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A d a p t a t i o n

Adaptive Code Collage:  
A Framework to Transparently 
Modify Scientific Codes
Legacy scientific codes are often repurposed to fit adaptive needs, but making such code 
adaptive without changing the original source programs can be challenging. Adaptive Code 
Collage (ACC) meets this challenge using function-call interception in a language-neutral 
way at link time, transparently “catching” and redirecting function calls.

A daptive programs change their runtime 
behavior to achieve certain purposes—
such as performance improvement, or 
better numerical stability—by track-

ing changes in problem characteristics, available 
resources, and execution environments. Almost 
every computational scientist has encountered the 
situation wherein they’d like to make a legacy code 
adaptive to their application context but without 
seriously changing the original programs. Simple 
examples of adaptation might be to change the 
values of global variables during a computation or 
to switch algorithms at runtime. When adaptivity 
scenarios are conceived at the start of the software 
design process, we can design inherently adaptive 
algorithms. However, when changing the behav-
ior of an existing program, modifying the original 
code is often viewed as inevitable. Here, we pres-
ent an alternative solution.

Typically, modifying a program to make it more 
adaptive involves changing a function call into an 
if-then-else statement that lets you choose two 
different functions depending on the runtime value 
of a predicate. In large programs with a complex 
adaptive plan, such rewriting can become tedious 
or cumbersome because you must locate and update 
all the places that need modification. Sometimes, 
such changes require restructuring the whole pro-
gram, which can be quite imposing. In fact, the 
object-oriented (OO) programming community 
has identified the need to add new functionality 
to existing code in a modular way as aspect-oriented 
programming.1 AOP helps abstract out a new func-
tionality or concern for existing code into an as-
pect, and the aspect code can be inserted or weaved 
at the right places in a program.2 This code inser-
tion process can work even at the binary level for 
Java programs without having the source available. 
Even for non-OO languages such as C, there are 
tools and language extensions that enable AOP’s 
advice-weaving constructs for code insertion.3–4 
However, we still lack comparable support for For-
tran, which is widely used in scientific computing.

Binary instrumentation tools can overcome 
this language-dependency issue. These tools 
insert code to existing programs in a compiled  
binary form, offering clean separation between 
the original and the new code because the two 
codes are coalesced at the binary level instead of 
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the programming-language level. Still, because 
they deal with the native processor instructions 
at the lowest level, binary instrumentation tools 
are typically developed for sophisticated program 
analysis purposes,5-7 such as debugging and pro-
filing, rather than as a tool to aid programmers in 
extending existing programs in a modular way. An 
exception is Detours,8 a general-purpose package 
for dynamic function interception. However, De-
tours is available only on Windows systems.

Here, we present Adaptive Code Collage (ACC), 
a framework for implementing adaptive programs 
on top of nonadaptive existing code without re-
sorting to AOP tools or frameworks. Instead, 
we use a function-call interception technique to 
monitor and adapt the original function behavior. 
As Figure 1 shows, the assembly-language version 
of the original source code is first patched to em-
bed hooks at the desired function calls. Because 
the patching is applied at the assembly level, the 
original source code is unaffected and its pro-
gram structure is maintained. Each of the inter-
cepted function calls and its parameters are then 
associated with individual handler codes, which 
are separately written to perform the appropri-
ate computations necessary to decide whether to 
change the function behavior. Both the patched 
original and the adaptivity code are then com-
bined to produce a complete application.

Our ACC framework has three key features:

•	Modularity and transparency. The adaptivity code 
is written and managed as a separate module  

with regard to the original program. The origi-
nal code, which we assume was written in a 
high-level language, isn’t modified. Instead, 
code insertion is applied to the compiler- 
generated assembly code.

•	Fortran support. The assembly code patching 
works for Fortran as well as C. The method can 
be applied as long as the original code can be 
compiled to generate assembly output.

•	Persistency. Code patching is needed only once. 
Once it’s done, the patched code can be used 
anew without further manipulation and can be 
linked with any adaptivity-code variant as the 
program evolves. This enables the late binding 
of adaptivity code.

ACC’s capabilities for implementing adaptivity 
are quite general, and in the next section we dis-
cuss the adaptive contexts when applying ACC to 
scientific software.

Adaptive Contexts in ACC
ACC is primarily a programmer’s tool for factor-
izing adaptivity with an existing scientific code 
base to enable the plug-and-play of different adap-
tive strategies. It’s not a specific recommendation 
for what needs to be adapted and how (which is the 
purview of domain-specific information).

