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Abstract. Topic modeling techniques have been widely used to uncover
dominant themes hidden inside an unstructured document collection.
Though these techniques first originated in the probabilistic analysis of
word distributions, many deep learning approaches have been adopted
recently. In this paper, we propose a novel neural network based architec-
ture that produces distributed representation of topics to capture topical
themes in a dataset. Unlike many state-of-the-art techniques for generat-
ing distributed representation of words and documents that directly use
neighboring words for training, we leverage the outcome of a sophisti-
cated deep neural network to estimate the topic labels of each document.
The networks, for topic modeling and generation of distributed represen-
tations, are trained concurrently in a cascaded style with better runtime
without sacrificing the quality of the topics. Empirical studies reported
in the paper show that the distributed representations of topics repre-
sent intuitive themes using smaller dimensions than conventional topic
modeling approaches.
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1 Introduction

The representation of textual datasets in vector space has been a long-standing
central issue in data mining with a veritable cottage industry devoted to repre-
senting domain-specific information. Most representations consider features as
localized chunks as a result of which the interpretation of the features might lack
generalizability. Researchers have recently become interested in distributed rep-
resentations [12, 8, 14, 19] because distributed representations generalize features
based on the facts captured from the entire dataset rather than one single object
or a small group of objects. Moreover, modern large and unstructured datasets
involve too many heterogeneous entries for which local subspaces cannot capture
relationships between the features. For example, publication datasets nowadays
come with a substantial number of features like author information, scientific
area, and keywords along with the actual text for each document. News article
datasets have author information, time stamp data, category, and sometimes
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tweets and comments posted against the articles. Movie clips are accompanied
by synopsis, production information, rating, and text reviews. The focus of this
paper is on the design of a flexible mechanism that can generate multiple types of
features in the same space. We show that the proposed method is not only able to
generate feature vectors for labeled information available with the datasets but
also for discovered information that are not readily available with the dataset
as labels, for example, topics. Current state-of-the-art of distributed representa-
tions for unstructured text datasets can model two different types of elements
in the same hyperspace, as described by Le and Mikolov [16]. Le and Mikolov’s
framework generates distributed vectors of documents (or paragraphs) and words
in the same space using a deep neural network. Further generalization, that we
have described in this paper, can provide distributed representations for hetero-
geneous elements of a dataset in the same hyperspace. However, the problem
of creating distributed representations becomes more challenging when the label
information is not contained within the dataset. The focus of this paper is on the
generation of topical structures and their representations in the same space as
documents and words. The capability of representing topics, documents, words,
and other labeled information in the same space opens up the opportunity to
compute syntactic and semantic relationships between not only words but also
between topics and documents by directly by using simple vector algebra.

Estimating the topic labels for documents is another challenge while using
distributed representations. Earlier topic modeling techniques [9, 13] used to de-
fine a document as a mixture of topics and estimate the probability p(t|d) of a
topic (t) of a document (d) through probabilistic reasoning. More recently, topic
models are seen from a neural network point of view [26, 15, 6] where these prob-
abilities are generated from the hidden nodes of a network. Such neural networks
require compact numeric representations of words and documents for effective
training, which are not easy to estimate with traditional vector space based
document modeling techniques that represent the documents using a very high
dimensional space. There have been attempts to use the compact distributed
representations of words and documents learned from a general purpose large
dataset [6] but the precomputed vectors may not be always appropriate for many
new domain specific datasets. Furthermore, the vocabulary shifts in a new di-
rection over time resulting in changes in the distributed representations.

Specific contributions of this paper are as follows.

1. We formulate the problem of computing distributed representation of topics
in the same space as documents and words using a novel fusion of a neural
network based topic modeling and a distributed representation generation
technique.

