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Abstract

Predictive models of gene expression are evaluated against ac-
tual expression levels of genes under various cell conditions.
The results are evaluated for when a model is a good predictor
and for which genes the model is a good predictor; the individ-
ual models are then combined into a multi-model having better
predictive power, under more conditions, than the standalone
models.

INTRODUCTION
We are interested in developing strategies that ultimately
lead to desiccation-tolerant human cells. The approach is
biomimetic in nature, using the strategies employed by anhy-
drophilic cyanobacteria on various human cell lines. Desicca-
tion tolerant cells would enable long-term storage at ambient
temperatures, reducing costs for storage, while also providing
a platform for biosensor development. Building computational
models of the response of cyanobacteria to desiccation and re-
hydration is an important step in understanding the key physio-
logical factors involved in this stress and can subsequently lead
to the development of similar models for human cells. To per-
mit such analyses we first selected Escherichia coli to develop
the necessary tools for our long-term studies; the genome of
E. coli is sequenced and there is a wealth of physiological and
metabolic studies available that provide the requisite database.
The physiological conditions available from one such study
[1, 2] are shown in Table 1.
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When designing a computer system to model response of an
organism to stress, it is necessary to employ biological models
at different levels of abstraction. In the most abstract models,
groups of genes that exhibit coordinated expression under ex-
perimental conditions are mined, represented, and visualized
as a network. At lower levels of abstraction, the expression of
individual genes (genomics) combined with the determination
of in vivo quantities of thousands of proteins (proteomics) are
evaluated and analyzed using clustering algorithms or induc-
tive logic programming. A complete set of accurate models is
far beyond current computational or modeling technology.

However, the models in this project have limited and
tractable goals: to identify the genes and proteins important
for desiccation tolerance and to predict gene and protein ex-
pression under combinations of conditions that can be inferred
from actual experimental data. The experimental data come
from numerous sources of diverse types, including known
DNA sequences taken from a number of genome sequencing
efforts, protein abundance at several different levels of desicca-
tion, gene expression data, and a priori biological knowledge.
From these data, models are created using a variety of meth-
ods — inductive logic programming, sequence and genome
analysis, and statistical pattern recognition. For example, we
have demonstrated that inductive logic programming is well
suited to analyzing gene expression data in the presence of a
priori information about gene function, while whole genome
analysis enhances our ability to detect patterns in biological
processes at the level of an entire cell [3].

All of these models give a useful, yet incomplete view of the
processes taking place within the cell. To gain a more com-
plete understanding, one should combine the results of these
models into a consistent system-wide model by the use of in-
formation integration techniques. The end result is a graphical
network with visual interpretations to aid in the human under-



Name Description
AB Abundance of proteins from cultures grown in

glucose minimal MOPS at 7◦C in alpha prime
(a’) units X 103. These units multiplied by 0.1
give the percent of total protein.

ACE Relative level of proteins from cultures grown
in acetate minimal MOPS compared to glucose
minimal MOPS at 37◦C

GLY Relative level of proteins from cultures grown
in glycerol minimal MOPS compared to glu-
cose minimal MOPS at 37◦C

RIC Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS compared to glucose minimal
MOPS at 37◦C

T13.5 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 13.5◦C compared to 37◦C

T15 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 15◦C compared to 37◦C

T23 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 23◦C compared to 37◦C

T30 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 30◦C compared to 37◦C

T42 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 42◦C compared to 37◦C

T46 Relative level of proteins from cultures grown
in glucose rich (amino acid, bases and vita-
mins) MOPS at 46◦C compared to 37◦C

Table 1: Description of conditions.

standing of the concepts, and which will, in turn, identify the
promising areas of future data driven exploration.

A combined model should have predictive and even ex-
planatory power in the context of desiccation tolerance in
cyanobacteria. In particular, the model can be used as a substi-
tute for costly biological experiments in isolating the essential
biological processes for successful dessication tolerance and in
conferring analogous tolerance in other cells or tissues through
biological engineering. This model integration approach has
the potential to contribute in related areas of bioinformatics.