Many sophisticated code bases—such as the 
example application in computational fluid dy-
namics, which we present later—have withstood 
years of use but are constantly put to the test as 
they’re ported to new computational platforms 

Figure 1. Adaptive application development under the Adaptive Code Collage (ACC) framework. The 
assembly-language version of the original source code is first patched to embed hooks at the desired 
function calls.
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and extended to new problem contexts and new 
physical modeling situations. For instance, the 
Generalized Incompressible Direct and Large-
Eddy Simulations of Turbulence (GenIDLEST) 
code we describe later must be adapted for new 
memory hierarchies and data distributions, for 
modeling time-varying fl ow conditions, and to 
accommodate the latest linear system solvers. We 
show how the vanilla GenIDLEST code base 
can be adapted to these situations by factoring 
out the adaptivity/control decisions in a separate 
code and weaving them into the program execu-
tion. (Sophisticated codebases that already have 
adaptation built into them are outside ACC’s 
scope.)

Although our methods can be applied to any 
code base, we focus on scientifi c codes primarily 
because these codes are especially rich in adapta-
tion possibilities. In particular, they often feature 
libraries of multiple algorithms for the same prob-
lems, with selective superiorities between them. 
Secondly, adaptation is a long-used technique for 
improving performance and methods to automat-
ically switch between algorithms and to pursue 
alternative lines of computation that are crucially 
important. Finally, there’s a growing emphasis in 
scientifi c computing on bringing the best prac-
tices in software engineering (such as modularity 
and separation of concerns) into scientifi c code 
management, and ACC is a tool that works within 
this tradition.

A variety of adaptation strategies can be real-
ized using ACC, such as code adaptation on a 
per-problem or per-execution-context basis, or 
even adaptation steered interactively by the user 
as opposed to automatically inside execution. 
Irrespective of the diversity of these strategies, 
many of them often rely on tracking and modify-
ing a single variable or set of variables, or divert-
ing function calls, to improve the computation’s 
performance, stability, or accuracy. We developed 
ACC to support such capabilities.

Table 1 compares ACC with other program 
modifi cation or extension tools. Overall, our ap-
proach is similar to the advice-weaving technique 
of AOP in that modular development and integra-
tion is possible. However, key points of contrast 
exist. Unlike AspectJ (www.eclipse.org/aspectj), 
for instance, ACC supports non-OO languages. 
Unlike AspeCt-oriented C(www.aspectc.net) or 
AspectC++(www.aspectc.org), which use source-
to-source translation, ACC performs code modi-
fi cation at the assembly level.

Because ACC works at the assembly-language 
level, what it can and can’t do must be described 
at a much lower granularity than high-level lan-
guages and their features. ACC makes the fol-
lowing assumptions in supporting an adaptivity 
scenario. First, the types of parameters that can 
be readily supported are those involving the 
primitive data types—such as integers, reals, and 
Booleans—that also include pointers. This lets us 
support most C/C++ codes and all Fortran codes 
(because Fortran uses call-by-reference to pass 
parameters to function calls). ACC wouldn’t be 
directly applicable to adapting those functions 
that pass parameters of structured data types un-
less the parameters are passed by pointers.

Second, ACC’s support of C++ is weak in that 
we can’t directly apply the assembly patching for 
C++ methods because of C++’s name mangling, 
which is heavily dependent upon compiler imple-
mentations. C wrappers for C++ methods can be 
used to resolve the issue. Otherwise, it remains 
a programmer’s burden to manually resolve the 
mismatch between different compilers. Finally, 
certain features that we can’t support currently 
include dynamic functions, function parameters 
passed through registers, and custom orders of 
parameter “reading” as implemented by different 
compilers and languages.

Here, we present two examples of ACC use. 
First, we show how it adjusts the over-relaxation 
parameter w in an adaptive SOR algorithm for 

table 1. comparison of program modifi cation techniques.

features

aop frameworks adaptive code 
collage

Binary 
instrumentationc/c++ aspectJ

Modifi cation level Source language Source or binary Assembly Machine 
instructions

Source availability Always needed Not necessary Only once Not necessary

Insertion time Compilation time Compilation or 
link time

Link time Post-compilation

Fortran support Bound to C/C++ Bound to Java Yes Yes

Main usage Program behavior 
extension

Program behavior 
extension

Program analysis
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linear systems. This is a trivial example from 
textbooks, but it serves as a programmer’s guide 
on how to use our framework. It thus enables  
us to delve into ACC in greater detail in our  
second, more complex example involving the 
GenIDLEST code.