2. The tasks of computing topics for documents and generating distributed rep-
resentations are simultaneous in the proposed method unlike closely related
state-of-the-art techniques where precomputed distributed vectors of words
are leveraged to compute topics. Additionally, none of the state-of-the-art
methods generates distributed representation of topics to the best of our
knowledge.
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3. Our proposed method generates the distributed vectors using a smaller num-
ber of dimensions than the actual text feature space. Even if the space is
of lower number of dimensions, the vectors capture syntactic and semantic
relationships between language components.

4. We demonstrate that the generated topic vectors explain domain specific
properties of datasets, help identify topical similarities, and exhibit topic-
specific relationships with document vectors.

2 Related Work

Distributed representations have been used in diverse fields of scientific research
with notable success due to their superiority in capturing generalized view of
information over local representations. Rumelhart et al. [22] designed a neural
network based approach for distributed representation of words which has been
followed by many efforts in language modeling. One such model is the neural
probabilistic model [2] proposed by Bengio et al. This framework uses a sliding
window based context of a word to generate compact representations. Mikolov
et al. [17] brings in continuous bag-of-words (CBOW) and skip-gram models to
compute continuous vector representations of words efficiently from very large
data sets. The skip-gram model was significantly improved in [18], which includes
phrase vectors along with words. Le and Mikolov [16] extended the CBOW
model to learn distributed representation of higher level texts like paragraphs
and documents. Our proposed model further enriches the literature by including
the capability to generate (1) vectors for arbitrary labels in the dataset and
(2) vectors for topics for which a text dataset does not contain any labeled
information.

Finding hidden themes in a document collection has been of great interest
to data mining and information retrieval researchers for more than two decades.
An earlier work in the literature is latent semantic indexing (LSI) [9] that maps
document and terms in a special “latent semantic” space by applying dimen-
sionality reduction on traditional bag-of-words vector space representations of
documents. A probabilistic version of LSI, pLSI [13], introduces a mixture model
where each document is represented by a mixing proportion of hidden “topics”.
Latent Dirichlet Allocation (LDA) [5], a somewhat generalized but more sophis-
ticated version of pLSI, is one of the most notable ones in the literature. It
provides a generative probabilistic approach for document modeling assuming a
random process by which the documents are created. LDA spawned a deluge of
work exploring different aspects of topic modeling. For example, the Dynamic
Topic Model (DTM) [4] captures the evolution of topics in a time-labeled corpus.
Online LDA (OLDA) [1] handles streams of documents with dynamic vocabulary,
Wallach [25] and Griffiths et al. [11] exploit the sentence structures of documents
and Correlated Topic Model (CTM) [3] captures the correlation between topics.

More recently, neural network based models have received great attention
from the data mining community. Wan [26] et al. introduce a hybrid model
in computer vision settings; DocNADE [15] provides an autoregressive neural
network for topic modeling; Cao et al. [6] propose a neural topic model (NTM)
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with supervised extension. The latter work has close resemblance to a part of
our proposed model that focuses on generating topics for each document.

3 Problem Formulation

Let D = {d1, d2, . . . , dN} be a text dataset containing N documents taking terms
from the set of M words W = {w1, w2, . . . , wM}. Each document can contain
an arbitrary number of words in any sequence. The objective is to generate a
universal distributed representation for the labeled items (e.g., words and docu-
ments) and latent topics of each document of dataset D. Let T = {t1, t2, . . . , tK}
be the set of topics. Consider that the expected number of dimensions in the
distributed representation of words, documents, and topics is L. L should be
much smaller than the number of words M . Word vectors W ∈ RM×L, docu-
ment vectors, D ∈ RN×L and topic vectors, T ∈ RK×L generated in the same
L-dimensional space should maintain two specific properties: (1) distributed rep-
resentation of each type should be capable of capturing the semantic, syntactic,
and topical aspect of conventional language models, and (2) all types of vectors
(topics, documents, and words) organized in the L-dimensional hyperspace must
be comparable to each other.

