
52	 This article has been peer-reviewed.� Computing in Science & Engineering

P e t a s c a l e
C o m p u t i n g
S o f t w a r e

A d a p t a t i o n

Adaptive Code Collage:
A Framework to Transparently
Modify Scientific Codes
Legacy scientific codes are often repurposed to fit adaptive needs, but making such code
adaptive without changing the original source programs can be challenging. Adaptive Code
Collage (ACC) meets this challenge using function-call interception in a language-neutral
way at link time, transparently “catching” and redirecting function calls.

A daptive programs change their runtime
behavior to achieve certain purposes—
such as performance improvement, or
better numerical stability—by track-

ing changes in problem characteristics, available
resources, and execution environments. Almost
every computational scientist has encountered the
situation wherein they’d like to make a legacy code
adaptive to their application context but without
seriously changing the original programs. Simple
examples of adaptation might be to change the
values of global variables during a computation or
to switch algorithms at runtime. When adaptivity
scenarios are conceived at the start of the software
design process, we can design inherently adaptive
algorithms. However, when changing the behav-
ior of an existing program, modifying the original
code is often viewed as inevitable. Here, we pres-
ent an alternative solution.

Typically, modifying a program to make it more
adaptive involves changing a function call into an
if-then-else statement that lets you choose two
different functions depending on the runtime value
of a predicate. In large programs with a complex
adaptive plan, such rewriting can become tedious
or cumbersome because you must locate and update
all the places that need modification. Sometimes,
such changes require restructuring the whole pro-
gram, which can be quite imposing. In fact, the
object-oriented (OO) programming community
has identified the need to add new functionality
to existing code in a modular way as aspect-oriented
programming.1 AOP helps abstract out a new func-
tionality or concern for existing code into an as-
pect, and the aspect code can be inserted or weaved
at the right places in a program.2 This code inser-
tion process can work even at the binary level for
Java programs without having the source available.
Even for non-OO languages such as C, there are
tools and language extensions that enable AOP’s
advice-weaving constructs for code insertion.3–4
However, we still lack comparable support for For-
tran, which is widely used in scientific computing.

Binary instrumentation tools can overcome
this language-dependency issue. These tools
insert code to existing programs in a compiled
binary form, offering clean separation between
the original and the new code because the two
codes are coalesced at the binary level instead of

1521-9615/12/$31.00 © 2012 IEEE

Copublished by the IEEE CS and the AIP

Pilsung Kang, Naren Ramakrishnan, Calvin J. Ribbens,
and Srinidhi Varadarajan
Virginia Tech
Michael A. Heffner
Librato

CISE-14-1-Kang.indd 52 12/22/11 11:01 AM

January/February 2012 � 53

the programming-language level. Still, because
they deal with the native processor instructions
at the lowest level, binary instrumentation tools
are typically developed for sophisticated program
analysis purposes,5-7 such as debugging and pro-
filing, rather than as a tool to aid programmers in
extending existing programs in a modular way. An
exception is Detours,8 a general-purpose package
for dynamic function interception. However, De-
tours is available only on Windows systems.

Here, we present Adaptive Code Collage (ACC),
a framework for implementing adaptive programs
on top of nonadaptive existing code without re-
sorting to AOP tools or frameworks. Instead,
we use a function-call interception technique to
monitor and adapt the original function behavior.
As Figure 1 shows, the assembly-language version
of the original source code is first patched to em-
bed hooks at the desired function calls. Because
the patching is applied at the assembly level, the
original source code is unaffected and its pro-
gram structure is maintained. Each of the inter-
cepted function calls and its parameters are then
associated with individual handler codes, which
are separately written to perform the appropri-
ate computations necessary to decide whether to
change the function behavior. Both the patched
original and the adaptivity code are then com-
bined to produce a complete application.

Our ACC framework has three key features:

•	Modularity and transparency. The adaptivity code
is written and managed as a separate module

with regard to the original program. The origi-
nal code, which we assume was written in a
high-level language, isn’t modified. Instead,
code insertion is applied to the compiler-
generated assembly code.

•	Fortran support. The assembly code patching
works for Fortran as well as C. The method can
be applied as long as the original code can be
compiled to generate assembly output.

•	Persistency. Code patching is needed only once.
Once it’s done, the patched code can be used
anew without further manipulation and can be
linked with any adaptivity-code variant as the
program evolves. This enables the late binding
of adaptivity code.

ACC’s capabilities for implementing adaptivity
are quite general, and in the next section we dis-
cuss the adaptive contexts when applying ACC to
scientific software.

Adaptive Contexts in ACC
ACC is primarily a programmer’s tool for factor-
izing adaptivity with an existing scientific code
base to enable the plug-and-play of different adap-
tive strategies. It’s not a specific recommendation
for what needs to be adapted and how (which is the
purview of domain-specific information).

Many sophisticated code bases—such as the
example application in computational fluid dy-
namics, which we present later—have withstood
years of use but are constantly put to the test as
they’re ported to new computational platforms

Figure 1. Adaptive application development under the Adaptive Code Collage (ACC) framework. The
assembly-language version of the original source code is first patched to embed hooks at the desired
function calls.