As we present the details of our framework and 
how we instantiate it in these case studies, we 
make a key distinction between our framework’s 
performance and the performance of the adapted 
code. The latter hinges on how cleverly relevant 
problem characteristics are tracked by the adap-
tive segments and used to improve performance. 
Our focus is on the former—that is, how easy 
ACC makes adaptation and how much overhead 
it introduces.

Basic Constructs for  
Implementing Adaptivity
A framework that can model complex adaptive 
scenarios must be able to compositionally switch 
back and forth between the old, unpatched code 
and the newly designed functions. We first pres-
ent a set of three primitive operations that can be 
used as building blocks for such compositional 
modeling.

Function Interception
One of ACC’s basic goals is to support procedure-
level decomposition of a compiled object file so 
that procedure calls within a module become 
control points at which the application’s execution 
can be adapted. Therefore, the framework’s basic 
construct is a method for intercepting, or catch-
ing, the function calls made within an application.

Several programs and projects support inter-
cepting function calls within an application.6,8 
ACC is different in that it intercepts function 
calls at the location the calls are made. In x86 as-
sembly, function calls within an application are 
represented by the call instruction, whose single 
argument is the address of the function to in-
voke. The ACC framework targets the assembly- 
language representation of an application, allow-
ing us to replace any call instruction with a call 
to our own interception handler. Then, at run-
time, the original target function address is saved 
so that the interception handler can determine 
which function was being called. When our in-
terception handler is called in place of the original 
function, the handler will determine whether to 
continue execution with the original target func-
tion or to perform some other operation.

When the application is modified so that func-
tion calls are intercepted by ACC, the locations 

at which the calls are made are modified instead 
of the locations associated with the target func-
tions. This is because the code associated with the 
callee might not be available when the application 
is modified, such as when the callee is located in 
a dynamic module that isn’t automatically loaded 
at runtime. By modifying the caller instead, we 
don’t require all the components of an application 
to be loaded at runtime. We convert the original 
call instructions—which would otherwise require 
correct runtime link binding—into lookup refer-
ences that ACC uses to determine the appropri-
ate action to take when the calls are made. The 
original function-call location in effect becomes a 
placeholder (or “link point,” in the AOP vernacu-
lar) that the framework can connect to arbitrary 
procedures during runtime.

To allow for the most adaptivity in a procedure-
level decomposition, the framework must also sup-
port the ability to catch when a function returns. 
In ACC, when a function is diverted through our 
interception handler, we manipulate the return 
address to point to a return-handler instead. The 
return-handler can perform post-function-call 
computation—after which it will eventually re-
turn to the original return address. This is useful 
because when the function returns, the function 
call’s outcome can be queried, including the re-
turn value or any values returned via pass-by-
reference parameters. For example, this allows the 
adaptivity code to massage any return values be-
fore they’re passed back to the calling module to 
fix type differences or influence the caller.

Registered Callbacks
When a function call is intercepted or the return 
of a function is intercepted, the framework passes 
control of the application to an adaptation module 
so that it can make any required adaptive control 
decisions. This functionality is supported in ACC 
using a method of registered callbacks.

An adaptivity module can register either a pre- 
or post-callback (or both) for a given function, 
which is executed when the function is invoked or 
a return is made from the function, respectively. 
When ACC invokes a callback, it passes a refer-
ence to the invocation stack entry, an ACC data 
structure for bookkeeping function-invocation  
information corresponding to that function call. 
With the invocation entry reference, the call-
back can lookup or manipulate parameters, re-
map the function call, and search the remaining 
invocation stack. In other words, the callback 
has full control over the application’s current  
state.
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Function-Call Parameter Manipulation
We provide a complete set of controls that let 
the application query and manipulate the pa-
rameters passed to procedure calls. The in-
stantaneous values of parameters passed to 
a function at runtime can give insight into 
whether an application is making sufficient 
progress or whether any adaptive decisions 
should be made to improve the results or per-
formance. For example, a recursive sorting rou-
tine’s subinterval indices can reveal whether it 
might be beneficial to switch to a different sort-
ing algorithm. Similarly, tracking a numerical 
routine’s current relative error might reveal 
that switching to a different routine would im-
prove convergence.