The first property aligns the framework with the objectives of any language
model where features are generated for most common data mining tasks likes
clustering and classification. The second property, however, is unique and spe-
cific to relating vectors of different types of entities like topics, documents, and
vectors. In word2vec [17], the authors show that distributed representations of
word can retrieve linguistic similarities between pairs of words. For example,
WKing −WMan is close to WQueen −WWoman. The ability to model topics in the
same hyperspace extends this property by capturing similarity between relation-
ships among topics and documents. For example, if two documents di and dj are
drawn from the same topic tp then Tp−Di should be closer to Tp−Dj . Similarly,
if two documents di and dj are drawn from two different topics tp and tq, then
Tp −Di should tend to be different than Tp −Dj .

4 Methodology

The main objective of the proposed framework is to generate a compact dis-
tributed representation for topics, documents, and words of a document collec-
tion in the same hyperspace in such a way that all these heterogeneous objects are
comparable to each other and capture the semantic, syntactic and thematic prop-
erties. The proposed framework has three major components. First, we adopt
a generic neural network that can generate distributed vectors for documents,
words, and any given labels. Second, we propose a deep neural network based
topic modeling that can take distributed representations of words and docu-
ments, and estimate topic distribution for each document. Finally, we convolute
both these networks so that they can share information and train simultane-
ously. Fig. 1 shows the proposed framework. The following subsections describe
the model in a sequence.
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Fig. 1. The proposed framework.

4.1 Distributed Representation of Heterogeneous Entities

Inferring a distributed representation W for the words of a document collection
D having vocabulary W is based on predicting a word given other words in the
same context. The objective of such a word representation model is to maximize
the average log probability

1

M

M−p∑
m=p

log p(wm|wm−p, . . . , wm+p) (1)

The individual probabilities in Equation 1 are estimated by training a multi-class
deep neural network, such as softmax. They can be computed as:

p(wm|wm−p, . . . , wm+p) =
eym∑
i e

yi
(2)

where yi is the unnormalized log-probability for every output word wi.

yi = b+ Uh(wm|wm−p, . . . , wm+p;W) (3)

Here, U and b are the softmax parameters. h is constructed by a concatenation
or average of relevant word vectors. We use hierarchical softmax [17] instead of
softmax for faster training, and calculate the gradient using stochastic gradient
descent. After the training converges, words with similar meaning are mapped to

Algorithm 1: LearnDistRep – algorithm for learning topic vectors

input : Document id, d
Set of topics in d, Td

Word to predict, w
Context of w, Cw

parameter: Distributed representations D, W and T
1 Calculate y using Equation 4 ;
2 Calculate gradient gr using stochastic gradient descent ;
3 Update document vector Dd, topic vectors TTd and word vectors WCw using gr;
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Algorithm 2: LearnTopic – algorithm for learning topic distribution.

input : Document id, d
N -gram or context id, g

parameter: Distributed representations D, W and T
Weight matrices W1 and W2

output : Updated weight matrices

1 Calculate ls(g, d) using equations for lt and ld ;
2 Determine error in output node with respect to the ideal value:

δ(3) = ls(g, d)− 1 ;
3 Compute the error in n-gram-topic hidden node:

δ
(2)
1 = (δ(3) × ld(d)) · (lt(g) · (1− lt(g))) ;

4 Update W2: W2 = W2 + α[δ
(2)
1 ×Wg + λ×W2] ;

5 Compute error in the document-topic hidden node:

new ld(d) = ld(d) + α[δ(3) × lt(g) + λ× ld(d)] ;

6 δ
(2)
2 = new ld(d)− ld(d) ;

7 Update W1: W1 = W1 + α[δ
(2)
2 ×Dd + λ×W1] ;

a similar position in the vector space. To obtain a document vector, a document
is thought of as another word. The only change in the model is in Equation 3,
where h is constructed using W and D.

