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Lk N ing toward networked environments. Scientists can now view

highly specialized, distributed hardware and software as a single meta-
computer that supports research on complex problems whose scope entails
life-cycle simulation. The design and simulation for these problems involve
hundreds of components functioning under detailed physical laws and dif-
ferent operational or behavioral constraints over time.

The payoff for solving these problems is potentially huge, yet the state
of the art in networked scientific computing has progressed very slowly.
Application scientists and engineers who wish to use networked systems
outside a laborarory environment must still handle low-level distribution
and networking issues to a degree that seriously inhibits their research.
They must also identify the best resources for solving a given problem from
specialized scientific software servers, libraries, repositories, and problem-
solving environrnents distributed across the Internet—a requirement that
is not realistic, especially given continual changes in the hardware and soft-
ware resources available.

For networked resources to support the scientific computing process,
they must become as simple to use as networked information resources like
the Web are today. In this article, we explore the use of multiagent systems
to implement high-level mulddisciplinary problem-solving environments
that harness the power of internetworked computational resources for solv-
;ng Sc;entiﬁc computing Pro})lems. \Y]E I)egin With an OVerVieW 0{: t]’\e
resources available to advance the state of the art in networked scientific
computing. This is followed by an overview of our multiagent systems
approach to harnessing these resources in a manner transparent to the user.
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The balance of the article focuses on one com-
ponent of the system, recommender agents. These
agents have a distributed knowledge base of perfor-
mance data from previously solved problems, which
they use to suggest resources for a new problem. We
conclude with experimental data that shows the
effectiveness of a prototype implementation of this
approach in a networked environment.

ONLINE RESOURCES AND PSEs

There are several software libraries (“solvers”) avail-
able for use in scientific computing that are network
accessible. Netlib and Lapack/Scalapack are two.
There are also some efforts to make solvers accessi-
ble over the Web, such as Web/ /Ellpack and Net//Ell-
pack from Purdue University, and NetSolve from the
University of Tennessee-Knoxville and the Oak
Ridge National Laboratory. In addition, some online
resources help users identify and locate the right class
of software for a problem, such as the GAMS, the US
National Institute of Standards and Technology’s
Guide to Available Mathematical Software.

However, at this time users must still identify the
specific software most appropriate for a problem;
download the software and its installation and use
instructions; install, compile, and possibly port it;
and learn how to invoke it appropriately. These
tasks are nontrivial even for a single piece of soft-
ware, and much more complicated when multiple
software components are involved.

Network =

Software
repositories

{e.g., Netlib)

Computational interface
to problem-solving environments

Library routines

Numerical libraries
{e.g., Lapack, Scalapack

System software
{e.g., MPI)

Format conversions

To help with these difficulties, the scientific
computing community has proposed implement-
ing problem-solving environments.! A PSE is a com-
puter system that gives the user a high-level abstrac-
tion of underlying computational facilicies for
solving a target class of problems. PSEs use the lan-
guage of the target problem and provide a “natural”
interface that accepts high-level problem descrip-
tions. PSEs give users access to advanced solution
methods, automatic or semiautomatic tools for
selecting solution methods, and techniques to eas-
ily incorporate novel methods.

The idea of MPSEs (mulridisciplinary PSEs) has
been proposed to provide similar support for
domain experts using networked services to devise
scientific computing applications.>? We have devel-
oped an approach to MPSEs that views them as
multiagent systems. The basic idea is to replace a
complex simulation problem by a set of simpler
simulation problems defined on elementary geome-
tries. Each of these problems is mapped to a solver
agent (as described in the next section) and solved
simultaneously, along with a set of interface condi-
tions. The simpler problems may reflect the under-
lying structure of the system to be simulated; they
can also be artificial creations based on techniques
such as domain decomposition.”

A MULTIAGENT MPSE SYSTEM

Figure 1 illustrates the software organization of our

Recommender agent

Software tfest servers

Remote computational servers

Mediators

Machine-dependent
software

Figure 1. Software organization for a multiagent systems approach to networked scientific computing. The solver agent
provides a network inferface to a problem-solving environment, and connects to other resources and agents for perfor-
mance evaluation, resource selection, software retrieval, and remote computation.
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approach. We have created a prototype system”® that
integrates three kinds of interacting agents: solvers,
mediators, and recommenders. The prototype uses
Ellpack® as the solver agent, special mediators that
implement interface relaxation techniques,*’® and
the Pythia’ knowledge-based system to implement
recommender agents. Ellpack solvers can consult a
Pythia agent to automatically determine and invoke
the right software for a given problem (the system
does not yet automatically select the right hardware).

Our approach supports distributed problem-solv-
ing, as distinguished from just distributed com-
puting. Although the agent-based paradigm has
not been Widely used in scientific computing, we
believe the ability of agents to autonomously pur-
sue their goals without user intervention can
resolve many difficulties associated with the devel-
opment of networked scientific computing. The
software modules that solve the simpler problems,
computing locally and interacting with neighbor-
ing solvers, effectively translate into the behavior
of local problem-solving entities. We view each one
as a solver agent. By introducing mediator agents
between them, we can create a network of collab-
orating solvers to solve the global problem.