ACC supports the ability to query and manipu-
late a function’s parameters before and after its 
lifetime. Before any operations on the parameters 
can be performed, the size and type of each pa-
rameter must be specified so that the framework 
can calculate each parameter’s correct memory 
offset. Or the predefined parameter types that 
represent which type and size can be used. Once 
all function parameters are specified to ACC, 
simple query functions will return pointers to 
the parameters in memory and, by dereferencing 
these pointers, the application can read/write the 
parameters in memory. Also, parameters that are 
passed by reference to a function can be manipu-
lated when a function returns if the user desires to 
massage the values returned.

However, the most useful parameter construct 
of our ACC framework is the ability to remap a 
function’s entire parameter list. For example, 
when an adaptation scheme intends to remap one 
function to another, the function signatures typi-
cally must be the same because the parameters are 
already on the stack. This severely limits the flex-
ibility to abstractly connect system components if 
you don’t know the correct semantics beforehand. 
If the adaptation code specifies the parameters’ 
size and type of both the original function and 
the new function, you can overcome this barrier 
by simply

•	 calculating the difference in lengths of the two 
parameter lists,

•	 adjusting the frame pointer by the difference in 
lengths, and

•	 copying the new parameters onto the stack.

Thus, ACC’s function call parameter manipu-
lation functionality allows for realizing complex 
adaptation scenarios.

Application Development Process
The adaptive application development process 
under ACC consists of three stages: patching the 
compiler-generated assembly language from the 
original code, writing the code for an adaptation 
scenario, and writing the glue code that connects 
the adaptivity component to the original code 
through the ACC APIs.

Patching the Original Code
Our approach is to perform the necessary code 
modification over the GCC assembler output 
generated from the source before it’s assembled 
to an object file. Applying a simple pattern-
matching and substitution Perl script over the 
assembly code, we replace every function call 
of interest with a call to the framework’s acc_
func_intercept function, a general hook for 
branching to individual handler code to adapt 
the original behavior of functions. As explained 
earlier, we apply the patch to the program code 
that calls the target function, not to the function 
code itself.

Because the code patching is done at the assem-
bly level, the adaptive application development 
process is cleanly separated from the development 
activity of the original program. As long as the 
original program is written in high-level languages  
such as Fortran or C, the source and its program 
structure are unaffected.

Another advantage of our code-patching tech-
nique is the persistence of the hooks inserted into 
the original program. Once the code is patched 
and compiled into an object file, because the hooks 
are now in there, it can be linked with different 
versions of the handler code without recompiling 
the original application code as the handler code 
evolves.

Writing Handler Code  
for an Adaptation Scenario
After the original code is patched to intercept 
specific function calls, you must write the handler 
code to implement any adaptive operations that 
will be performed at the trapped calls; you can 
choose to trap before and/or after the execution 
of the function call. The operations in the han-
dler code will be uniquely determined depending 
on the associated original function and the given 
application. Any handler code, however, must do 
two things: check the current program state as 
seen at the time of function call and change the 
function behavior if needed. To support these op-
erations at the level of functions, our API provides 
the following functions:
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/* return a pointer to the pos'th 

parameter on the function call  

stack */

void *acc_get_param (struct acc_invoke_

entry *ie, int pos)

/* remap from the current trapped 

function to a new function, remap_

func */

void acc_remap (struct acc_invoke_

entry *ie, acc_invoke_func_t 

*remap_func)

When a function call is trapped, acc_func_
intercept passes to the associated handler an 
instance of struct acc_invoke_entry, which is 
a data structure that keeps track of an intercepted 
function and stores its accompanying information 
(such as the address of the original arguments). 
Then acc_get_param takes the acc_invoke_
entry instance and returns a pointer to posth in-
put parameter to the original function, letting you 
access and modify its value. Macros for different 
datatypes are also provided for easy access. For 
example, ACC_GET_PARAM DOUBLE(ie, pos) re-
turns the value of the posth parameter, which is 
known to be of type double.

Other than dealing with input parameters, the 
function behavior can be completely redefined 
through the use of acc_remap, which replaces 
the current call to the original function with a call 
to a new function, remap_func. ACC uses the 
acc_invoke_func_t type for generic functions.

Although a function’s behavior is changed by 
intercepting function calls, global variables that 
aren’t communicated through function parame-
ters can be accessed by declaring them as external 
variables. For instance, the variables in a Fortran 
common block can be accessed by defining a  
C extern struct global variable that matches 
the common block. Or, in cases where only a few 
of the variables in a common block are needed, 
simple getter and setter Fortran subroutines 
with the same common block can be employed to 
read and write the variables.