Inclusion of further labels, for example, authors, topic, and tags can be done
the same way document vectors are added. Our focus in this paper is to in-
corporate topics instead of additional labels. Incorporation of topic vectors is
challenging because the topics are not given and rather should be generated us-
ing the documents and words. For the time being, let us assume that topic is just
a given label that comes with the data. In contrast to the word vector matrixW
that is shared across all the documents, a topic vector can be shared only across
the documents which contain that particular topic. Considering topic vectors
along with the vectors for words and documents, Equation 3 is modified to:

y = b+ Uh(wt−k, . . . , wt+k, dq, tr1 , tr2 , . . . , trs ;W,D, T ) (4)

For the training purpose, we use sampling of variable-length contexts using a
sliding window over each document. Such a sliding window is commonly referred
to as n-gram. We use n-grams instead of single words (unigrams) since n-grams
produce representative contexts around each word [18]. A procedure for training
this generic network for topic, documents, and words is explained in Algorithm
1.

4.2 Estimating Topic Labels of Documents

As stated earlier, the generic model described in Section 4.1 requires topic as
labels of each document. This section focuses on a topic modeling technique
that can generate topic labels taking document vectors and word vectors into
account. For effective and efficient generation of topic vectors, the topic mod-
eling technique must synchronize with the iterations of the distributed vector
generation part. Several topic modeling techniques have been proposed in the
literature to find topic distribution of documents of such unlabeled datasets.
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In a general topic model, each document is seen as a mixture of topics, and
each topic is represented as a probability distribution over the vocabulary of
the entire corpus. The conditional probability p(w|d) of a word and a document
is computed from word-topic distribution and topic-document distribution as
p(w|d) =

∑K
i=1 p(w|ti)p(ti|d), where K is the number of topics and ti is a latent

topic. This equation can be re-written as

p(w|d) = φ(w)× θT (d) (5)

where φ(w) = [p(w|t1), p(w|t2), . . . , p(w|tK)] is the conditional probabilities of w
with all the topics and θ(d) = [p(t1|d), p(t2|d), . . . , p(tK |d)] is the topic distribu-
tion of d.

We can view topic models from a neural network perspective considering
the formation of Equation 5. Let us consider a neural network with two input
nodes for sliding window with n-gram g and document d, two hidden nodes lt
(representing φ(g)) and ld (representing θ(d)), and one output node ls produc-
ing the conditional probability p(g|d). The topic-document node ld ∈ R1×K

computes the topic distribution of a document (similar to θ in topic mod-
els) using the weight matrix W1 ∈ RL×K . It is computed by the equation
ld(d) = softmax(Dd × W1) which uses a softmax function to maintain the
probabilistic constraint on topic distribution that all the topic probabilities of a
document must sum up to 1.

The n-gram-topic node lt ∈ R1×K stands for the topic representation of the
input n-grams, and calculated as lt(g) = sigmoid(Wg ×W2) where W2 ∈ RL×K

denotes the weight matrix between the n-gram input node and the n-gram-topic
node. This vector follows a probabilistic form similar to φ in topic models.

The output node ls ∈ R gives the matching score of an n-gram g and a
document d by computing the dot product of lt(g) and ld(d). The outputted score
ls(g, d) = lt(g) × ld(d)T is a value between 0 and 1, similar to the conditional
probability of p(g|d).

The n-gram-document probability p(g|d), which initially is expected to be
very different from the ideal value, is estimated by performing a forward prop-
agation in the network. Algorithm 2 describes the training procedure for the
neural topic model part of our proposed model. For each n-gram-document pair
(g, d) the expected output value is 1 due to the fact that g is taken from docu-
ment d. The weights are updated using backpropagation to mitigate that error
(Steps 3 to 7 in Algorithm 2).