Application

calls f() & g()

F

de�nes f()

G

de�nes g()

Patched assembly
intercept f() & g()

Handler for f()

Compilation and
linking

Handler for g()

ACC library

Original
codebase

Adaptivity
code

Extended program

CISE-14-1-Kang.indd 53 12/22/11 11:01 AM

54 Computing in SCienCe & engineering

and extended to new problem contexts and new
physical modeling situations. For instance, the
Generalized Incompressible Direct and Large-
Eddy Simulations of Turbulence (GenIDLEST)
code we describe later must be adapted for new
memory hierarchies and data distributions, for
modeling time-varying fl ow conditions, and to
accommodate the latest linear system solvers. We
show how the vanilla GenIDLEST code base
can be adapted to these situations by factoring
out the adaptivity/control decisions in a separate
code and weaving them into the program execu-
tion. (Sophisticated codebases that already have
adaptation built into them are outside ACC’s
scope.)

Although our methods can be applied to any
code base, we focus on scientifi c codes primarily
because these codes are especially rich in adapta-
tion possibilities. In particular, they often feature
libraries of multiple algorithms for the same prob-
lems, with selective superiorities between them.
Secondly, adaptation is a long-used technique for
improving performance and methods to automat-
ically switch between algorithms and to pursue
alternative lines of computation that are crucially
important. Finally, there’s a growing emphasis in
scientifi c computing on bringing the best prac-
tices in software engineering (such as modularity
and separation of concerns) into scientifi c code
management, and ACC is a tool that works within
this tradition.

A variety of adaptation strategies can be real-
ized using ACC, such as code adaptation on a
per-problem or per-execution-context basis, or
even adaptation steered interactively by the user
as opposed to automatically inside execution.
Irrespective of the diversity of these strategies,
many of them often rely on tracking and modify-
ing a single variable or set of variables, or divert-
ing function calls, to improve the computation’s
performance, stability, or accuracy. We developed
ACC to support such capabilities.

Table 1 compares ACC with other program
modifi cation or extension tools. Overall, our ap-
proach is similar to the advice-weaving technique
of AOP in that modular development and integra-
tion is possible. However, key points of contrast
exist. Unlike AspectJ (www.eclipse.org/aspectj),
for instance, ACC supports non-OO languages.
Unlike AspeCt-oriented C(www.aspectc.net) or
AspectC++(www.aspectc.org), which use source-
to-source translation, ACC performs code modi-
fi cation at the assembly level.

Because ACC works at the assembly-language
level, what it can and can’t do must be described
at a much lower granularity than high-level lan-
guages and their features. ACC makes the fol-
lowing assumptions in supporting an adaptivity
scenario. First, the types of parameters that can
be readily supported are those involving the
primitive data types—such as integers, reals, and
Booleans—that also include pointers. This lets us
support most C/C++ codes and all Fortran codes
(because Fortran uses call-by-reference to pass
parameters to function calls). ACC wouldn’t be
directly applicable to adapting those functions
that pass parameters of structured data types un-
less the parameters are passed by pointers.

Second, ACC’s support of C++ is weak in that
we can’t directly apply the assembly patching for
C++ methods because of C++’s name mangling,
which is heavily dependent upon compiler imple-
mentations. C wrappers for C++ methods can be
used to resolve the issue. Otherwise, it remains
a programmer’s burden to manually resolve the
mismatch between different compilers. Finally,
certain features that we can’t support currently
include dynamic functions, function parameters
passed through registers, and custom orders of
parameter “reading” as implemented by different
compilers and languages.

Here, we present two examples of ACC use.
First, we show how it adjusts the over-relaxation
parameter w in an adaptive SOR algorithm for

table 1. comparison of program modifi cation techniques.

features

aop frameworks adaptive code
collage

Binary
instrumentationc/c++ aspectJ

Modifi cation level Source language Source or binary Assembly Machine
instructions

Source availability Always needed Not necessary Only once Not necessary

Insertion time Compilation time Compilation or
link time

Link time Post-compilation

Fortran support Bound to C/C++ Bound to Java Yes Yes

Main usage Program behavior
extension

Program behavior
extension

Program analysis

CISE-14-1-Kang.indd 54 12/22/11 11:01 AM

January/February 2012 � 55

linear systems. This is a trivial example from
textbooks, but it serves as a programmer’s guide
on how to use our framework. It thus enables
us to delve into ACC in greater detail in our
second, more complex example involving the
GenIDLEST code.

As we present the details of our framework and
how we instantiate it in these case studies, we
make a key distinction between our framework’s
performance and the performance of the adapted
code. The latter hinges on how cleverly relevant
problem characteristics are tracked by the adap-
tive segments and used to improve performance.
Our focus is on the former—that is, how easy
ACC makes adaptation and how much overhead
it introduces.

Basic Constructs for
Implementing Adaptivity
A framework that can model complex adaptive
scenarios must be able to compositionally switch
back and forth between the old, unpatched code
and the newly designed functions. We first pres-
ent a set of three primitive operations that can be
used as building blocks for such compositional
modeling.

Function Interception
One of ACC’s basic goals is to support procedure-
level decomposition of a compiled object file so
that procedure calls within a module become
control points at which the application’s execution
can be adapted. Therefore, the framework’s basic
construct is a method for intercepting, or catch-
ing, the function calls made within an application.

Several programs and projects support inter-
cepting function calls within an application.6,8
ACC is different in that it intercepts function
calls at the location the calls are made. In x86 as-
sembly, function calls within an application are
represented by the call instruction, whose single
argument is the address of the function to in-
voke. The ACC framework targets the assembly-
language representation of an application, allow-
ing us to replace any call instruction with a call
to our own interception handler. Then, at run-
time, the original target function address is saved
so that the interception handler can determine
which function was being called. When our in-
terception handler is called in place of the original
function, the handler will determine whether to
continue execution with the original target func-
tion or to perform some other operation.