Writing the Glue Code
The glue code performs any initialization neces-
sary to combine the patched original code with 
its handler code into a complete adaptive applica-
tion. The functions to be intercepted are added 
to the symbol table managed by ACC, and their 
corresponding handler functions are associated 
through the registration API. In addition, to re-
trieve the intercepted function parameters from 

the stack, the type information of each parameter 
must be specified so that ACC can determine the 
correct memory offsets for the parameters.

These initialization steps can be performed in 
the glue code’s main function if the original code 
doesn’t have the C main entry, which is typical for 
software library packages or Fortran applications 
that use MAIN_ as its starting entry when compiled 
with GNU or Intel compilers. For C applications 
with a main, this is the one place where the source 
code must be modified to include the initialization 
steps.

Consider a simple function called sort,

void sort (int *data, int first, int 

last),

where data is the input array of unsorted inte-
gers, and first/last is the index of the first and 
last elements, respectively, which signifies the lo-
cal subarray to sort. The code in Figure 2 shows 
the initialization for dynamically intercepting the 
sort calls and accessing its parameters using the 
ACCAPIs.
ACC_PARAM_TYPE is an enumerated type that 

abstracts a set of different data types of C function 
parameters. For instance, ACC_PARAM_POINTER 
and ACC_PARAM_INT are used for C point-
ers and integers, respectively, in Figure 2’s code.  

ACC_PARAM_TYPE params[3]; /* 3 parameters for sort */

struct acc_symbol_entry *se; /* symbol entry for a 

function */

/* create and add symbol "sort" for sort */

se = acc_add_symbol("sort", (acc_invoke_func_t *)
sort);

/* assign type for each parameter */

params[0] = ACC_PARAM_POINTER;
params[1] = ACC_PARAM_INT;
params[2] = ACC_PARAM_INT;

/* associate the parameter list with the sort 

symbol entry,

specifying the size of the list */

acc_add_params_list(se, params, 3);

/* register a pre-handler for sort */

acc_add_handler(ACC_HT_PRE, "sort", sort_handler);

Figure 2. The initialization for dynamically intercepting the sort calls 
and accessing its parameters using the ACCAPIs. A symbol entry and  
a parameter list for sort are declared and associated together, and 
a handler for sort—sort_handler—is registered to ACC’s runtime.
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As described earlier, only primitive datatypes are 
currently supported by ACC.

After each parameter’s data type is assigned, 
acc_add_params_list associates the parameter 
list with the sort function’s symbol entry, which 
has been previously constructed through the 
acc_add_symbol function:

struct acc_symbol_entry *acc_add_

symbol(const char *name, acc_invoke_

func_t *func)

For a given function func, it takes an additional 
parameter to construct a symbol: name for a user-
defined symbol name. Finally, we use the acc_
add_handler API to register sort_handler as 
a callback for sort that is identified by the “sort” 
symbol. This is done with ACC_HT_PRE to trans-
fer the execution control to sort_handler before 
the call to sort executes, which is similar to the 
before advice in AOP. Likewise, ACC_HT_POST 
can be used to operate like the after advice in 
AOP. You can also implement a desired adaptation 
logic in the body of the sort_handler function 
for adapting the original sort function.

Case Study 1: Adaptive Successive 
Over-Relaxation
We applied ACC to the Successive Over- 
Relaxation (SOR) routine found in ItPack 2C,9 a 
package of Fortran subroutines for solving linear 
systems by adaptive iterative methods. Like many 
iterative solvers, the convergence rate of SOR is 
heavily influenced by a parameter—in this case, 
the over-relaxation parameter w.

ItPack includes an internal algorithm for auto-
matically adapting w. However, this algorithm is 
based on a simple heuristic that works reasonably 
well for a wide range of matrices, but can’t take 
advantage of problem-specific information that 
might be available in a given instance.

With ACC, we can externally adapt the  
algorithm by controlling the choice of w without 

modifying user code or the ItPack library. Here, 
we illustrate this use of our framework, comparing 
a new approach to adapting w using ACC against 
ItPack’s own version of adaptivity. The purpose of 
this example isn’t to propose a new adaptive SOR 
algorithm, but rather to show ACC’s applicabil-
ity to changing the behavior of scientific code us-
ing an external model. This is similar to work by 
other researchers,10 which applies automatic dif-
ferentiation to a Fortran SOR code to adjust the 
w parameter.