Each solver agent deals with one subproblem,
and can run on a separate machine across the net-
work. The original problem is solved when all
equations on the individual components are satis-
fied and the solutions “match properly” on the
interfaces between the components. The mediator
agents make this determination. The match is
defined by physics if the interface is where the
physics changes; for example, with heat flow, it
means that temperature is the same on both sides
of the interface and the amount of heat flowing
into one component is the same as the amount
flowing out of the other. If the interface is artificial,
then a proper match is defined mathematically and
means that the solutions have continuous values
and derivatives across the interface.

The solver and mediator agents form a poten-
tially large pool of software spread across the net-
work. In the case of solvers, a significant amount of
sophisticated problem-specific code has already
been developed over the past few decades. While
mediators are a[mOSt nOnCXiStCnt today, a largC
number will have to be created to support the inter-
action of disparate solvers. Expecting users to know
all the potential networked solvers for a problem or
to understand all the hardware choices is clearly not
realistic—the users are application scientists and
engineers, not computer scientists. Therefore, we
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use recommender agents to automatically suggest net-
worked softwarc components and hardware
resources that can be deployed to solve a defined sci-
entific computing problem according to perfor-
mance criteria specified by the user.

In our approach, the selection of optimal
resources to solve a scientific computing problem
is called the resource-selection problem. This is a gen-
eralization of the algorithm-selection problem for-
mulated by Rice.'” The recommender agents we

employ are conceptually similar to the recom-
mender systems proposed by Resnick and Varian!!
for harnessing distributed information resources.
The agents accept a problem definition from the
usert, including performance criteria, and suggest
software and hardware resources that can be
deployed to solve it.

Note that the task here is different from invok-
ing a known method remotely on some object, for
which a host of distributed object-oriented tech-
niques such as Java RMI, CORBA, and DCOM
are becoming commercially available. Similar aca-
demic approaches geared toward scientific com-
puting can be seen in the Legion and Globus sys-
tems. Our approach is at a higher level of
abstraction, and an implementation can use the
facilities provided by such tools.

Details about solver and mediator agents are doc-
umented elsewhere.>? This article focuses on the rec-
ommender aspects of a multiagent MPSE system.

PYTHIA: THE CORE OF
RECOMMENDER AGENTS

The core of each recommender agent is Pythia,” an
intelligent system we developed to automatically
sclect algorithms in well-defined scientific domains.
Pythia attempts to determine an optimal strategy
(that is, a solution method and its parameters) for
solving a given problem within user-specified
tresource limits and accuracy requirements.

Pythia agents are implemented by a combina-
tion of C language routines, shell scripts, and rule-
based systems such as CLIPS'? (the C Language
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Integrated Production System). The agents com-
municate through the Knowledge Query and
Manipulation Language,’® using protocol-defined
performatives. All Pythia agents understand and use
a private language, Pythia-Talk.

There is also an agent name server (ANS) that
determines the URL associated with a particular
Pythia agent. We use the TCP transport protocol
to access individual Pythia agents. In other words,
agent URLs have the format tep://hostname:port-
number. When a new Pythia agent comes into exis-
tence, its URL can be dynamically registered with
the ANS by an appropriate KQML API call.

Pythia cagents use case-based
reasoning to recommend

solution methods,

MAY « JUNE 1998

While the techniques involved are general, our
current implementations of Pythia operate in con-
junction with systems that solve partial differential
equations (PDEs) and problems in numerical quad-
rature. The numerical solution of PDEs depends on
many factors, including the nature of the operator,
the mathematical behavior of its coefficients and its
exact solution, the type of boundary and initial con-
ditions, and the geometry of the space domains of
definition. There are many software numerical solvers
available for PDEs. The solvers normally require the
user to specify several parameters to obtain a solution
within a specified error level while satisfying resource
constraints such as system memory and time.

These specifications are difficult in themselves
and complicated by the heterogeneity of machines,
including parallel machines, available across the
network to solve PDE-based problems. Further-
more, the mathematical characteristics of PDE
models can make thousands of numerical methods
applicable, since several choices of parameters or
methods may be required at each phase of the solu-
tion. On the other hand, the numerical solution
must satisfy several objectives, primarily involving
error and hardware resource requirements.

A Pythia agent accepts the description of an ellip-
tic PDE problem as input, and identifies the meth-
ods appropriate to solve it. Its strategy is similar to
that believed to underlie human problem-solving
skills—that is, it compares new problems to ones it

hitp://computer.org/internet/

has seen before and uses its knowledge about the
performance characteristics of similar problems to
evolve a strategy for solving the current one.

The artificial intelligence literature defines this
strategy as case-based reasoning. The goal of the
reasoning process then is to recommend a solution
method and applicable parameters that can be used
to solve the user’s problem within the given com-
putational and performance objectives. This goal is

achieved by

8 analyzing the PDE problem and identifying its
characteristics;

m  idendfying the set of similar problems from pre-
viously solved problems,.