When the application is modified so that func-
tion calls are intercepted by ACC, the locations

at which the calls are made are modified instead
of the locations associated with the target func-
tions. This is because the code associated with the
callee might not be available when the application
is modified, such as when the callee is located in
a dynamic module that isn’t automatically loaded
at runtime. By modifying the caller instead, we
don’t require all the components of an application
to be loaded at runtime. We convert the original
call instructions—which would otherwise require
correct runtime link binding—into lookup refer-
ences that ACC uses to determine the appropri-
ate action to take when the calls are made. The
original function-call location in effect becomes a
placeholder (or “link point,” in the AOP vernacu-
lar) that the framework can connect to arbitrary
procedures during runtime.

To allow for the most adaptivity in a procedure-
level decomposition, the framework must also sup-
port the ability to catch when a function returns.
In ACC, when a function is diverted through our
interception handler, we manipulate the return
address to point to a return-handler instead. The
return-handler can perform post-function-call
computation—after which it will eventually re-
turn to the original return address. This is useful
because when the function returns, the function
call’s outcome can be queried, including the re-
turn value or any values returned via pass-by-
reference parameters. For example, this allows the
adaptivity code to massage any return values be-
fore they’re passed back to the calling module to
fix type differences or influence the caller.

Registered Callbacks
When a function call is intercepted or the return
of a function is intercepted, the framework passes
control of the application to an adaptation module
so that it can make any required adaptive control
decisions. This functionality is supported in ACC
using a method of registered callbacks.

An adaptivity module can register either a pre-
or post-callback (or both) for a given function,
which is executed when the function is invoked or
a return is made from the function, respectively.
When ACC invokes a callback, it passes a refer-
ence to the invocation stack entry, an ACC data
structure for bookkeeping function-invocation
information corresponding to that function call.
With the invocation entry reference, the call-
back can lookup or manipulate parameters, re-
map the function call, and search the remaining
invocation stack. In other words, the callback
has full control over the application’s current
state.

CISE-14-1-Kang.indd 55 12/22/11 11:01 AM

56� Computing in Science & Engineering

Function-Call Parameter Manipulation
We provide a complete set of controls that let
the application query and manipulate the pa-
rameters passed to procedure calls. The in-
stantaneous values of parameters passed to
a function at runtime can give insight into
whether an application is making sufficient
progress or whether any adaptive decisions
should be made to improve the results or per-
formance. For example, a recursive sorting rou-
tine’s subinterval indices can reveal whether it
might be beneficial to switch to a different sort-
ing algorithm. Similarly, tracking a numerical
routine’s current relative error might reveal
that switching to a different routine would im-
prove convergence.

ACC supports the ability to query and manipu-
late a function’s parameters before and after its
lifetime. Before any operations on the parameters
can be performed, the size and type of each pa-
rameter must be specified so that the framework
can calculate each parameter’s correct memory
offset. Or the predefined parameter types that
represent which type and size can be used. Once
all function parameters are specified to ACC,
simple query functions will return pointers to
the parameters in memory and, by dereferencing
these pointers, the application can read/write the
parameters in memory. Also, parameters that are
passed by reference to a function can be manipu-
lated when a function returns if the user desires to
massage the values returned.

However, the most useful parameter construct
of our ACC framework is the ability to remap a
function’s entire parameter list. For example,
when an adaptation scheme intends to remap one
function to another, the function signatures typi-
cally must be the same because the parameters are
already on the stack. This severely limits the flex-
ibility to abstractly connect system components if
you don’t know the correct semantics beforehand.
If the adaptation code specifies the parameters’
size and type of both the original function and
the new function, you can overcome this barrier
by simply

•	 calculating the difference in lengths of the two
parameter lists,

•	 adjusting the frame pointer by the difference in
lengths, and

•	 copying the new parameters onto the stack.

Thus, ACC’s function call parameter manipu-
lation functionality allows for realizing complex
adaptation scenarios.

Application Development Process
The adaptive application development process
under ACC consists of three stages: patching the
compiler-generated assembly language from the
original code, writing the code for an adaptation
scenario, and writing the glue code that connects
the adaptivity component to the original code
through the ACC APIs.

Patching the Original Code
Our approach is to perform the necessary code
modification over the GCC assembler output
generated from the source before it’s assembled
to an object file. Applying a simple pattern-
matching and substitution Perl script over the
assembly code, we replace every function call
of interest with a call to the framework’s acc_
func_intercept function, a general hook for
branching to individual handler code to adapt
the original behavior of functions. As explained
earlier, we apply the patch to the program code
that calls the target function, not to the function
code itself.

Because the code patching is done at the assem-
bly level, the adaptive application development
process is cleanly separated from the development
activity of the original program. As long as the
original program is written in high-level languages
such as Fortran or C, the source and its program
structure are unaffected.

Another advantage of our code-patching tech-
nique is the persistence of the hooks inserted into
the original program. Once the code is patched
and compiled into an object file, because the hooks
are now in there, it can be linked with different
versions of the handler code without recompiling
the original application code as the handler code
evolves.

