships are converted to hard mem-
berships. A further advantage of fuzzy k-means is that it is
implemented on parallel computers quite efficiently. Results for
this paper were generated in less than 10 min on a multicore
computer.

A. Discussion

The classification results in Figs. 5 and 6 show that soft
classification provides more information than hard classifica-

Fig. 6. CIGSCR DR classification using ten initial clusters and ρij =

e‖Xi−Uj‖2 . Brown is nonforest, green is forest, and tan indicates both.

tion, even if classification results are similar. While IGSCR
(hard classification) separates the data in Fig. 5 into one of
two classes, CIGSCR (soft classification method) retains in-
formation about how likely a sample is to belong to each
class. Since only two classes are used in this classification, this
information can be displayed using one figure where dark green
indicates high probability of forest and dark brown indicates
high probability of nonforest. The beige areas between green
and brown indicate regions of high uncertainty, information that
is not present in the hard classification in Fig. 5. The zoomed
images in Figs. 7–9 contain IS classifications from IGSCR and
CIGSCR, and these images further illustrate this point. The
IGSCR IS classification contains a class for samples (shown in
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Fig. 7. IGSCR IS classification using ten initial clusters and a homogeneity
threshold of 90%. Tan is nonforest, green is forest, and pink indicates no
assigned class during the clustering phase.

Fig. 8. IGSCR IS+ classification using ten initial clusters and a homogeneity
threshold of 90%. Tan is nonforest, and green is forest.

pink) that are not clustered, meaning that they were originally
part of confused or impure clusters. A logical correspondence
seems likely between confused clusters in IGSCR and uncertain
classes in CIGSCR, and in fact, most of the uncertain samples
in the CIGSCR IS classification are also unclassified in the
IGSCR IS classification, although the reverse is not true. Soft
classification is necessary in order to have information on
classification certainty (and uncertainty).

Fig. 9. CIGSCR IS classification using ten initial clusters and ρij =

e‖Xi−Uj‖2 . Green is forest, brown is nonforest, and tan indicates a mixture.

One advantage of soft clustering is the potential ability to
correctly identify spectral classes that are close to the boundary
(or in the overlapping boundary) between information classes.
In the experimental data (shown in Figs. 5 and 6), water appears
similar to forest but should be labeled as nonforest. In the ex-
perimental results (Figs. 7–9), IGSCR incorrectly labels water
as forest (see Fig. 8), highlighting a limitation in the use of hard
clusters to locate spectral classes. IGSCR either was unable to
generate a pure cluster that corresponded to water or lacked
sufficient water training data to correctly label that spectral
class. Pink regions in Fig. 7 show which pixels in the area of
interest were not attributed to a pure spectral class, and water
pixels are included. CIGSCR correctly labeled the water as
nonforest, as shown in Fig. 9. Similarly, the shadowed forested
regions were not part of a pure spectral class in IGSCR (Fig. 7),
were ultimately incorrectly labeled as nonforest using IGSCR
(Fig. 8), and were correctly labeled as forest using CIGSCR
(Fig. 9). In this experiment, the correct identification of these
spectral classes is the direct result of using soft clustering.

In addition to inherently providing more information through
soft memberships, CIGSCR has other desirable properties over
IGSCR, namely, it is frequently more accurate and less sensitive
to input parameters. Based on accuracies reported in Tables I
and II, CIGSCR is less sensitive to the number of initial clusters
than IGSCR (particularly when ρ = e‖x−U‖2 is used). As shown
in Tables I and II, IGSCR can be sensitive to the number
of initial clusters and the homogeneity threshold and is less
accurate on average than CIGSCR using ρ = e‖x−U‖2 (based
on the data being normally distributed). Note that, particularly
for the IS+ classifications obtained directly from clustering,
the standard deviation of experimental IGSCR accuracies is
several times larger than those from CIGSCR, indicating the
sensitivity to parameters. The set of clusters ultimately used for
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classification in IGSCR is directly affected by the number of
initial clusters and the homogeneity test, and furthermore, when
all clusters fail the homogeneity test, the iteration terminates,
and no more clusters are found. The number of clusters used
for classification can vary widely depending on the number of
iterations completed as each iteration potentially produces sev-
eral pure clusters. The low accuracies reported for the IGSCR
IS+ classifications in Table II occur when a small number of
iterations occur, which can be greatly influenced by the number
of initial clusters and the homogeneity test. The classification
accuracies reported for CIGSCR in Tables I and II are more
consistent as CIGSCR does not have the same sensitivity issues.
First, the association significance test no longer requires a user
input threshold like the homogeneity test. The homogeneity test
in IGSCR evaluates the observed values against a user-supplied
probability of observing a specific class (within a cluster), but
the association significance test in CIGSCR determines if the
average cluster memberships per class are statistically signifi-
cantly different (requiring no user-specified probability). Sec-
ond, the iteration in CIGSCR is fundamentally different from
the iteration in IGSCR. While each iteration in IGSCR locates
multiple clusters, each iteration in CIGSCR adds one additional
cluster, and terminating this iteration potentially excludes many
fewer clusters from the final classification than terminating the
iteration in IGSCR (particularly when few iterations occur). As
classification methods are already sensitive to training data and
clustering methods are sensitive to initial prototype locations,
classifications being sensitive to fewer parameters are a desir-
able property.