@ extracting all information available about this
set of problems and the applicable solvers, and
selecting the best method; and

@ using performance information from this
method to predict its behavior for the new
problem.

One way to decide the closest match to a new prob-
lem is to directly compare it with all previously seen
problems. Such lookup can be done efficiently
using specialized data structures such as multidi-
mensional search trees. Alternatively, problems can
be assigned to meaningful classes, which are then
used to find similar problems. This implies a two-
stage process for finding the closest match, which
we follow in our work.

Classifying problems into subsets and deter-
mining which subset a particular problem belongs
to can be implemented in two basic ways. A deter-
ministic method defines a class of problems by the
centroid of the characteristic vectors of all class
members. A class membership is defined as being
within a certain radius of the centroid in the char-
acteristic space. A new problem is assigned to the
class whose centroid is closest to it. Distance
between characteristics determines which particular
member of a class is closest to the new problem.

While some classes offer a completely deter-
ministic (and simplc) way to detcrminc class mem-
bership, others do not. Instead, they require a dersv-
ative method that determines the class structure
from specific samples. To support it, we have devel-
oped appropriate architectutes and experimented
with a variety of “intelligent” techniques—sym-
bolic, fuzzy, connectionist, and hybrid approach-
es—to determine what kind of a learning system
works well in this domain. Pythia also provides a
confidence factor between 0 and 1 for the method.

IEEE INTERNET COMPUTING
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The following is an example typical output for a
PDE problem:

Use the 5-point star algorithm with @ 200 x 200
grid on an NCube/2 using 16 processors:
Confidence: 0.85.

As Pythia encounters new problems and “predicts”
strategies for solving them, it adds information
about these problems and their solutions to its
knowledge base.

Details about the intelligent mechanisms that
support Pythia functions are presented elsewhere.”!4

COLLABORATIVE PYTHIA

The underlying model of computation for Pythia
is quite simple—-essentially a static paradigm deal-
ing with a single agent. In a networked scenario,
several intelligent agents will exist across the Inter-
net, each one possibly offering a specialized knowl-
edge base about problems. For example, there are
many different types of PDEs. Most scientists tend
to use only a limited number of them, so any single
Pythia agent they used will have a performance
knowledge base limited to such problems. More-
over, agents’ capabilities change as their knowledge
bases change (for example, when they get more per-
formance data) and agents can appear and disap-
pear over time.

A mechanism that allowed Pythia agents to
collaborate over the network could increase the
range of problems and solutions. In a collaborative
scenario, if an agent discovers that it does not know
about a particular problem or does not have enough
confidence in the prediction it is making, it could
query other Pythia agents and obtain answers from
them—that is, suggestions on what resources to use
to solve a given problem. The agent could then pick
up the “best” suggestion and follow it.

However, this “broadcast mode” can entail a
huge amount of traffic on the system. A better
approach is to use the information obtained from
the initial queries to learn/infer 2 mapping from a
problem to a Pythia agent deemed mostly likely to
suggest good solution resources for it.

This mapping would allow the first agent to
direct subsequent queries more effectively. How-
ever, because the environment is dynamic—with
the numbers and abilities of individual agents
changing over time—the mapping technique
would have to be able to learn online. In other
words, to retain its efficiency, the mapping tech-
nique must assimilate new data without going over

IEEE INTERNET COMPUTING

previously learned information. (Many popular
“learning” algorithms fail to meet this criterion.)
We have developed a neuro-fuzzy method of
learning suitable for this purpose. The method uses
neural techniques to model complex relationships
and classify concepts into predefined classes. It uses

We use a quantitative measure of reasonableness’ to automatically
generate exemplars to learn the mapping from a problem to an agent.
To do this in an unsupervised manner, we combine two factors, one
denoting the probability of a proposition g being true, and the other
denoting its utility. Specifically, we follow Lehrer? to define the rea-
sonableness of a proposition as follows:
Riq) = plqlUi{q) + pl~q)Udq)

where U,(q) denotes the positive utility of accepting g if it is true, Udq)
denotes the negative utility of accepting q if it is false and plq) denotes
the probability that g is true.

In the case of Pythia, each agent produces o number denoting con-
fidence in its recommendation being correct, so plq) is trivially avail-
able, and p{~q) is simply 1 - p{q). For the utility, we use the following
definition:

Ulg) =-Udq) = AAN,)
where fis some squashing function mapping the domain of {0, oo} to
a range of (0, 1], and N, is the number of exemplars of a given type
(that of the problem being considered) that the agent has seen.

As the measure of an agent's utility, we chose f{x) = {2/{1+¢e)¥) - 1
because it reflects the number of problems of the present type that the
agent has seen. The value of a utility function is fo measure the amount
of knowledge that an agent appears to have. The more problems of a
certain kind in an agent's knowledge base, the more appropriate will
be its predictions for new problems of the same type. Hence, we have
designed the utility to be a function of N;. This formulation is not
unique, though.