Writing Handler Code
for an Adaptation Scenario
After the original code is patched to intercept
specific function calls, you must write the handler
code to implement any adaptive operations that
will be performed at the trapped calls; you can
choose to trap before and/or after the execution
of the function call. The operations in the han-
dler code will be uniquely determined depending
on the associated original function and the given
application. Any handler code, however, must do
two things: check the current program state as
seen at the time of function call and change the
function behavior if needed. To support these op-
erations at the level of functions, our API provides
the following functions:

CISE-14-1-Kang.indd 56 12/22/11 11:01 AM

January/February 2012 � 57

/* return a pointer to the pos'th

parameter on the function call

stack */

void *acc_get_param (struct acc_invoke_

entry *ie, int pos)

/* remap from the current trapped

function to a new function, remap_

func */

void acc_remap (struct acc_invoke_

entry *ie, acc_invoke_func_t

*remap_func)

When a function call is trapped, acc_func_
intercept passes to the associated handler an
instance of struct acc_invoke_entry, which is
a data structure that keeps track of an intercepted
function and stores its accompanying information
(such as the address of the original arguments).
Then acc_get_param takes the acc_invoke_
entry instance and returns a pointer to posth in-
put parameter to the original function, letting you
access and modify its value. Macros for different
datatypes are also provided for easy access. For
example, ACC_GET_PARAM DOUBLE(ie, pos) re-
turns the value of the posth parameter, which is
known to be of type double.

Other than dealing with input parameters, the
function behavior can be completely redefined
through the use of acc_remap, which replaces
the current call to the original function with a call
to a new function, remap_func. ACC uses the
acc_invoke_func_t type for generic functions.

Although a function’s behavior is changed by
intercepting function calls, global variables that
aren’t communicated through function parame-
ters can be accessed by declaring them as external
variables. For instance, the variables in a Fortran
common block can be accessed by defining a
C extern struct global variable that matches
the common block. Or, in cases where only a few
of the variables in a common block are needed,
simple getter and setter Fortran subroutines
with the same common block can be employed to
read and write the variables.

Writing the Glue Code
The glue code performs any initialization neces-
sary to combine the patched original code with
its handler code into a complete adaptive applica-
tion. The functions to be intercepted are added
to the symbol table managed by ACC, and their
corresponding handler functions are associated
through the registration API. In addition, to re-
trieve the intercepted function parameters from

the stack, the type information of each parameter
must be specified so that ACC can determine the
correct memory offsets for the parameters.

These initialization steps can be performed in
the glue code’s main function if the original code
doesn’t have the C main entry, which is typical for
software library packages or Fortran applications
that use MAIN_ as its starting entry when compiled
with GNU or Intel compilers. For C applications
with a main, this is the one place where the source
code must be modified to include the initialization
steps.

Consider a simple function called sort,

void sort (int *data, int first, int

last),

where data is the input array of unsorted inte-
gers, and first/last is the index of the first and
last elements, respectively, which signifies the lo-
cal subarray to sort. The code in Figure 2 shows
the initialization for dynamically intercepting the
sort calls and accessing its parameters using the
ACCAPIs.
ACC_PARAM_TYPE is an enumerated type that

abstracts a set of different data types of C function
parameters. For instance, ACC_PARAM_POINTER
and ACC_PARAM_INT are used for C point-
ers and integers, respectively, in Figure 2’s code.

ACC_PARAM_TYPE params[3]; /* 3 parameters for sort */

struct acc_symbol_entry *se; /* symbol entry for a

function */

/* create and add symbol "sort" for sort */

se = acc_add_symbol("sort", (acc_invoke_func_t *)
sort);

/* assign type for each parameter */

params[0] = ACC_PARAM_POINTER;
params[1] = ACC_PARAM_INT;
params[2] = ACC_PARAM_INT;

/* associate the parameter list with the sort

symbol entry,

specifying the size of the list */

acc_add_params_list(se, params, 3);

/* register a pre-handler for sort */

acc_add_handler(ACC_HT_PRE, "sort", sort_handler);

Figure 2. The initialization for dynamically intercepting the sort calls
and accessing its parameters using the ACCAPIs. A symbol entry and
a parameter list for sort are declared and associated together, and
a handler for sort—sort_handler—is registered to ACC’s runtime.

CISE-14-1-Kang.indd 57 12/22/11 11:01 AM

58� Computing in Science & Engineering

As described earlier, only primitive datatypes are
currently supported by ACC.

After each parameter’s data type is assigned,
acc_add_params_list associates the parameter
list with the sort function’s symbol entry, which
has been previously constructed through the
acc_add_symbol function:

struct acc_symbol_entry *acc_add_

symbol(const char *name, acc_invoke_

func_t *func)

For a given function func, it takes an additional
parameter to construct a symbol: name for a user-
defined symbol name. Finally, we use the acc_
add_handler API to register sort_handler as
a callback for sort that is identified by the “sort”
symbol. This is done with ACC_HT_PRE to trans-
fer the execution control to sort_handler before
the call to sort executes, which is similar to the
before advice in AOP. Likewise, ACC_HT_POST
can be used to operate like the after advice in
AOP. You can also implement a desired adaptation
logic in the body of the sort_handler function
for adapting the original sort function.

Case Study 1: Adaptive Successive
Over-Relaxation
We applied ACC to the Successive Over-
Relaxation (SOR) routine found in ItPack 2C,9 a
package of Fortran subroutines for solving linear
systems by adaptive iterative methods. Like many
iterative solvers, the convergence rate of SOR is
heavily influenced by a parameter—in this case,
the over-relaxation parameter w.

ItPack includes an internal algorithm for auto-
matically adapting w. However, this algorithm is
based on a simple heuristic that works reasonably
well for a wide range of matrices, but can’t take
advantage of problem-specific information that
might be available in a given instance.

With ACC, we can externally adapt the
algorithm by controlling the choice of w without

modifying user code or the ItPack library. Here,
we illustrate this use of our framework, comparing
a new approach to adapting w using ACC against
ItPack’s own version of adaptivity. The purpose of
this example isn’t to propose a new adaptive SOR
algorithm, but rather to show ACC’s applicabil-
ity to changing the behavior of scientific code us-
ing an external model. This is similar to work by
other researchers,10 which applies automatic dif-
ferentiation to a Fortran SOR code to adjust the
w parameter.