Ideally, when combining models, one wants to take the best
elements of each model to form the new model. Therefore,
there needs to be some objective assessment of when a model
performs well. Typically, two kinds of models are used for pre-
dictive gene expression. The first kind will, given a gene, say
yes or no to it being expressed under certain conditions. The
second kind assigns a score to the expression possibility of the

Information storage and processing
J Translation, ribosomal structure and biogenesis
K Transcription
L DNA replication, recombination and repair

Cellular processes
D Cell division and chromosome partitioning
O Posttranslational modification, protein turnover,

chaperones
M Cell envelope biogenesis, outer membrane
N Cell motility and secretion
P Inorganic ion transport and metabolism
T Signal transduction mechanisms

Metabolism
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme metabolism
I Lipid metabolism

Poorly characterized
R General function prediction only
S Function unknown

Table 2: COG functional groups.

gene. This is then usually matched against some arbitrary cut-
off value with those scores exceeding the value considered to
be significant. This practice misses important latent informa-
tion in the data.

Consider the predicted highly expressed (PHX) method of
Karlin and Mrázak [4, 5, 6]. PHX uses the codon bias of genes
to determine the extent to which they are expressed. A score
for each gene is computed and genes with a score above an
arbitrary level are considered to be PHX. But the expression of
genes in a cell is not an absolute. Some genes will be highly
expressed, some will be somewhat expressed, and some will
be expressed only under certain conditions. Since there is a
ranking to the expression levels of genes within a cell, and
there is a ranking of PHX values for a gene, it is natural that a
comparison be made between the two ordered lists to see how
close they are to each other.

Cells are not a static environment; the expression levels of
genes change depending upon external conditions, or the cur-
rent stage of the cell cycle. By comparing the model expres-
sion level list with actual expression levels of the genes un-
der various physiological conditions, the validity of the model
can be assessed for its applicability under those conditions.
An automated method of combining models could be used by
systems like Expresso [7] which refine and design microarray
experiments.



In addition, genes can be broken down into meaningful cate-
gories and those subgroups can be compared to assess the pre-
dictive power of models (within the subgroup). A natural clas-
sification of proteins is evolving. COG stands for Cluster of
Orthologous Groups of proteins [8, 9]. The proteins that com-
prise each COG are assumed to have evolved from an ances-
tral protein, and are therefore either orthologs or paralogs. Or-
thologs are proteins from different species that evolved by ver-
tical descent (speciation), and typically retain the same func-
tion as the original. Paralogs are proteins from within a given
species that are derived from gene duplication and may evolve
new functions that are related to the original. Clusters of Or-
thologous Groups (COGs) were delineated by comparing pro-
tein sequences encoded in 21 complete genomes, representing
17 major phylogenetic lineages. Each COG consists of indi-
vidual proteins or groups of paralogs from at least 3 lineages
and thus corresponds to an ancient conserved domain. COG’s
are assigned to different functional groups as shown in Table 2.

METHODS
Model Prediction Evaluation
Let L be a list of items where L = {1, 2, . . . , n} and P be a
permutation of list L where P = {p1, p2, . . . , pn}. If i < j

and pi > pj then the pair (pi, pj) is an inversion [10]. The to-
tal number of inversions between two lists provides a measure
of how sorted one list is with respect to another. A permutation
with no inversions with respect to L has the exact same order
as list L. A permutation with only one inversion has an adja-
cent pair of items switched. A permutation that has the reverse
order of L has the maximum number of inversions possible.

The probability of a given permutation having an inversion
count x can be determined by knowing the distribution of in-
version counts for all possible permutations. The total number
of permutations of a list is n! and the minimum inversion count
is 0, while the maximum inversion count is

n(n − 1)

2
.

The distribution of counts is approximately normal [10] with a
mean (µ) of

µ =
n(n − 1)

4
,

and a standard deviation (σ) of

σ =

√

n(2n + 5)(n − 1)

72
.

Given the mean and the variance, the number of standard devi-
ations (z-score) a permutation with inversion count x is away
from the norm can be easily computed by

z =
µ − x

σ
.

The higher the z score, the less likely that a particular ordering
could have been created by random chance. The probability of
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Figure 1: Distribution of inversion counts for a list of length 8.

a given count occurring is interpreted as the percentage of in-
version counts that are equal to, or less than the current count.

Figure 1 shows the distribution of inversion counts for lists
of length 8. Out of 40,320 permutations, 3,836 have 14 inver-
sions, while only 7 have just a single inversion. If a permuta-
tion has a inversion count of 3, then 111 permutations have an
equal or lesser score, which is only 0.275%.