4.3 Concurrent Training

The training process runs concurrently for both topic modeling and distributed
vector generation. Fig. 1 shows the proposed combination of two networks. No-
tice the training is simultaneous unlike NTM [6] where already trained word
vectors are used for topic modeling. All the weights (W1 and W2 matrices) and
vectors (W, D and T matrices) in both the networks are initialized with random
values (Step 1 and 2 of Algorithm 3). As shown in the loop at Step 3 of Algo-
rithm 3, the combined framework reads each document in sequence of n words
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(context) using a continuous window. For a particular document, the topic mod-
eling network gives its topic distribution as the output of the hidden node ld. We
select k most probable topics from this distribution – with an assumption that
a document is made up of k number of topics – and provide them as input to
the distributed vector generation network. The call to the method LearnTopics

in Step 7 of Algorithm 3 accomplishes this task. The corresponding word, doc-
ument and topic vectors are updated using method LearnDistRep in Step 8 of
Algorithm Algorithm 3. Method LearnTopics and LearnDistRep are explained
in Algorithms 2 and 1, respectively.

Notice that the document and word vectors of context (n-gram) generated by
Algorithm 1 are provided as input to the topic modeling network of Algorithm
2. Also the top k topics generated for each document using Algorithm 2 are
provided to the distributed vector generation part (Algorithm 1). Algorithm 3
combines all these steps.

5 Complexity Analysis

Although both the neural networks in our proposed framework are concurrently
trained, we analyze their complexities separately for simplicity. For every ex-
ample during the training of the distributed vector generation network, there
are P words (context length), k topics and one document as input resulting in
I = P+k+1 input nodes. These inputs are projected into a L dimensional space.
Although there are V = N+M+K output nodes, this part of the network needs
to update only O(log V ) nodes using the gradient vector since the model uses
hierarchical softmax. I input nodes get updated during backpropagation making
the complexity for training a single example, Cdr = I × L+O(log V )× L.

The topic modeling network takes the same document and input words. Cal-
culating Wg from the words in n-gram g takes O(P ×L) time. Calculating each

Algorithm 3: ConcurrentTrain – algorithm for simultaneous training of
both networks
input : Document collection D
parameter: Distributed representations D, W and T

Weight matrices W1 and W2 of topic modeling network
output : D, W and T

1 Randomly initialize D, W and T ;
2 Randomly initialize W1 and W2 ;
3 for each document d ∈ D do
4 Topics in d, Td ← top k topics from ld(d) ;
5 for each word w of d do
6 Cw ← context of w ;
7 LearnTopics(d, Cw) ;
8 LearnDistRep(d, Td, w, Cw) ;

9 end

10 end



Concurrent Inference of Topic Models and Distributed Representations 9

of ld and lt takes O(L×K) operations and ls requires O(K) operations. Back-
propagation (step 3 to 7 of Algorithm 2) runs in O(L×K) time incurring a total
cost of Ctm = O(P × L) +O(L×K) +O(K) +O(L×K), or Ctm = O(L×K)
given K > P , for every example. Therefore, the cost of training the combined
network for each example is C = Ctm + Cdr.

6 Evaluation

We use a number of metrics to evaluate the quality of our results. Some of
these metrics are generally used to evaluate clustering results when ground truth
labels are not available. Two such evaluations are the Dunn Index (DI) [10]
and the Average Silhouette Coefficient (ASC) [21]. DI measures the separation
between groups of vectors and larger values are better. ASC is a measure that
takes both cohesion and separation of groups into account (higher values are
better). In our experiments, we utilize ASC and DI together to evaluate the
final topic assignments of the documents. Topics are analogous to clusters in
those evaluations. ASC and DI give us an idea about how crisply the topics are
distributed across the documents.

In the presence of ground truth labels, we evaluated the assigned topics
using Normalized Mutual Information (NMI) [7], Adjusted Rand Index (ARI)
[24], and the hypergeometric distribution-based enrichment. Both NMI and ARI
estimates the agreement between two topic assignments, irrespective of permu-
tations. Higher values are better for NMI and ARI. Hypergeometric enrichment
[23] maps topics to available ground truth labels. This allows us to measure a
significance based on hypergeometric distribution of the topic assignments over
the already known labels. Higher number of enriched topics is better.