Implementation
Each iteration of the SOR algorithm in ItPack is 
performed by the ITSOR subroutine. Therefore, we 
patch the SOR code to intercept the ITSOR calls, 
thereby transferring program control to ACC (see 
Figure 3). In this way, we can access and examine 
the whole set of subroutine parameters, including 
the solution vector, at the time of the call. More 
importantly, because ACC acquires program con-
trol at each ITSOR call, we can augment the desired 
adaptivity computation externally and transpar-
ently to both the ItPack library and the user’s code. 
The patched SOR code is then assembled and 
linked with the rest of the ItPack code to build a 
complete object module, thereby enabling inter-
ception of the ITSOR calls within the SOR routine.

To access w, which is internal to ITSOR and not 
communicated through any of the subroutine ar-
guments, we supply simple getter and setter rou-
tines where we declare ItPack’s common block 
ITCOM3 to which the parameter belongs. The get-
ter routine checks the value of w at the current 
step and the setter updates w with a new value for 
the next iteration.

We apply our adative SOR code to the 2D Pois-
son problem
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mesh and standard centered finite diferences, the 
SOR iteration is given by
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where 1 ≤ i, j ≤ N, h = 1/(N + 1), and uk,(i,j) is the
element of the solution vector uk corresponding 
to the mesh point (i, j) at iteration k. The residual 

Figure 3. Adaptive Successive Over-Relaxation (SOR) 
system through interception of ITSOR calls using 
ACC. Because ACC acquires program control at 
each ITSOR call, it augments the desired adaptivity 
computation externally and transparently to both 
the ItPack library and the user’s code.
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norm for the Poison problem at the kth step is 
given by

r b Auk k= −| |,

where b is the right-hand side vector and A is the 
discrete Laplacian.

Two questions must be addressed in implement-
ing adaptive SOR: when to change w, and how to 
obtain its new value. To decide the right time to 
change w, we simply borrow ItPack’s scheme based 
on convergence rate estimation11 and implement it 
in our handler code. Because the purpose of this 
example is to illustrate the applicability of ACC 
in composing an adaptive application, rather than 
to devise a new adaptive algorithm, adopting an 
already established schemesuits our needs well. 
Once we decide to change w, we fetch the inter-
mediate solution vector fromthe parameter list of 
ITSOR and calculate the residual norm rk, which is 
then used in a simple method to choose the new 
value of w:

w w wk k k+ + += +( )1 1
1

1
21

2
( ) ( ) ,

where we view the residual rk as a function of w, 
so that wk+1

1( ) is the next value given by a secantit-
eration seeking to solve rk+1(w) = 0, and wk+1

2( ) is 
the next value given by a secant iteration seeking 
to minimize rk+1(w)—by looking for a root of an 

approximation to r ′k+1(w). Because both estimates 
wk+1

1( )  and wk+1
2( )  require values from two previous 

iterations, we bootstrap the process by using the 
default ItPack scheme for computing a new w the 
fi rst time w is adjusted.

experimental results
We use f(x, y) = 0 and constant Dirichlet bound-
ary conditions for the Poisson problem. We ap-
plythe ItPack SOR solver to the discretized 
problem with our adaptivity framework turned 
on andthe internal adaptivity capability of ItPack 
turned off. The iteration terminates according to 
the ITSOR stopping test.11

On a 32-bit, x86 Linux machine running Fedora 
Core 6 with an Intel Pentium D dual-core 
3.60-GHz CPU and 2 Gbytes of RAM, we com-
pare the performance of our version of adaptive 
SOR with that of ItPack, both of which are com-
piled with GNU Fortran 95 (gfortran) 4.1.1 with 
O3 optimization turned on. We also measure the 
case where w is fi xed at the optimal value; the op-
timal value of w for an N × N Poisson problem is 

ω
πopt =

+
+









2

1
1

sin
N .

Table 2 shows both the execution time (average of 
three runs) and the number of iterations required 

table 2. comparison of adaptive sor algorithms for poisson problems.

simulation parameters fixed ω = ωopt itpack our method speedup
time 
(%)n ωopt ζ niter time(sec) niter time(sec) niter time(sec)