There are two ways to interpret a model that gives a per-
mutation with a negative z value (i.e., those whose inversion
counts are higher than the mean). The first is that the model
is just a really bad predictor. The second is to declare that
the model is predicting the opposite of what actually occurs,
so to find a better model, we can reverse the output of that
model. For example, if model M1 has a high, negative z-
score under condition x, then create a new model M2, where
M2 = Reverse(M1).

Standard Complement
M1 Reverse(M1)
M2 Reverse(M2)

Table 3: Model possibilities.

Combining Models
Consider a list L and two of its permutations P1 and P2,
posited by models M1 and M2 respectively. Let l =
{l1, l2, . . . , lm} be a subgroup of list L, A = {a1, a2, . . . , am}
be the positions of the elements of l in permutation P1, and
B = {b1, b2, . . . , bm} be the positions of the elements of l

in permutation P2. If the number of inversions of A is greater
than the number of inversions of B then we say that M1 < M2

for that subgroup order. Let (P1 −A) be those elements in P1

not in A. If the probability associated with (P1 −A) is greater
than that associated with P1, then that group is important to the
ordering of P1; if the probability associated with (P1 − A) is
less than that associated with P1, then that group is detrimental



Subgroup
Condition Order Support Method of Combining

A M1 < M2 M1 < M2 Use subgroup order and positions from M2 in M1

B M1 < M2 M1 > M2 Use subgroup order from M2 in M1

C M1 > M2 M1 < M2 Use subgroup positions from M2 in M1, but keep in the same order as M1

D M1 ≥ M2 M1 ≥ M2 Do nothing

Table 5: Possibilities for comparing subgroups in M1 to M2.

Condition
n A B C
4 94.7% 100.0% 90.9%
5 90.4% 100.0% 68.9%
6 92.4% 100.0% 86.5%
7 89.7% 100.0% 72.4%
8 92.6% 94.6% 81.6%
9 90.7% 94.9% 70.3%

10 92.9% 90.3% 77.7%
20 94.3% 85.2% 68.7%
30 95.1% 82.4% 64.9%

Table 4: Percentage of permutations of length (1 . . . n) whose
order was improved using the subgroup of even numbers from
a different permutation.

to the ordering of P1. There are thus four possible outcomes
when comparing the output of one model to another for each
subgroup, as shown in Table 5.

With the current model of evaluating the predictions of a
model against known results, it is possible to combine models
in a primitive fashion if the goal is well defined. For example,
if there are two models, ModelA and ModelB, and ModelA
performs better under physiological condition X, then the new
combination model could be:

if (PhysCond = X)
use ModelA;

else
use ModelB;

Or the question could be posed, “What are the expression
levels of genes for functional group K (transcription), under
physiological condition GLY?” The results from the model
that best predicts results for that functional group could then
be chosen.

A better method involves improving the overall order by
combining the outputs of different models, using knowledge
of the subgroups that are better predicted under the individ-
ual models. For example, under physiological condition X,
ModelA is a better predictor, with the exception of group E,
which is better predicted by ModelB. The new combination
model would be:
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Figure 2: Distribution of the subgroup of even numbers for
permutations of a list {1, . . . , 30}.

if (PhysCond = X)
use ModelA(˜E) + ModelB(E);

where ∼E captures the effect of removing subgroup E be-
fore ModelA is applied.

This solution to combining models in Table 5 is heuristic
and is not always guaranteed to give results that are better
then individual models. Table 4 shows the probability of the
method of combination actually improving the overall score
of a model given two random permutations meeting the crite-
ria for the conditions. The list used was {1, . . . , n} and the
subgroup was comprised of all of the even numbers in the list.

Figure 2 shows the distribution of the comparison between
order of the subgroup of even numbers in P1 vs. the order
of the subgroup of even numbers in P2 on the x-axis. The y-
axis shows the difference in probabilities of P1 and P2 with
the even numbers removed. The plot shows 10,000 random
comparisons of permutations of a list of length 30 to another
random permutation of the list. The total number of possible
comparisons is (n!)2, which is far too many to show here.

ANALYSIS
The following experiments take the results of two predictive
biological models and compare the results with the actual ex-
pression levels of known genes from E. coli under various con-



ditions [1, 2]. At the time of this writing, Genbank listed 3907
genes for E. coli, of which approximately 46 to 80 genes had
known expression levels under various conditions as shown in
Table 1.