For example, assume that the probabilities of two hypotheses being
true are idenfically p (where p < 0.5), and the positive utilities are Uy
and U, [with Uy = Uy). In such a case, the second hypothesis will be
assigned a greater reasonableness than the first, in spite of the fact
that the first hypothesis has a greater utility. This problem arises
because mulfiplying an inequadlity by a negative quantity reverses its
direction. Therefore, we check for this occurrence and invert the signs
of U, and Urto keep our notion of reasonakleness consistent, Other
measures of utility are certainly possible.
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Figure 2. The neuro-fuzzy classification algorithm represents pat-
fern classes by hyperboxes that define an n-dimensional pattern
space for class membership. In this domain, there are two classes,
depicted by the solid and the dotted hyperboxes.

HMAY o JUNE 1998

fuzzy techniques to model uncertainty and repre-
sent applications where membership in classes
varies in degtee (sce the sidebar, “A Measure of Rea-
sonableness”).

Thus, the goal of the collaborative Pythia system
is to use a network of collaborating Pythia agents
as recommenders to enable networked scientific
computing. A neuro-fuzzy approach enables each
agent to learn about the capabilities of other Pythia
agents in the network.

Neuro-Fuzzy Approaches

While we have worked on several techniques to
allow agents to learn a mapping from problem type
to agent (for example, statistical methods, gradient
descent methods, machine-learning techniques,
and other algorithm classes), we have found that
specialized techniques developed for this domain
perform better than conventional off-the-shelf
approaches.'? In particular, our neuro-fuzzy tech-
nique infers efficient mappings, caters to mutually
nonexclusive classes that characterize real-life
domains, and learns these classifications online. We
provide only the details of this algorithm that are
relevant in the current context; complete details are
documented elsewhere.!’

The classification scheme uses fuzzy sets to
describe pattern classes.!® These sets are represent-
ed, in turn, by the fuzzy union of several hyper-
boxes. Such unions of hyperboxes define a region
in n-dimensional pattern space that contain pat-
terns with full membership in the class. For exam-
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ple, Figure 2 shows two classes in a domain: one
with solid-bounded hyperboxes and one with dot-
ted-line boundaries.

A hyperbox is completely defined by a min-
point and max-point, and also has a fuzzy mem-
bership function (with respect to these min-max
points) associated with it. This function defines
class membership for points outside the box, which
helps view the hyperbox as a fuzzy set. “Hyperbox
fuzzy sets” can be aggregated to form a single fuzzy
set class. This provides inherent degree-of-mem-
bership information that can be used in decision
making.

The resulting structure fits neatly into a three-
layer feed-forward neural network assembly, Learn-
ing in the network proceeds by placing and adjust-
ing these hyperboxes. Recall in the network consists
of calculating the fuzzy union of the membership
function values produced from each of the fuzzy set
hyperboxes.

Initially, the system starts with an empty set (of
hyperboxes). As it “learns” each pattern sample,
cither an existing hyperbox (of the same class) is
expanded to include the new pattern or a new
hyperbox is created to represent it. The latter case
arises when there is no existing hyperbox of the
same class or when an existing hyperbox cannot
expand any further because it has reached a limit
set on such expansions.

Simpson’s original method assumed that the pat-
tern classes underlying the domain are mutually
exclusive and that each pattern belongs to exactly
one class.”” But the pattern classes that character-
ize problems in many real-world domains are fre-
quently not mutually exclusive. Consider the prob-
lem of classifying geometric figures. Polygons,
squares, and rectangles are not mutually exclusive
classes; for example, a square is also a rectangle and
polygon. It is possible to apply Simpson’s algorithm
to this problem by first reorganizing the data into
disjoint classes such as “rectangles that are not
squares” and “polygons that are not rectangles.”
However, this strategy does not reflect the natural
overlapping characteristics of the underlying base
classes. Thus Simpson’s algorithm fails to account
for a situation where one pattern might belong to
several classes. Simpson’s method has a parameter
called the maximum hyperbox size, which denotes
the limit beyond which the hyperbox cannot
expand to enclose a new pattern.

We enhanced our scheme to overcome this
drawback by allowing hyperboxes to selectively
overlap. Specifically, we allow hyperboxes to over-
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lap if the problem domain so demands it. This
helps in determining nonexclusive classes; it also
allows our algorichm to handle “nearby classes.”

Consider a scenario where a pattern gets associ-
ated with the wrong class, say Class 1, merely
because of its proximity to members of Class 1 that
were in the training samples rather than to mem-
bers of its characteristic class (Class 2). This situa-
tion can arise from a training set that has a larger
incidence of Class 1 than Class 2 patterns or from
a nonuniform sampling (since we make no prior
assumption on the sampling distribution). In such
a case, our scheme offers an additional parameter
that gives us the ability to make a soft decision by
which we can associate a pattern with more than
one class. In essence, this parameter is a threshold
on the degree of membership, above which we
declare a pattern to be a member of a class.