Our proposed model is able to generate topic and document vectors in the
same hyperspace. In an ideal case, all angles between a topic vector and each
document vector assigned to this topic should be similar and the standard devi-
ation of those angles should be small. We use this concept to compute alignment
between a topic vector and a given set of document vectors. Given a topic vector
Ti of topic ti, and a set of document vectors Dtj that are assigned a topic tj , we
compute alignment using the following formula:

A(Ti,Dtj ) =

√√√√ 1

|Dtj |

|Dtj |∑
m=1

(
Ti.D

tj
m

‖Ti‖‖D
tj
m‖
− µ

)2

(6)

where Dtj
m refers to the document vector of mth document in topic tj , and

µ =
1

|Dtj |

|Dtj |∑
m=1

Ti.D
tj
m

‖Ti‖‖D
tj
m‖

(7)

Notice that Equation 6 is the standard deviation between the cosine angles
between the topic vectors and the document vectors. Lower values are expected
when ti = tj and higher values are expected when ti 6= tj .
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7 Experiments

In this section, we seek to answer the following questions to justify the capabil-
ities and correctness of the proposed model.
1. Can our framework establish relationships between distributed representa-

tions of topics and documents? (Section 7.1)
2. Are the generated topic vectors expressive enough to capture similarity be-

tween topics and to distinguish difference between them? (Section 7.2)
3. How do our topic modeling results compare with the results produced by

other topic modeling algorithms? (Section 7.3)
4. Do the generated topics bring documents with similar domain-specific themes

together? (Section 7.4)
5. How does the runtime of the proposed framework scale with the size of the

distributed representations, increasing number of documents, and increasing
number of topics? (Section 7.5)
We used seven different text datasets1 with different number of documents

and words. The datasets are listed in Table 1. Some of these datasets are widely
used in the text processing literature (e.g., Reuters , WebKB, and 20Newsgroups
datasets), while we have collected most of the other corpora from the public do-
main. The PubMed dataset is collected from publicly available citation databases
for biomedical literature provided by the US National Library of Medicine. The
PubMed dataset contains abstracts of cancer -related publications. The Spanish
news dataset was collected as a part of the EMBERS [20] project. The articles
covered news stories from 207 countries around the world.

7.1 Analysis of Distributed Representations of Topics and
Documents

The topic and document vectors generated by the proposed framework maintain
consistent relationships that can be leveraged in many applications to study the
topics of a stream of unseen documents. To be able to develop such applications, a
relationship between a topic vector Ti and any of its document vectors Dti

p should
be different than the relationship between another topic Tj and a document

vector Dtj
q .

Table 1. Summary of the datasets.

Dataset #Docs #Words Additional information

Synthetic 400 40,000 Four lower and two upper level groups.

20 Newsgroups 18,821 2,654,769 20 categories in seven groups.

Reuters R8 7,674 495,226 Eight category labels.

Reuters R52 9,100 624,456 52 groups.

WebKB 4,199 559,984 Four overlapping categories

PubMed 1.3 million 220 million Publication abstracts related to cancer.

Spanish news 3.7 million 3 billion News articles from 2013 and 2014.

1Data and software source codes are provided here: http://dal.cs.utep.edu/

projects/tvec/.
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In contrast, such topic-document relation-
ships should be similar for two documents of
the same topic. Each plot of Fig. 2 shows a
heat map of alignment between a topic vec-
tor Ti of topic ti and all document vectors
Dtj of topic tj using Equation 6. Fig. 2 shows
the heat map with four topics of the synthetic
dataset. In this heat map, lower alignment val-
ues result in darker cells depicting stronger
topic-document alignment for topic and doc-
ument vectors of the same topic, whereas
weaker alignments are exhibited when docu-
ment vectors are chosen from a different topic.
This indicates that our proposed framework
captures topical structures as well as it models
relationships between topics and documents
in the same hyperspace.