The first model used for these experiments was the PHX
model mentioned previously [4, 5, 6]. The data were not taken
from the paper, but were computed from the current known
genomic data in Genbank. The second model (F25) was a
modified version of PHX created by the authors based upon
an article by Chen and Inouye [11] which stated that the bias
of the first 25 codons of an open reading frame (ORF) was im-
portant to gene expression. Therefore the PHX algorithm was
applied to only the first 25 codons in each gene.

The genes were assigned into functional groups shown in
Table 2 using Clusters of Orthologous Groups (COGs) as de-
fined in Tatusov et al. [8, 9]. Table 6 shows the relative orders
of expression levels from the AB column of the E. coli data,
and the orders predicted by the PHX and F25 models. The
numbers following the gene name are either the expression
levels (for column AB), or the scores predicted by the mod-
els.

AB PHX F25
aceE(8.5) atpA(1.56) aceE(1.06)
atpA(6.9) aceE(1.53) sucA(1.05)
atpD(5.6) pta(1.53) aceF(1.05)
lpdA(4.6) lpdA(1.45) lpdA(1.03)
ppc(4.3) ackA(1.44) gltA(1.02)
mdh(2.6) aceF(1.34) atpA(1.01)
sucA(1.9) atpD(1.32) atpD(1.01)
sucB(1.7) sucC(1.29) sucB(0.99)
sucC(1.6) mdh(1.15) sdhA(0.97)
pta(1.5) sucB(1.11) sucC(0.94)
sdhA(1.1) gltA(1.05) ackA(0.92)
gltA(1.1) sucA(1.04) pta(0.90)
ackA(1.0) sdhA(0.90) gor(0.89)
aceF(0.9) ppc(0.74) mdh(0.87)
gor(0.5) gor(0.63) ppc(0.86)

Table 6: Selected lists of gene expression levels for functional
group C (energy production and conversion).

RESULTS
Table 7 shows the evaluation of the predictions made by the
two models under various conditions. Note that, with the ex-
ception of condition T46, the PHX model is superior to the
F25 model.

Figures 3 and 4 show the relationship between how well the
model predicts the ordering within the group vs. how much
the group supports the overall ordering. For the group to group
ordering (y-axis), the value is the probability that an ordering
this close could be random chance. So the lower the score,
the better. Note that for Figure 3, some of the values exceed

Model
Conditions PHX F25
AB 0.0017% 13.098%
ACE 0.0073% 30.904%
GLY 0.0002% 17.602%
RIC <0.0000% 7.1560%
T13.5 2.4240% 5.4816%
T15 0.8738% 2.0893%
T23 0.6733% 1.1250%
T30 0.4725% 1.2552%
T42 0.3266% 1.4391%
T46 21.894% 15.454%

Table 7: Likelihood of correspondence between model predic-
tion and actual abundance levels.

Figure 3: Group expression level prediction scores for Model
PHX under physiological condition T46.

50%, so the other interpretation is possible, that this model is
predicting the reverse order under those conditions. For the
x-axis, the value is the difference in probability if this entire
group is removed from the computation. For a negative value,
the probability has gone down, so that group was important to
the results. For a positive value, the probability has increased,
so the inclusion of that group had a detrimental effect on the
outcome.

Overall, model F25 is a better predictor under physiological
condition T46 than PHX; however, group C under PHX is bet-
ter predicted under physiological condition T46 than group C
under F25. As can been seen from Figures 3 and 4, group C
meets the criteria for condition C as shown in Table 5, there-
fore the positions of group C in PHX will be used in the com-
bined model, but the order of group C from F25 will be pre-
served. The results are shown in Figure 5. The overall score of
F25 was 15.454%, the score of F25 with the addition of group



Figure 4: Group expression level prediction scores for Model
F25 under physiological condition T46.

C from PHX is 7.873%, a significant improvement.

FUTURE WORK
The heuristic used for combining models can be driven by a
mathematical model of (expected) performance improvement.
The first step in this direction is the assessment of where the
current heuristic model fails and why. This knowledge can
be used to refine the heuristic, or to develop an entirely new
framework for combining predictive models. Especially rele-
vant are formal frameworks to study model selection and com-
bination, such as the Bayesian setting, risk minimization, and
the minimum description length (MDL) principle [12].
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