300 1.979 10-2 283 0.73 601 1.52 438 1.12 36

400 1.984 385 1.80 800 3.68 587 2.73 35

500 1.987 493 3.62 1,087 7.88 802 5.92 34

750 1.992 866 14.2 1,579 25.7 1,268 20.9 23

1,000 1.994 1189 34.4. 2,222 63.1 1,884 53.0 19

300 1.979 10-3 422 1.07 735 1.85 630 1.59 16

400 1.984 568 2.66 965 4.45 718 3.34 33

500 1.987 717 5.33 1,279 9.30 988 7.24 28

750 1.992 1172 19.2 1,855 30.3 1,549 25.4 19

1,000 1.994 1590 46.4 2,848 82.1 2,281 66.1 24

300 1.979 10-4 555 1.39 859 2.19 728 1.95 12

400 1.984 746 3.45 1,117 5.16 813 4.10 26

500 1.987 943 6.94 1,495 10.88 1,268 9.23 18

750 1.992 1503 24.6 2,193 36.0 1,788 30.2 19

1,000 1.994 2003 58.1 3,599 103.1 2,694 77.0 34

N = problem size; Niter = number of iterations; wopt = optimized over-relaxation parameter; and z = the error-tolerance parameter.
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to converge for different problem sizes ranging 
from N = 300 to N = 1,000, along with z (the 
error-tolerance parameter), ranging from 10-2 to 
10-4. The value of w was initially set to 1.5 for 
both adaptive SOR programs. As the table shows, 
our adaptive SOR performed better than ItPack’s 
in all cases, with speedup as high as 36 percent in 
terms of execution time.

In addition, using the ACC framework doesn’t 
entail significant overhead. For instance, inter-
cepting ITSOR function calls for a 300 × 300 
problem with z set to 10−2—the smallest problem, 
where the framework overhead would be the most 
obvious—increased execution time by only 0.01 sec-
onds on average (that is, less than 0.7 percent).

Figure 4a shows the adaptive progress of w over 
iterations for a 500 × 500 Poisson problem with 
z set to 10−3, starting from w = 1.5. In all, w is 
adapted seven times in this example, but we show 
only the last five for two reasons:

•	 to highlight the differences between our method  
and the default ItPack scheme, and

•	 because our first two adaptive steps actually use 
the ItPack scheme, as our estimator needs two 
initial points.

As the figure shows, our adaptivity method 
adjusts w more quickly toward wopt than ItPack, 
although it overestimates a bit at the end. The ex-
ecution time improves by 28 percent, but the han-
dler function for ITSOR consumes only 0.044 seconds 
on average during the whole execution, which 
amounts to 0.6 percent of the total 7.24 seconds. 
Figure 4b shows the reduction in residual as the 
computations proceed. (The residuals were com-
puted explicitly at each iteration in a separate run.) 
As the figure shows, our adaptive approach suc-
ceeds in improving the rate of residual reduction 
compared to ItPack’s adaptive scheme. ItPack uses 
a relative error estimate, rather than a residual 
estimate, to terminate the iterative process. This 
explains why the wopt case terminates first, despite 

having a larger residual for a given iteration than 
the other two cases, both of which focus on mini-
mizing the residual when adapting w.

Case Study 2: Parallel CFD Codes
We used the ACC framework to implement vari-
ous adaptivity scenarios in the context of real sci-
entific computing codes, including applications in 
biochemical network simulation12 and computa-
tional fluid dynamics (CFD).13,14

As we describe elsewhere,13 ACC is used to im-
prove the performance, stability, and accuracy of 
GenIDLEST, a large parallel CFD code.15 GenI-
DLEST is written in Fortran 90 with a message 
passing interface (MPI), and solves the time- 
dependent incompressible Navier-Stokes and en-
ergy or temperature equations. The GenIDLEST 
time integrator’s stability depends on the timestep 
used, but it’s difficult to identify a single adapta-
tion scheme that will automatically and success-
fully adjust the timestep forthe wide variety of 
problems that engineers use GenIDLEST to 
solve. Hence, in practice, users save checkpointed 
solutions periodically during the long simulation 
runs, so that if instability occurs they can restart 
the simulation from the last stable state with a 
smaller timestep. By using ACC to plug in a sepa-
rately written stability module, we factor out the 
time-step adjusting strategy from the main code 
base, allowing users to easily use and experiment 
with different strategies, as appropriate.

In other work,13 we show how one particular 
set of CFD computations can be stabilized effec-
tively by a simple multiplicative increase/decrease 
algorithm, where the time step is increased (to 
reduce time-to-solution) or decreased (to main-
tain numerical stability) by a preset factor if the 
computed Courant-Friedrich-Levi (CFL) indica-
tor goes above or below preset upper and lower 
CFL thresholds.