The final column in Tables I and II provides compelling evi-
dence that the semisupervised clustering frameworks in IGSCR
and CIGSCR ultimately lead to more accurate classifications
than merely clustering without supervision. The spectrally pure
clusters located using IGSCR and CIGSCR lead to classifi-
cation accuracies that are on the order of 10% higher. Fur-
thermore, both classification methods iteratively locate clusters
beyond the initial set of clusters, also potentially leading to
higher classification accuracies.

VIII. CONCLUSION

This paper has presented a continuous analog to IGSCR
that rejects and refines clusters to automatically classify a
remote sensing image based on information class training data.
This new algorithm addressed specific challenges presented
by remote sensing data including large data sets (millions of
samples), relatively small training data sets, and difficulty in
identifying spectral classes. The resulting classifications are
fundamentally different from IGSCR (the discrete predecessor
to CIGSCR) classifications, even when converting the CIGSCR
soft classifications to hard classifications. CIGSCR has many
advantages over IGSCR, such as the ability to produce soft
classification, less sensitivity to certain input parameters, poten-
tial to correctly classify regions that are not amply represented
in training data, and a better ability to locate clusters associ-
ated with all classes. The semisupervised clustering framework
within CIGSCR has been shown here to improve classification
accuracies over clustering alone. This semisupervised cluster-

ing framework could be incorporated into many classification
algorithms that use clustering.

The highly automated CIGSCR classification algorithm is
a contribution to the remote sensing community that has few,
if any, partially supervised soft classification algorithms analo-
gous to the many partially supervised hard classification algo-
rithms that exist. Future work includes using this soft classifier
for many applications of classification in remote sensing.

APPENDIX A
THEOREMS

Theorem: Let X(i), i = 1, 2, . . ., be B-dimensional random
vectors having one of Q distinct multivariate normal distribu-
tions. Let q = ψ(i) denote the distribution from which X(i) was
sampled. For i = 1, 2, . . . and j = 1, . . . ,K, define the random
variables

Wij = Wj

(
X(i)

)
=

1/
∥∥X(i) − U (j)

∥∥2
2∑K

k=1 1/
∥∥X(i) − U (k)

∥∥2
2

where K is the number of clusters and U (k) ∈ �B is the kth
cluster center (and is considered fixed for weight calculation).
Then, for any j = 1, . . . ,K

P

{
1

Bnj

n∑
i=1

(Wij − aij) < x

}
→ 1√

2π

x∫
−∞

e−
z2

2 dz

as n → ∞, where aij = E[Wij ], b2ij = Var[Wij ], and B2
nj =∑n

i=1 b
2
ij .

Proof: Wij is a bounded (0 ≤ Wij ≤ 1) measurable func-
tion of a normal random variable and is, therefore, a random
variable with finite mean and variance. Fix j for the remainder
of the proof, and let q = ψ(i) denote which of the Q distribu-
tions X(i) is from. In order to prove

P

{
1

Bnj

n∑
i=1

(Wij − aij) < x

}
→ 1√

2π

x∫
−∞

e−
z2

2 dz

it is sufficient to verify the Lindeberg condition [24]

lim
n→∞

1

B2
nj

n∑
i=1

∫
|x−aij |>τBnj

(x− aij)
2dFψ(i),j(x) = 0

for any constant τ > 0 where Fψ(i),j(x) is the cumulative
distribution function for Wij .