Implementation
Each iteration of the SOR algorithm in ItPack is
performed by the ITSOR subroutine. Therefore, we
patch the SOR code to intercept the ITSOR calls,
thereby transferring program control to ACC (see
Figure 3). In this way, we can access and examine
the whole set of subroutine parameters, including
the solution vector, at the time of the call. More
importantly, because ACC acquires program con-
trol at each ITSOR call, we can augment the desired
adaptivity computation externally and transpar-
ently to both the ItPack library and the user’s code.
The patched SOR code is then assembled and
linked with the rest of the ItPack code to build a
complete object module, thereby enabling inter-
ception of the ITSOR calls within the SOR routine.

To access w, which is internal to ITSOR and not
communicated through any of the subroutine ar-
guments, we supply simple getter and setter rou-
tines where we declare ItPack’s common block
ITCOM3 to which the parameter belongs. The get-
ter routine checks the value of w at the current
step and the setter updates w with a new value for
the next iteration.

We apply our adative SOR code to the 2D Pois-
son problem

 u x y
u
x

u
y

f x y(,) (,)2
2

2

2

2∇ =
∂
∂

+
∂
∂

−

posed on the unit square with Dirichlet boundary
conditions. Applying an N × N finite difference
mesh and standard centered finite diferences, the
SOR iteration is given by

u h f u u

u
i j
GS

i j k i j k i j

k

(,) (,) ,(,) ,(,)(= + +

+
+ − +

+

2
1 1 1

1((,) ,(,)

,(,) ,(,)

/ ,

()

i j k i j

k i j k i j

u

u u

− +

+

+

= − +

1 1

1

4

1 w wwu i j
GS
(,) ,

where 1 ≤ i, j ≤ N, h = 1/(N + 1), and uk,(i,j) is the
element of the solution vector uk corresponding
to the mesh point (i, j) at iteration k. The residual

Figure 3. Adaptive Successive Over-Relaxation (SOR)
system through interception of ITSOR calls using
ACC. Because ACC acquires program control at
each ITSOR call, it augments the desired adaptivity
computation externally and transparently to both
the ItPack library and the user’s code.

Catch
intermediate

solution

ItPack SOR
System of

linear equations
Final
solutionITSOR

ITSOR_handler

Set
adjusted w

CISE-14-1-Kang.indd 58 12/22/11 11:01 AM

January/February 2012 59

norm for the Poison problem at the kth step is
given by

r b Auk k= −| |,

where b is the right-hand side vector and A is the
discrete Laplacian.

Two questions must be addressed in implement-
ing adaptive SOR: when to change w, and how to
obtain its new value. To decide the right time to
change w, we simply borrow ItPack’s scheme based
on convergence rate estimation11 and implement it
in our handler code. Because the purpose of this
example is to illustrate the applicability of ACC
in composing an adaptive application, rather than
to devise a new adaptive algorithm, adopting an
already established schemesuits our needs well.
Once we decide to change w, we fetch the inter-
mediate solution vector fromthe parameter list of
ITSOR and calculate the residual norm rk, which is
then used in a simple method to choose the new
value of w:

w w wk k k+ + += +()1 1
1

1
21

2
() () ,

where we view the residual rk as a function of w,
so that wk+1

1() is the next value given by a secantit-
eration seeking to solve rk+1(w) = 0, and wk+1

2() is
the next value given by a secant iteration seeking
to minimize rk+1(w)—by looking for a root of an

approximation to r ′k+1(w). Because both estimates
wk+1

1() and wk+1
2() require values from two previous

iterations, we bootstrap the process by using the
default ItPack scheme for computing a new w the
fi rst time w is adjusted.

experimental results
We use f(x, y) = 0 and constant Dirichlet bound-
ary conditions for the Poisson problem. We ap-
plythe ItPack SOR solver to the discretized
problem with our adaptivity framework turned
on andthe internal adaptivity capability of ItPack
turned off. The iteration terminates according to
the ITSOR stopping test.11

On a 32-bit, x86 Linux machine running Fedora
Core 6 with an Intel Pentium D dual-core
3.60-GHz CPU and 2 Gbytes of RAM, we com-
pare the performance of our version of adaptive
SOR with that of ItPack, both of which are com-
piled with GNU Fortran 95 (gfortran) 4.1.1 with
O3 optimization turned on. We also measure the
case where w is fi xed at the optimal value; the op-
timal value of w for an N × N Poisson problem is

ω
πopt =

+
+









2

1
1

sin
N .

Table 2 shows both the execution time (average of
three runs) and the number of iterations required

table 2. comparison of adaptive sor algorithms for poisson problems.

simulation parameters fixed ω = ωopt itpack our method speedup
time
(%)n ωopt ζ niter time(sec) niter time(sec) niter time(sec)

300 1.979 10-2 283 0.73 601 1.52 438 1.12 36

400 1.984 385 1.80 800 3.68 587 2.73 35

500 1.987 493 3.62 1,087 7.88 802 5.92 34

750 1.992 866 14.2 1,579 25.7 1,268 20.9 23

1,000 1.994 1189 34.4. 2,222 63.1 1,884 53.0 19

300 1.979 10-3 422 1.07 735 1.85 630 1.59 16

400 1.984 568 2.66 965 4.45 718 3.34 33

500 1.987 717 5.33 1,279 9.30 988 7.24 28

750 1.992 1172 19.2 1,855 30.3 1,549 25.4 19

1,000 1.994 1590 46.4 2,848 82.1 2,281 66.1 24

300 1.979 10-4 555 1.39 859 2.19 728 1.95 12

400 1.984 746 3.45 1,117 5.16 813 4.10 26

500 1.987 943 6.94 1,495 10.88 1,268 9.23 18

750 1.992 1503 24.6 2,193 36.0 1,788 30.2 19

1,000 1.994 2003 58.1 3,599 103.1 2,694 77.0 34

N = problem size; Niter = number of iterations; wopt = optimized over-relaxation parameter; and z = the error-tolerance parameter.