Another requirement of collaborative Internet-
based systems is clustering, which automatically
groups agents according to some notion of simi-
larity. For example, we can automatically group
Agents 1 and 3 as most suited to problems of Type
Xand Agents 2 and 4 as most suited to problems
of Type Y. Thus, X and Yare clusters that have been
inferred to contain ‘samples’ that subscribe to a
common notion of similarity.

We have proposed a multiresolution scheme, sim-
ilar to computer and human vision,” to partition
the data into clusters. The basic idea is to look at the
clustering process at differing levels of detail (reso-
lution). For clustering at the base of a multilevel
pyramid, we use Simpson’s clustering algorithm.18
This is looking at the data at the highest resolution.
Then we operate at different zoom/resolution levels
to obtain the final clusters. At each step up the pyra-
mid, we treat the clusters from the level below as
points in the higher level. As we go up the hierarchy,
therefore, we view the original data with decreasing
resolution. This approach has led to encouraging
results from clustering real-world data sets,'* includ-
ing the Pythia agent data set described here.

In this article, we confine ourselves to the origi-
nal problem of classifying agents into known, pre-
defined categories, using our neuro-fuzzy algorithm.

Strategies for Learning

An interesting question arises as to where to locate
the learning algorithm. In our current implemen-
tation, we assume a special agent (calle({ pythia»C)
whose main purpose is to learn this mapping.
Pythia-C operates our neuro-fuzzy scheme to
model the mapping from a partial differential equa-
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tion to an appropriate Pythia agent for that prob-
lem. We chose such a “master agent” purely for
demonstration purposes as it reveals the learning
aspect of the agents, as distinguished from their
PDE problem-solving capabilities. In practice, this
capability could be integrated into every Pythia
agent, and any one of them could potentially serve
as an appropriate “server” for PDE problems. Thus,
while other Pythia agents provide information
about PDE problem solving, the purpose of Pythia-
C is to direct queries about PDE problems to
appropriate Pythia agents.

Pythia-C can be in either a learning mode or a
stable mode. During the learning mode, Pythia-C
asks all other known agents for solutions to any
problem that is presented to it. It collects all the
answers, then chooses the best result as the solution
(using the epistemic utility technique described in
the sidebar). In effect, Pythia-C uses what has been
described as “desperation-based” communication."’

For example, if we have six agents in our setup,
Pythia-C would ask each one to suggest a solution
strategy for a given problem, solicit answers, and
assign reasonableness values. It would then recom-
mend the strategy suggested by the agent with the
highest reasonableness value. While in this mode, it
is also learning the mapping from a problem to the
agent that gave the best solution. After this period,
Pythia-C has learned a mapping that describes
which agent is best for a particular type of problem.

From this point on, Pythia-C switches to what
we call stable mode. In other words, it will ask only
the best agent to answer a particular question. If
Pythia-C does not believe an agent has given a
plausible solution, it will ask the next-best agent,
until all agents are exhausted. This is facilitated by
our neuro-fuzzy learning algorithm. By varying the
threshold in the defuzzification step, we can get an
enumeration of “not so good” agents for a problem
type. H:Pytl'lia-c Cletermines that no Plausible SO'lLl>
tion exists in itself or among its agents, then Pythia-
C will give the answer that was “best” and notify
the user of its lack of confidence in the answer.
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While this scheme serves most purposes, the
switch between learning and stable modes remains
an open issue. Pythia-C switches from learning to
stable mode after an a priori fixed number of prob-
lems have been learned. The timing of the reverse
switch from stable to learning mode is a more inter-
esting problem that we chose to attack by three dif-
ferent methodologjes.

8 Time based. Pythia-C reverts to learning mode
after a fixed time period in stable mode.

B Reactive. A Pythia agent sends a message to Pythia-
C whenever its confidence for some class of prob-
lems has changed significandy: Pythia-C can then
ChOOSC to revert to ICarning mode When lt next
receives a query about that type of problem.

8 Time-based reactive. At fixed intervals, Pythia-C
sends out a message asking if anyone’s capabili-
ties have changed significantly and switching to
learning mode if it received a positive response.

EXPERIMENTAL RESULTS

We applied these learning strategies to a collection

of networked Pythia agents. Our current imple-

PDE Equatlon Propertles
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20| Topearpom: | Epne o
=} Puisson Operator
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{1 single Derivatives?

I Mised Derivatives?