7.2 Expressiveness of Topic Vectors

As described in Section 4.3, k-best topics generated by the topic modeling part of
the proposed model are selected as input to the distributed representation gen-
eration part. We set k = 1 for all our experiments including the ones described
in this subsection . To examine how expressive our distributed topic vectors are,
we prepared a synthetic corpus containing documents with term from seven sets
as illustrated by Fig. 3(a). Four groups of documents contains terms specific to
each group. The same dataset can be divided into two groups of documents be-
cause each group contains terms from a specific group set of words. Additionally,
all sets of documents share a common set of terms. We generated topic, docu-
ment, and words vectors using our proposed framework. A dendrogram for the
generated four topic vectors is shown in Fig. 3(b). As expected, the dendrogram
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exhibits the topical structure where two topic vectors separately and then those
two groups merge at the top of the hierarchy. The dendrogram of topic vectors
reflects the grouping mechanism we used to create the dataset.
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Fig. 4. Dendrogram prepared with the 20
category vectors of 20 Newsgroups dataset.

In a second experiment in this
space, we used a dataset that al-
ready has category labels (20 News-
groups) to verify how intuitive the
topic vectors are in bringing similar
categories together. To be able to gen-
erate distributed vectors for existing
categories along with document and
word vectors, we directly provided
the known labels to the distributed
representation generation part of the
model as an inputs as opposed to pro-
viding topics generated by the topic
modeling network. The official site
for the 20 News Groups dataset re-
ports that some of the newsgroups
are very closely related to each other (e.g. comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware), while others may be highly unrelated (e.g misc.forsale
and soc.religion.christian). Our target is to verify if the generated category
vectors can provide insights about how the topics should be merged. Fig. 4
shows the dendrogram prepared for the 20 category vectors of 20 Newsgroups
dataset. There are some differences between the official grouping and the group-
ing we have discovered using the category vectors, for example, sci.electronics is
grouped with comp.sys.mac.hardware and comp.sys.ibm.pc.hardware. The label
sci.electronics is far away from sci.space even though they have a common pre-
fix “sci”. Our observation is that sci.electronics has many documents containing
hardware related discussions. As a result, sci.electronics has greater similarity
with hardware than sci.space. Similar evidences are found for the rec.* groups.
For example, rec.sport.* groups are different from rec.motorcycles and rec.autos
but the latter two groups are closely related, as evident in the dendrogram.

7.3 Comparison of Quality of Generated Topics

Fig. 5 shows a comparison of results generated by our framework and two other
topic modeling methods, LDA and NTM, when applied on four classification
datasets — synthetic, Reuters-R8, Reuters-R52, WebKB, and 20 Newsgroups.
Fig. 5 (a) and (b) use adjusted Rand index (ARI) and normalized mutual in-
formation (NMI) to compare the topic assignments of the documents with the
expected classes. ARI and NMI are larger for the proposed methods for all the
datasets. This implies that our framework realizes the expected themes of the
collections better than LDA and NTM. Not only the expected categories better
match with the topic assignments, but also the generated topics are local in the
corresponding space of our framework. Higher Dunn index and higher average
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(a) Adjusted rand index. (b) Normalized mutual information.
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Fig. 5. Evaluation using benchmark labels (a & b) and locality of the topics (c & d).

silhouette coefficient for all the datasets, as depicted in Fig. 5(c) and (d), imply
that our model provides high quality local topics. Notice that Fig. 5(c) and (d)
do not have NTM. This is because Dunn index and average silhouette coefficient
require document vectors, but NTM [6] does not directly use any document
vector; rather, it uses precomputed word vectors only.
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Fig. 6. Comparison of numbers of topics
enriched by hypergeometric distribution.

We also used a hypergeometric
distribution based procedure to map
each topic to a class label. Fig. 6
shows that the topic assignments su-
ing our framework have higher num-
ber of enriched topics than any other
method. This indicates that the topics
generated by our methods has higher
thematic resemblance with the bench-
mark labels.

Table 2. Evaluation using the
EMBERS news article dataset.