CISE-14-1-Kang.indd 59 12/22/11 11:01 AM

60� Computing in Science & Engineering

to converge for different problem sizes ranging
from N = 300 to N = 1,000, along with z (the
error-tolerance parameter), ranging from 10-2 to
10-4. The value of w was initially set to 1.5 for
both adaptive SOR programs. As the table shows,
our adaptive SOR performed better than ItPack’s
in all cases, with speedup as high as 36 percent in
terms of execution time.

In addition, using the ACC framework doesn’t
entail significant overhead. For instance, inter-
cepting ITSOR function calls for a 300 × 300
problem with z set to 10−2—the smallest problem,
where the framework overhead would be the most
obvious—increased execution time by only 0.01 sec-
onds on average (that is, less than 0.7 percent).

Figure 4a shows the adaptive progress of w over
iterations for a 500 × 500 Poisson problem with
z set to 10−3, starting from w = 1.5. In all, w is
adapted seven times in this example, but we show
only the last five for two reasons:

•	 to highlight the differences between our method
and the default ItPack scheme, and

•	 because our first two adaptive steps actually use
the ItPack scheme, as our estimator needs two
initial points.

As the figure shows, our adaptivity method
adjusts w more quickly toward wopt than ItPack,
although it overestimates a bit at the end. The ex-
ecution time improves by 28 percent, but the han-
dler function for ITSOR consumes only 0.044 seconds
on average during the whole execution, which
amounts to 0.6 percent of the total 7.24 seconds.
Figure 4b shows the reduction in residual as the
computations proceed. (The residuals were com-
puted explicitly at each iteration in a separate run.)
As the figure shows, our adaptive approach suc-
ceeds in improving the rate of residual reduction
compared to ItPack’s adaptive scheme. ItPack uses
a relative error estimate, rather than a residual
estimate, to terminate the iterative process. This
explains why the wopt case terminates first, despite

having a larger residual for a given iteration than
the other two cases, both of which focus on mini-
mizing the residual when adapting w.

Case Study 2: Parallel CFD Codes
We used the ACC framework to implement vari-
ous adaptivity scenarios in the context of real sci-
entific computing codes, including applications in
biochemical network simulation12 and computa-
tional fluid dynamics (CFD).13,14

As we describe elsewhere,13 ACC is used to im-
prove the performance, stability, and accuracy of
GenIDLEST, a large parallel CFD code.15 GenI-
DLEST is written in Fortran 90 with a message
passing interface (MPI), and solves the time-
dependent incompressible Navier-Stokes and en-
ergy or temperature equations. The GenIDLEST
time integrator’s stability depends on the timestep
used, but it’s difficult to identify a single adapta-
tion scheme that will automatically and success-
fully adjust the timestep forthe wide variety of
problems that engineers use GenIDLEST to
solve. Hence, in practice, users save checkpointed
solutions periodically during the long simulation
runs, so that if instability occurs they can restart
the simulation from the last stable state with a
smaller timestep. By using ACC to plug in a sepa-
rately written stability module, we factor out the
time-step adjusting strategy from the main code
base, allowing users to easily use and experiment
with different strategies, as appropriate.

In other work,13 we show how one particular
set of CFD computations can be stabilized effec-
tively by a simple multiplicative increase/decrease
algorithm, where the time step is increased (to
reduce time-to-solution) or decreased (to main-
tain numerical stability) by a preset factor if the
computed Courant-Friedrich-Levi (CFL) indica-
tor goes above or below preset upper and lower
CFL thresholds.

Figure 5 shows the results for GenIDLEST
enhanced with the adaptivity module for a typi-
cal simulation, with different initial values of time

Figure 4. Comparison of SOR methods for a 500 × 500 Poisson problem. (a) The adaptive progress of w over iterations
(b) The residuals over iterations reduces as the computations proceed.

 1.8
 1.82
 1.84
 1.86
 1.88
 1.9

 1.92
 1.94
 1.96
 1.98

 2

 0 200

w

400 600 800 1,000 1,200
Iteration steps(a) (b)

w = wopt
ItPack

Our methods

10–5

10–4

10–3

10–2

10–1

100

0 200 400 600 800 1,000 1,200

Re
si

du
al

 (
lo

g)

Iteration steps

w = wopt
ItPack

Our methods

CISE-14-1-Kang.indd 60 12/22/11 11:01 AM

January/February 2012 � 61

step ranging from 10−3 to 10−5. The CFL lower
and upper thresholds were set to 0.25 and 0.50,
respectively. The graphs show how the CFL value
changes as the time-step parameter is controlled
by the new module, thereby maintaining the sim-
ulation’s stability.