4 Homogeneovs?

F Lincar?
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Variation (rarge = 10,17, 8

Figure 3. Web session with Pythia-C input screen. The questions
address the physical and mathematical details of the PDE problem.
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mentation deals with finding suitable agents for
selecting methods to solve elliptic partial differential
equations. It assumes that several agents exist, each
with specialized expertise about one or more class-
es of PDEs. The agent is required to suggest the
best solution to the problem in this context.
Figure 3 shows an example session where the user
specifies the details of the PDE problem. Figure 4
shows the recommendations from the Pythia-C agent.
An experimental version of this system can be
accessed online from the Pythia project home page
at htep://www.cs.purdue.edu/research/cse/pythia.
We have restricted the case study reported here
to a representative class of PDEs—namely, linear,
second-order PDEs. Our initial problem popula-
tion consisted of 56 of these PDEs, and we para-
meterized 42 of them so that the actual problem
space consists of more than 250 problems. Many
of these PDEs come from real-world problems;
others were created to exhibit “interesting” charac-
teristics. Figure 5 presents an example PDE.
We used 167 of the 250 problems in this case

study and defined six nonexclusive classes from them:

@ Solution-Singular: PDEs with solutions that
have at least one singularity (six problems).

B Solution-Analytic: PDEs with solutions that are
analytic (35 problems).

# Solution-Oscillatory: PDEs with solutions that
show oscillatory behavior (34 problems).

® Solution-Boundary-Layer: PDEs with a bound-
ary layer in their solutions (32 problems).

B Boundary-Conditions-Mixed: PDEs that have
mixed boundary conditions in their solutions
(74 problems).

@ Special: PDEs with solutions that do not fall
into any of the above classes (10 problems).

Note that the total number of classified exemplars
exceeds 167 because they are not mutually exclu-
sive, and one PDE can therefore belong to more
than one class.

Experimental Setup
We divided the set of 167 problems into two parts.
The first part contained 111 exemplars (hence-
forth, we refer to this as the larger training set); the
second part contained 56 exemplars (hence, the
smaller training set). We created four scenarios
with six, five, four, and three Pythia agents respec-
tively. Table 1 presents exact information about
these scenarios.

In the scenarios, cach Pythia agent “knows” about
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one or more classes of PDE problems. For example,
in the case of six Pythia agents, each agent knew
about one of the six problem classes defined above.
Our experiments consisted of two main kinds:

®  All the Pythia agents have fixed, a priori knowl-
edge. In other words, each agent’s expertise
includes all information about the problem
classes it is supposed to know about.

®  Each agent starts with a small fraction of its rep-

resentative PDE knowledge base, and the base
is refined over time. For example, Agent 2
(whose expertise is “solution-analytic”), starts
with information about nine problems and pro-
gressively improves with time to the full set of
35 problems that are in this class.

We refer to the first kind as the szazic case, requir-
ing just a one-shot mapping to the knowledge base
of the various agents. The second kind, the dynam-
ic case, requires the agents to support a switch
between learning and stable modes as appropriate.
The switch can itself be implemented in a variety
of ways; we concentrate here on the time-based,
reactive, and time-based reactive methodologies.
The experimental setup also includes a “central

agent,” Pythia-C, as described earlier.

Static Scenario
In the static scenario, the expertise of each agent is
fixed to equal the cardinality of the classes. Pythia-
C starts off with no knowledge about which agent is
suitable for which PDE problem. To determine this
information, Pythia-C uses a flooding technique,
shooting out queries about each problem to each
agent in the setup and soliciting recommendations
from them. The following is an example query:

tell :ontology Recommender
‘language Pythia-Talk
:reply-with Problem-22750
:sender Pythia-C
:receiver Pythia-Agent]
:con‘rent(seiec‘r_so|ufion_scheme
(200000000101000.50.51
0.5050100110000.50.50.50.5))

This message implies that a Pythia-C agent is send-
ing a request to one Of the agel)ts in the Setupf
namely, Pythia-Agentl—asking it to select a solu-
tion scheme for a PDE problem with the
characteristic vector given by the sequence of num-
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bers. This sequence is interpreted in the context of
the Pythia-Talk language and the Recommender
ontology. The Pythia-Agent] is given the Problem-
22750 tag to communicate an answer.

Similarly, the following is an example output
from Pythia-Agent 1:

Step 5: iBest R

Tae following KQML performative wes raceived thacky:

(tell ontology 5-KIF :language PYTHIA-Talk :in-reply-to
Problen—-27685 :receiver PYTHIA-C :content (suggest_scheme (HR.3-20
47/14746 p~20—2 23 24.408 9.56021e-06 2.23334be-06 )))

interpretation: (¢t this K ML performativz)

» The gven problem telongs to the class of FDE protiers nows as HR.3-20,

e The recommended strategy <o solve the problzm is given by the coded ddentf caton o the solution
process, namely 47/1446 , Usethe below table to may. coded strategies to actual algorithuos for
sol7ing PDE problems.

(G 1/14/46: 5—pofr star Jscretizaton, as Is fidexing and band gauss efimination,

© 47/14/46; Femnre collocation, asis ndexing and band gauss eliminaticn,

0 12/f: Finite differerces with Dyaknov conjugate gradient solver,

© 13/ Finile differecces with fourta order cxleag o Dyaunoy gradienl solver,
© 9 poder=2//; FFT [Fas Fouriesr “ranxform)9—poind slgori hm (2og order sethod).