Method
Evaluation metric

Dunn index Silhouette score

NTM 0.04 0.01

LDA 0.01 -0.015

Proposed method 0.1 0.05

All these datasets described so far, in this
subsection are labeled and are widely used
a ground truths in many data mining and
machine learning evaluations. In addition to
these datasets, we used our EMBERS data
containing around 3.7 million news articles
to compare locality of the topics with other
methods. Table 2 shows that our method produces topics with greater Dunn
index and average silhouette score than other methods. This indicates that our
method performs even better when the datasets are very large.

7.4 Evaluation using Domain Specific Information

In this experiment, we used the PubMed dataset to compute overlap of domain
specific information for documents in the same topic (i.e., true positive) and



14 Shamanta, Naim, Saraf, Ramakrishnan and Hossain

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

T
ru

e
 P

o
s
it

iv
e

Top n MeSH terms

Proposed method

LDA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

T
ru

e
 N

e
g

a
ti

v
e

Top n MeSH terms

Proposed method

LDA

(a) Ratio of true positives. (b) Ratio of true negatives.

Fig. 7. Comparison of our method and LDA using MeSH terms associated with the
PubMed abstracts.

lack of such overlap for a pair of documents from two different topics (i.e., true
negative). In the PubMed dataset, each abstract is provided with some major
Medical Subject Header (MeSH) terms which come from a predefined ontology.
We used these MeSH terms as domain specific information to evaluate the topics.
It is expected that the sets of MeSH terms of two documents of the same topic will
have some common entries, where as the sets of MeSH terms of two documents
from two different topics will have lesser or no overlapping records. For each
abstract, we ordered the MeSH terms based on Jaccard similarity between a
MeSH terms and the abstract. Notice that if we pick up n best MeSH terms
for two documents from the same topic the chance that these two sets of n
best MeSH terms have common entries increases with larger n. This trend is
observed in Fig. 7(a) for both our framework and LDA. The true positive ratio
quickly becomes around 80% with only five best MeSH terms for each pair of
documents. Now, the top n MeSH terms of two documents from two different
topics should have higher absence of overlapping terms with smaller n since the
topical similarity of these two documents is minimal. As n increases the true
negative ratio will decrease due to inclusion of more general entries in the lists
of n best MeSH terms. Fig. 7(b) shows the expected trend for both LDA and
our framework. We selected random 5,000 pairs of documents from same topics
and another 5,000 pairs from different topics for the two plots, Fig. 7(a) and (b)
respectively. Fig. 7(a) and (b) demonstrate that our method follows an expected
trend of sharing domain specific information. Although the true positive values
are slightly lower than LDA in our method in some cases, the true negative
values are always greater than LDA. This indicates that our model generates
topics containing similar biological themes while documents of different topics,
as expected, have lesser similarity in domain specific information.

7.5 Runtime Characteristics

Fig. 8 depicts the runtime behavior of our proposed framework with varying
number of documents, topics, and vector size. The runtime increases almost
linearly with each of these variables. This indicates our proposed framework
is scalable with large amount of data. The experiments in this space were done
using synthetic data with different number of words in each document as depicted
by multiple lines in each of the plots of Fig. 8.
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Fig. 8. Execution time with varying (a) number of documents, (b) number of topics,
and (c) vector size.

8 Conclusion

We have presented a framework to generate distributed vectors for elements in a
corpus as well as the underlying latent topics. All types of vectors — topics, doc-
uments, and words — share the same space allowing the framework to compute
relationships between all types of elements. Our results show that the framework
can efficiently discover latent topics and generate distributed vectors simultane-
ously. The proposed framework is expressive and able to capture domain specific
information in a lower-dimensional space. In future, we will investigate how one
can study the information genealogy of a document collection with temporal
signatures using the proposed framework. We are inspired by the fact that we
can train the distributed vector generation network in a sequence as found in the
temporal signatures associated with the documents and observe the shift of the
word probabilities at the output of the network. We can also observe how the
probability distributions of the topic generation network change over the given
time sequence. This would help identify how one topic influence and transcend
another and how the topical vocabulary shifts over time.
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