In addition to automatic time-step adaptation,
we also use ACC to facilitate an interactive, user-
controlled adaptation of GenIDLEST’s flow model,
resulting in more accurate simulations. In CFD
simulations, the predicted flow characteristics de-
pend on the selection of the appropriate flow model.
In problems of interest, it’s critical to choose an ap-
propriate model when the simulated flow is in the
transition region between laminar and turbulent.
Our ACC-enabled mechanism lets users monitor
the stream-wise velocity’s time variation, which can
be used to infer when to switch from a laminar flow
model to a turbulent model, and when to switch
from one turbulent flow model to a more accurate
but computationally expensive alternative. Because
GenIDLEST already implements all the flow mod-
els, with a particular one selected by setting a single
parameter, it’s easy to use ACC to change models
by controlling this parameter, which requires no
modification to the original code.

We’re also using ACC to support dynamic meth-
ods for performance tuning of algorithmic param-
eters in parallel scientific codes. An important
trend in high-performance scientific computing is
the use of auto-tuned or self-adaptively optimized
algorithms and implementations. Approaches in-
clude language extensions,16 model-driven com-
piler optimizations,17 and empirical search-based
schemes.18 Although these methods have been
successful in limited domains (such as numerical
linear algebra kernels), there’s still a need for better

support for application-specific adaption schemes,
where a particular computation’s unique context—
including the code, the data, and the computing
resources—can be taken into account.

In earlier work, we showed how to use ACC to
implement a dynamic method for tuning algorith-
mic parameters in codes such as GenIDLEST.14
For example, we inserted adaptive schemes to ad-
just two parameters that strongly influence the
performance of the preconditioner used in an im-
portant linear solution step. The first parameter
is the size of a subdomain block, represented by
nbi, nbj, and nbk. This parameter defines the struc-
ture of the domain decomposition preconditioner;
it influences, often in nonobvious ways, both the
preconditioner’s quality as an approximation to
the original discrete PDE operator and the com-
putation’s floating-point performance (such as
through memory hierarchy effects). The second
parameter is ns, the number of inner relaxation
sweeps used in the multilevel preconditioner.

Figure 6 shows the performance of Gen-
IDLEST for a typical problem for 3,000 time
steps, where each point corresponds to the elapsed
time measured every 50 steps during the simu-
lation. The thick gray solid line corresponds to
the tuned algorithm, and the colored lines show
the performance for other typical fixed choices
of the parameters. The tuned curve is labeled at
various points to show the history of the simple
adaption scheme used, where the parameters nbi,
nbj, nbk, and ns are adjusted automatically to test
and improve performance as the simulation pro-
ceeds. Overall, the time-to-solution for the full
10,000 time-step run improved by 26 percent
over the performance of the nonadapted code,
with typical parameter choices.

Figure 5. Automatic adjustment of the time-step parameter in GenIDLEST.13 (a) Time-step change and (b) the Courant-Friedrich-
Levi (CFL) number.

0 10 100 400
10−5

10−4

10−3

Iteration number(a) (b)

Ti
m

e
st

ep

1.58 × 10−4
1.68 × 10−4
1.70 × 10−4

0 10 100 400

101

100

10–1

10–2

Iteration number

C
FL

 n
um

be
r

10–3

10–4

10–5

10–3

10–4

10–5

CFL_U_THRESHOLD = 0.5

CFL_L_THRESHOLD = 0.25

CISE-14-1-Kang.indd 61 12/22/11 11:01 AM

62� Computing in Science & Engineering

Modern numerical methods often have several
such parameters, and their influence on accuracy
and performance is hard to predict for realistic
problems running on a particular computational
resource. Dynamic tuning is often the only effec-
tive approach. With ACC, we can factor out this
important concern from the standard code base,
allowing much greater flexibility in deciding what
and how to adapt.

W e are applying ACC to more
diverse areas in scientific com-
puting. In particular, we are ex-
ploring more dynamic scenarios

of scientific software adaptation, where the user’s
runtime decisions can be supported to realize
flexible simulations, without complete description
of adaptation specifications even before applica-
tion launch. We are also investigating recurring
adaptation scenarios in scientific computing that

can be abstracted out into pattern templates, so
that they can be easily reused for different applica-
tion domains in a more manageable way.

ACC is available for download at http://people.
cs.vt.edu/~kangp/ack.�

References
1.	 G. Kiczales et al., “Aspect-Oriented Programming,”

Proc. European Conf. Object-Oriented Programming,

vol. 1241, Springer-Verlag, 1997, pp. 220–242.

2.	 E. Hilsdale and J. Hugunin, “Advice Weaving in As-

pectJ,” Proc. 3rd Int’l Conf. Aspect-Oriented Software

Development, ACM Press, 2004, pp. 26–35.

3.	 O. Spinczyk, A. Gal, and W. Schröder-Preikschat,

“AspectC++: An Aspect-Oriented Extension to the

C++ Programming Language,” Proc. 40th Int’l Conf.

Tools Pacific, Australian Computer Society, 2002,

pp. 53–60.

4.	 W.R. Mahoney and W.L. Sousan, “Using Common

Off-the-Shelf Tools to Implement Dynamic Aspects,”

Sigplan Notes, vol. 42, no. 2, 2007, pp. 34–41.

Figure 6. Dynamic tuning of preconditioning parameters in the Generalized Incompressible Direct and
Large-Eddy Simulations of Turbulence (GenIDLEST).1 This problem included 3,000 time steps, where each
point corresponds to the elapsed time measured every 50 steps.