© 94 FFT (Faxl Fowivr Trawslorn) 9—puicl gorithun (4t coder me hod).

o 9joxtter=06//; FI'T {Tast Fourier ranstorm) 9 —point algorihmm (6th order method;.

. Thc c.ossstproblam krown to this agent that has characteristics most sindarto the one presented is
p-20-2 DPerformeance dete for this problem hes been uscd to preserbe the sbove meationcd
stratcey.

» Thenamber of grid points to usc for this solution strategy is 23

@ Anestirrate of the time token to sclve the problem by this stratagy 15 24,408 seconds.

» _ikewise, an estimare of the error jrelotive ervor) 29.56021e 06

= et another estirrate of the errer (by o different technique) s 2.3334643 06 .

End of PYTHIA Consultation Sessionil

Figure 4. Web session with C-Pythia output screen. The system
contacts the appropriate Pythia agent and suggests appropriate
software resources and parameters. It also points to the location of
the software via the NIST GAMS repository.

Problem #28 {wu .+ {wu, ) =
where w=1{ & F0<x ysl
1, otherwise.
Domain [=1; 1 x [-1,1]
BC u=0
True unknown
Operator Self-adjoint, discontinuous coefficients
Right side Constant
Boundary conditions  Dirichlet, homogeneous
Solution Approxxmufe solutions given for & =
1, 10,.100. Strong wiave fronts for > 1.
Parameter

o odkusts size of iscontinuity.in‘operator
co-efficients which introduces |0rge shorp
jumpsin solution:

Figure 5. Example problem from the case study population of 167
linear, second-order PDEs.
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Table 1. Scenario descriptions in the experimentdl setup.

Scenario  No. of Agents ' Description

1 6 “One dagent for-each class:
2 -5 Same as Scenario T except that Solution-Boundary-Layer dnd Boundary: Conditions-Mixed dlasses
are the combined expertise of one agent:
3 4 Same as Scenario 2 except that Solution-Singular and Solution-Oscillatory classes are the com-
L bined expertise of one agent. ‘ ‘
4 3 - Same as Scenario 3 except that Solution-Analyfic and Special classes are the combined expertise
‘ of one agent. g
(tell  :ontology Recommender agent) are determined for all problems in each of
:language Pythia-Talk the four agent scenarios.
:in-reply-to Problem-22750 We conducted two sets of experiments. In the
:receiver Pythia-C first, we trained Pythia-C on the larger training set
:sender Pythia-Agent1 of problem-agent pairs and then tested our learn-
:content{suggest_scheme ing on the smaller training set of exemplars. In
(HR.3-20 47/14/46 p-20-2 23 effect, the smaller training set formed the test set
24.408 9.56021e-06 2.33346e-06 )} for this experiment. In the second experiment, the
) roles of these two sets were reversed.
We also compared our technique with two very
In this case, Pythia-Agent] suggests the solution  popular gradient-descent algorithms for training
strategy described in the Pythia-talk sequence feedforward neural networks, namely, Vanilla (Plain)
beginning HR.3-20. backpropagation (BProp)®® and Resilient Propaga-
Each of these recommendations is given a rea-  tion (RProp).*! Figure 6 summarizes the results.
sonableness value. Pythia-C then chooses the best These results demonstrate that all the learning
agent as the one having the highest reasonableness  techniques were adequate in the sense that the Pythia-
value, as described carlier, and this information  C agent could find the best agent for each problem
forms one exemplar to the Pythia-C setup. class with greater than 90 percent accuracy. Perfor-
In this way, mappings of the form (problem, mance using the larger training set was expectedly
Larger training set Smaller training set
100 100
90 20
80 80
Tg 70 g 70
5 60 § 60
e e
= 50 > 50
S 40 £ 40
$ 30 S a0
20 20 B Neuro-fuzzy technique
10 10 ElzrizpBProp
0 0

(a)

5 4 3
Number of agents

(b)

Number of agents

Figure 6. Results of learning. The graph on the left depicts results with the larger fraining set; on the right, values for the
smaller training set. Accuracy figures for the four scenarios are presented for three algorithms: the neuro-fuzzy tech-
nique, vanilla back propagation, and resilient propagation.
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better than that on the smaller Formation of hyperboxes Grodual decrease of error
training set. 60 0.30

It can also be seen that our
neuro-fuzzy method consistently 501 /—4/ 0.25
outperforms BProp and RProp in
learning the mapping from prob- " {
lems to agents. Morcover, our g 40~ 0.20—
algorithm (housed in Pythia-C) <
operates in an online mode. New _% ok 5 0151
data do not require retraining on ° f W
the old, as they do for many 8 /
other learning  algorithms, § 20 ¢ 010+
including RProp and BProp. -
For the larger training set, we fr}
incrementally trained our algo- 101~ Ig’f 0.051~
rithm on the 111 exemplars; the /‘)’
accuracy rose steadily to the val- 0 I | 0 | I
ues depicted in Figure 6. For 0 50 100 150 0 50 100 150

example, in the six-agent sce-
nario, we plotted the increase in
number of problems seen by fal
Pythia-C and the corresponding
decrease of error. Figure 7 shows
this incremental increase in the
hyperboxes utilized by the
neuro-fuzzy technique housed in
Pythia-C on the left and the steady decrease in
errors on the right. (The hyperboxes are added
incrementally to better represent the problem space
characteristics.) The number of hyperboxes creat-
ed for this scenario was 53.