For each q, 1 ≤ q ≤ Q, define Iq = ψ−1(q) = {i|ψ(i) =
q, 1 ≤ i ≤ n} and nq = |Iq|, and for i ∈ Iq, let E[Wij ] = aij =
αqj and Var[Wij ] = b2ij = β2

qj . Now, considering only the in-
dependent and identically distributed (i.i.d.) random variables
Wij , i ∈ Iq , the Lindeberg condition holds

lim
nq→∞

1

nqβ2
qj

∑
i∈Iq

∫
|x−αqj |>τ

√
nqβqj

(x− αqj)
2 dFqj(x)

= lim
nq→∞

1

β2
qj

∫
|x−αqj |>τ

√
nqβqj

(x− αqj)
2 dFqj(x) = 0.
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Since βqj is positive and finite and the integral is finite, the limit
of the integral is zero as

√
nqβqj → ∞.

Wij , i = 1, 2, . . ., denotes the random variables from Q i.i.d.
distributions Fqj , q = 1, . . . , Q, where the mean of the qth
distribution is αqj , the variance is β2

qj , and the number of ran-

dom variables from that distribution is nq , where
∑Q

q=1 nq =
n. As n → ∞, there is at least one q for which nq → ∞.
For this sequence of independent random variables from Q
distributions, the Lindeberg condition is

lim
n→∞

1

B2
nj

n∑
i=1

∫
|x−aij |>τBnj

(x− aij)
2 dFψ(i),j(x)

= lim
n→∞

1
Q∑

k=1

nkβ2
kj

Q∑
q=1

nq

·
∫
|x−αqj |>τBnj

(x− αqj)
2 dFqj(x)

= lim
n→∞

Q∑
q=1

nq∑Q
k=1 nkβ2

kj

·
∫
|x−αqj |>τBnj

(x− αqj)
2 dFqj(x)

≤ lim
n→∞

Q∑
q=1

1

β2
qj

∫
|x−αqj |>τBnj

(x− αqj)
2 dFqj(x) = 0.

Since each variance β2
qj is positive and finite and Bnj =√

n1β2
1j + · · ·+ nQβ2

Qj → ∞ as at least one nq → ∞, each

integral converges to zero as n → ∞, and the Lindeberg condi-
tion is verified. �

Remark: The assumption that the X(i), i = 1, 2, . . ., is gen-
erated from a finite number of normal distributions is stronger
than necessary. This proof holds if X(i), i = 1, 2, . . ., is gener-
ated from a finite number of arbitrary distributions.

Theorem: Given an integer K > 0, positive real numbers
ρij , i = 1, . . . , n; j = 1, . . . ,K + 1, defining a point ρ ∈
�n×K+1, and the objective function

J (K)(ρ) =

n∑
i=1

K∑
j=1

w2
ijρij

for K clusters where

wij =
1/ρij

K∑
k=1

1/ρik

the objective function

J (K+1)(ρ) =

n∑
i=1

K+1∑
j=1

ŵ2
ijρij

for K + 1 clusters where

ŵij =
1/ρij

K+1∑
k=1

1/ρik

satisfies

J (K+1)(ρ) < J (K)(ρ).

Proof: Note that the ρij does not change with the addition
of the (K + 1)st cluster prototype; however, ŵij < wij for
j < K + 1 because the denominator of ŵij has an additional

term. Let J (K)
i =

∑K
j=1 w

2
ijρij and J

(K+1)
i =

∑K+1
j=1 ŵ2

ijρij .

It is sufficient to show that J (K+1)
i < J

(K)
i for each i to prove

that J (K+1) < J (K).
Let

S1 =

K∑
k=1

1/ρik S2 =

K+1∑
k=1

1/ρik.

Then

w2
ij =

(1/ρij)
2

S2
1

ŵ2
ij =

(1/ρij)
2

S2
2

.

J
(K)
i − J

(K+1)
i =

K∑
j=1

(1/ρij)

S2
1

−
K+1∑
j=1

(1/ρij)

S2
2

=
S2
2

∑K
j=1(1/ρij)− S2

1

∑K+1
j=1 (1/ρij)

S2
1S

2
2

.