0 500 1,000 1,500 2,000 2,500 3,000
200

250

300

350

400

450

Time step (1 step = 10−3)

El
ap

se
d

tim
e

be
tw

ee
n

ev
er

y
50

 s
te

p
s

(s
ec

)

blk 2 (64KB)
blk 4 (16KB)
blk 8 (4KB)
blk 16 (1KB)
blk 32 (256B)
Tuning

Start searching
ni_blk & nj_blk space

from {(16,16,1),5}

{(8,8,1),5}

{(4,4,1),5}

Try {(2,2,1),5},
go back to
{(4,4,1),5}

Search nj_blk space,
set to {(4,4,1),5}

Search nswp_in_blk space,
set to {(4,4,1),15}

CISE-14-1-Kang.indd 62 12/22/11 11:01 AM

January/February 2012 � 63

5.	 A. Srivastava and A. Eustace, “ATOM: A System for

Building Customized Program Analysis Tools,” Proc.

ACM Sigplan 1994 Conf. Programming Language

Design and Implementation, ACM Press, 1994,

pp. 196–205.

6.	 B. Buck and J.K. Hollingsworth, “An API for Runtime

Code Patching,” Int’l J. High Performance Computing

Applications, vol. 14, no. 4, 2000, pp. 317–329.

7.	 C.-K. Luk et al., “Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation,

”Proc. ACM Sigplan Conf. Programming Language

Design and Implementation, ACM Press, 2005,

pp. 190–200.

8.	 G. Hunt and D. Brubacher, “Detours: Binary Intercep-

tion of Win32 Functions,” Proc. 3rd Usenix Windows

NT Symp., Usenix Assoc., 1999, pp. 135–144.

9.	 D.R. Kincaid et al., “ITPACK 2C: A Fortran Pack-

age for Solving Large Sparse Linear Systems by

Adaptive Accelerated Iterative Methods,”ACM

Trans. Mathematical Software, vol. 8, no. 3, 1982,

pp. 302–322.

10.	 P.D. Hovland and M.T. Heath, Adaptive SOR: A Case

Study in Automatic Differentiation of Algorithm Param-

eters, tech. report ANL/MCS-P673-0797, Mathemat-

ics and Computer Science Division, Argonne Nat’l

Lab., 1997.

11.	 L.A. Hageman and D.M. Young, eds., “The Suc-

cessive Overrelaxation Method,” Applied Iterative

Methods, Academic Press, 1981, pp. 223–233.

12.	 P. Kang et al., “Modular Implementation of Adaptive

Decisions in Stochastic Simulations,” Proc. 24th

ACM Symp. Applied Computing, ACM Press, 2009,

pp. 995–1001.

13.	 P. Kang et al., “Modular, Fine-Grained Adaptation of

Parallel Programs,” Proc. 9th Int’l Conf. Computational

Science, Springer Verlag, 2009, pp. 269–279.

14.	 P. Kang et al., “Dynamic Tuning of Algorithmic

Parameters of Parallel Scientific Codes,” Proc. 10th

Int’l Conf. Computational Science, Springer Verlag,

2010, pp.145–153.

15.	 D. Tafti, “GenIDLEST—A Scalable Parallel Computa-

tional Tool for Simulating ComplexTurbulent Flows,”

Proc. ASME Fluids Eng. Division (FED), vol. 256, Am.

Soc. Mechanical Engineers, 2001, pp. 347–356.

16.	 C.A. Schaefer, V. Pankratius, and W.F. Tichy,

“Atune-IL: An Instrumentation Languagefor Auto-

Tuning Parallel Applications,” Proc. 15th Int’l Euro-

Par Conf. Parallel Processing, Springer Verlag, 2009,

pp. 9–20.

17.	 K. Kennedy and J.R. Allen, Optimizing Compilers for

Modern Architectures: A Dependence-Based Approach,

Morgan Kaufmann, 2002.

18.	 J. Demmel et al., “Self-Adapting Linear Algebra Algo-

rithms and Software,” Proc. IEEE, vol. 93, no. 2, 2005,

pp. 293–312.

Pilsung Kang is a senior engineer at Samsung Elec-
tronics, where he develops embedded software for
solid-state drives. His research interests include com-
putational science, software engineering, parallel
computing, and embedded systems. Kang has a PhD
in computer science from Virginia Tech. Contact him
at kangp@cs.vt.edu.

Michael A. Heffner is a lead developer at Libra-
to, where he works on the Silverline application-
monitoring and management solution. His research
interests include large-scale, distributed architec-
tures, high-performance computing, and systems
development. Heffner has an MS in computer science
from Virginia Tech. Contact him at mike.heffner@
librato.com.

Naren Ramakrishnan is a professor and associ-
ate head for graduate studies in the Department
of Computer Science at Virginia Tech. His research
interests are mining scientific data, computational
science, and information personalization. Ramak-
rishnan has a PhD in computer science from Pur-
due University. He is an ACM Distinguished Scientist
and serves on the editorial boards of several jour-
nals, including Computer and Data Mining and
Knowledge Discovery. Contact him at naren@cs.
vt.edu.

Calvin J. Ribbens is an associate professor and the as-
sociate department head for undergraduate studies
in the Department of Computer Science at Virginia
Tech. His research interests include parallel computa-
tion, numerical algorithms, mathematical software,
and tools and environments for high-performance
computing. Ribbens has a PhD in computer science
from Purdue University. Contact him at ribbens@
cs.vt.edu.

Srinidhi Varadarajan is the director of the Center
for High-End Computing Systems and an associate
professor in the Department of Computer Science at
Virginia Tech. His research interests are in the area
of high-end computing systems, focused more spe-
cifically on fault tolerance in large-scale distributed
systems, runtime systems, and frameworks for inte-
grated emulation and simulation of computer net-
works. Varadarajan has a PhD in computer science
from Stony Brook University. Contact him at srinidhi@
cs.vt.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-14-1-Kang.indd 63 12/22/11 11:01 AM