Figure 5 shows the results for GenIDLEST 
enhanced with the adaptivity module for a typi-
cal simulation, with different initial values of time 

Figure 4. Comparison of SOR methods for a 500 × 500 Poisson problem. (a) The adaptive progress of w over iterations 
(b) The residuals over iterations reduces as the computations proceed.
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step ranging from 10−3 to 10−5. The CFL lower 
and upper thresholds were set to 0.25 and 0.50, 
respectively. The graphs show how the CFL value 
changes as the time-step parameter is controlled 
by the new module, thereby maintaining the sim-
ulation’s stability.

In addition to automatic time-step adaptation, 
we also use ACC to facilitate an interactive, user-
controlled adaptation of GenIDLEST’s flow model, 
resulting in more accurate simulations. In CFD 
simulations, the predicted flow characteristics de-
pend on the selection of the appropriate flow model.  
In problems of interest, it’s critical to choose an ap-
propriate model when the simulated flow is in the 
transition region between laminar and turbulent. 
Our ACC-enabled mechanism lets users monitor 
the stream-wise velocity’s time variation, which can 
be used to infer when to switch from a laminar flow 
model to a turbulent model, and when to switch 
from one turbulent flow model to a more accurate 
but computationally expensive alternative. Because 
GenIDLEST already implements all the flow mod-
els, with a particular one selected by setting a single 
parameter, it’s easy to use ACC to change models 
by controlling this parameter, which requires no 
modification to the original code.

We’re also using ACC to support dynamic meth-
ods for performance tuning of algorithmic param-
eters in parallel scientific codes. An important 
trend in high-performance scientific computing is 
the use of auto-tuned or self-adaptively optimized 
algorithms and implementations. Approaches in-
clude language extensions,16 model-driven com-
piler optimizations,17 and empirical search-based 
schemes.18 Although these methods have been 
successful in limited domains (such as numerical 
linear algebra kernels), there’s still a need for better 

support for application-specific adaption schemes, 
where a particular computation’s unique context—
including the code, the data, and the computing 
resources—can be taken into account.

In earlier work, we showed how to use ACC to 
implement a dynamic method for tuning algorith-
mic parameters in codes such as GenIDLEST.14 
For example, we inserted adaptive schemes to ad-
just two parameters that strongly influence the 
performance of the preconditioner used in an im-
portant linear solution step. The first parameter 
is the size of a subdomain block, represented by 
nbi, nbj, and nbk. This parameter defines the struc-
ture of the domain decomposition preconditioner; 
it influences, often in nonobvious ways, both the 
preconditioner’s quality as an approximation to 
the original discrete PDE operator and the com-
putation’s floating-point performance (such as 
through memory hierarchy effects). The second 
parameter is ns, the number of inner relaxation 
sweeps used in the multilevel preconditioner.

Figure 6 shows the performance of Gen-
IDLEST for a typical problem for 3,000 time 
steps, where each point corresponds to the elapsed 
time measured every 50 steps during the simu-
lation. The thick gray solid line corresponds to 
the tuned algorithm, and the colored lines show  
the performance for other typical fixed choices 
of the parameters. The tuned curve is labeled at 
various points to show the history of the simple 
adaption scheme used, where the parameters nbi, 
nbj, nbk, and ns are adjusted automatically to test 
and improve performance as the simulation pro-
ceeds. Overall, the time-to-solution for the full 
10,000 time-step run improved by 26 percent 
over the performance of the nonadapted code, 
with typical parameter choices.

Figure 5. Automatic adjustment of the time-step parameter in GenIDLEST.13 (a) Time-step change and (b) the Courant-Friedrich-
Levi (CFL) number.
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Modern numerical methods often have several 
such parameters, and their influence on accuracy 
and performance is hard to predict for realistic 
problems running on a particular computational 
resource. Dynamic tuning is often the only effec-
tive approach. With ACC, we can factor out this 
important concern from the standard code base, 
allowing much greater flexibility in deciding what 
and how to adapt.

W e are applying ACC to more 
diverse areas in scientific com-
puting. In particular, we are ex-
ploring more dynamic scenarios 

of scientific software adaptation, where the user’s 
runtime decisions can be supported to realize 
flexible simulations, without complete description 
of adaptation specifications even before applica-
tion launch. We are also investigating recurring 
adaptation scenarios in scientific computing that 

can be abstracted out into pattern templates, so 
that they can be easily reused for different applica-
tion domains in a more manageable way.

ACC is available for download at http://people.
cs.vt.edu/~kangp/ack.�
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