Examining only the numerator in the previous term

(S1 + (1/ρi,K+1))
2

K∑
j=1

(1/ρij)

− S2
1

⎛
⎝ K∑

j=1

(1/ρij) + (1/ρi,K+1)

⎞
⎠

= (S1 + (1/ρi,K+1))
2 S1 − S2

1 (S1 + (1/ρi,K+1))

= S3
1 + 2S2

1(1/ρi,K+1) + S1(1/ρi,K+1)
2

− S3
1 − S2

1(1/ρi,K+1)

= S2
1(1/ρi,K+1) + S1(1/ρi,K+1)

2

> 0

yielding

JK+1
i < J

(K)
i .

�



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PHILLIPS et al.: CIGSCR CLASSIFICATION ALGORITHM 13

APPENDIX B
PSEUDOCODE

Algorithm CIGSCR
Input: X % multispectral image
φ−1 % set of (row, col) indices for each class
Kinit % number of initial clusters
Kmax % maximum number of clusters
C % number of classes
ε % convergence threshold
α % Type-I error for one-sided hypothesis test
Output: DR % decision rule classification
IS % iterative stacked classification

begin
% Initialization

Initialize cluster means U along the axis defined by the
mean plus or minus the standard deviation of the
image X;
K := Kinit;

% Begin Iteration
for iteration := Kinit step 1 until Kmax do

begin
w := 0; convergence := 1;
while convergence > ε do

begin
% Cluster Data

num := 0; denom := 0;
for i := 1 step 1 until rows do

for j := 1 step 1 until cols do
for k := 1 step 1 until K do

begin

ŵij,k :=
1/‖X(ij) − U (k)‖22

K∑
l=1

1/‖X(ij) − U (l)‖22
;

% update sums for mean calculations.
num(k) := num(k) + ŵ2

ij,kX
(ij);

denomk := denomk + ŵ2
ij,k;

end
% update cluster means
for k := 1 step 1 until K do

U (k) :=
num(k)

denomk
;

convergence := max
i,j,k

|wij,k − ŵij,k|;
w := ŵ;

end
% Determine Good Clusters

for k := 1 step 1 until K do
begin

Determine majority class c of cluster k;
ck := c;

Zk :=

√
nc(wc,k − wk)

swk

;

end
if any class is not associated with a cluster then

begin
c := first unassociated class
k := argmaxk(wc,k/wck,k)
K := K + 1

U (K) =

∑
ij∈φ−1(c)

wij,kX
(ij)

∑
ij∈φ−1(c)

wij,k
;

end
elseif (any(Zk < Z(α), k = 1, . . . ,K) then

begin
k := argmink Zk;
K := K + 1;

U (K) =

∑
ij∈φ−1(ck)

wij,kX
(ij)

∑
ij∈φ−1(ck)

wij,k
;

end
else

exit for loop;
end

end
for k := 1 step 1 until K do

begin
% initialize for covariance calcs.
Σk := 0;
denomk := 0;

end
% IS classification

for i := 1 step 1 until rows do
for j := 1 step 1 until cols do

begin
csum := 0;
for k := 1 step 1 until K do

if (Zk > Z(α)) then
csumck := csumck + wij,k;

for c := 1 step 1 until C do

ISij,c :=
csumc

C∑
k=1

csumk

;

% calculate covariance matrices
for k := 1 step 1 until K do

begin
Σk := Σk + wij,k

·(X(ij) − U (k))(X(ij) − U (k))T ;
denomk := denomk + wij,k;

end
end

for k := 1 step 1 until K do
Σk := 1/denomk · Σk;

% DR classification
for i := 1 step 1 until rows do

for j := 1 step 1 until cols do
begin
csum := 0;
for k := 1 step 1 until K do

if (Zk > Z(α)) then
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begin

p :=
2e−(1/2)(X(ij)−U(k))TΣ−1

k
(X(ij)−U(k))

πB/2|Σk|1/2
;

csumck := csumck + p;
else
csumck := 0;

end
for c := 1 step 1 until C do

DRij,c :=
csumc

C∑
k=1

csumk

;

end
end
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