Dynamic Scenario
In a collaborative networked scenario, where the
resources change dynamically, the neuro-fuzzy tech-

Number of patterns

(b}

nique’s online mode of operation lets us automati-
cally infer the capabilities of muldple Pythia agents.
In this scenario, the abilities of the agents are
assumed to change dynamically and the question is
to decide when Pythia-C should switch from a sta-
ble mode to a learning mode of operation.

We experimented implementing this switch in
time-based, reactive, and time-based reactive
schemes.

Number of patterns

Figure 7. Results of using the neuro-fuzzy technique to train the six-agent scenario
online. Results are for the larger training set. The graph on the left shows the incre-
mental formation of hyperboxes; on the right, the corresponding decrease in errors.

1C0 100 d
o $0 90
$ e QO gof d
o] . 8 /
5. 70 <£__ 70F /
S8 ¢o 5 oo /
58 %0 38 so- j/
g 40~ f 5 40 - //
. r Q L .
£ %0 < 3o S
20 20
10 | | | | i 10 | | | | |
0 10 20 30 40 50 60 0 10 20 30 40 50
Time steps Time steps
(a) (b}

60

Figure 8. Time-based scheme results for six agents with the larger training set. The graph on the left shows the periodic
increase in agent abilities to give correct recommendations; the graph on the right shows the corresponding improve-

ment in accuracy of Pythia-C.
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Incremental addition of knowledge —
time-based scheme

Information about a data
{percent)

0 10

20 30 40 50
Time steps

60

Incremental improvement of accuracy —
time-based scheme

100
90—
80
70~
60~
50—
40~
30
20

10 | i | | |
0 10 20 30 40 50

Time steps

Accuracy of Pythia-C
{percent)

60
(b

Figure 9. Time-based scheme results for five agents with the larger training set. The graph on the left
shows the periodic increase in agent abilities fo give correct recommendations; the graph on the right
shows the corresponding improvement in accuracy of Pythia-C.

Incremental addition of knowledge -
time-based scheme

100
o]
g 90
S
o 80
337
oo 60
c
22 50
€ 40
£ 30
20
10 | ! | | |
0 10 20 30 40 50 60
a) Time steps

Incremental improvement of accuracy —
time-based scheme

100
o 90 -
2 80f
=T ok
o P
gé 60
3 501
<

40

30 L L L L L

0 10 20 30 40 50 60

(b} Time steps

Figure 10. Time-based scheme results for four agents with the larger training set. The graph on the left
shows the periodic increase in agent abilities fo give correct recommendations; the graph on the right
shows the graph on the right shows the corresponding improvement in accuracy of Pythia-C.

Incremental addition of knowledge -

time-based scheme

Information about a data
(percent)

10 1 | | | |
20 30 40 50

Time steps

60

Incremental improvement of accuracy -
time-based scheme

100
o %or
2 80F
£E 700
5o
28 60+
g 50
<
40 -
30 | | | | |
0 10 20 30 40 50 60
(b) Time steps

Figure 11. Time-based scheme results for three agents with the larger training set. The graph on the
left shows the periodic increase in agent abilities to give correct recommendations. the graph on the
right shows the corresponding improvement in accuracy of Pythia-C.
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Time-Based. In the time-based scheme, Pythia-C
reverts to learning mode at periodic time steps. At
such points, Pythia-C cycles through its training
set, sends queries to other agents, gets back answers,
determines reasonableness values, and finally learns
new mappings for the PDE problems. This might
involve adding or modifying hyperboxes in the
fuzzy min-max network.

Figures 8, 9, 10, and 11 depict results with this
scheme for the four agent scenarios on the larger
training set. After Pythia-C cycles through the larger
training set with cach of the agents in the setup, the
performance is measured with the smaller training
set. (For the sake of brevity, we are not illustrating che
figures with the smaller training set. The graphs from
this set of experiments are very similar to those with
the larger training set except that Pythia-C’s learning,
converges to smaller accuracy figures.)

As Figure 8 through 11 show, the mapping steadi-
ly improves for the large training set in all cases to the
accuracy observed in the static set of experiments.

Figure 12 charts the accuracy percentages for all
the agent scenarios with the time-based reactive
scheme. The steepest line is the results for the max-
imum number of agents (in this case, six). The top
line is for three agents. As expected, the scenarios
with fewer agents start off at a higher accuracy level
and converge to the levels presented carlier in Fig-
ure 6. This is because the expertise of the individual
agents is combined in the first scenario. Pythia-C'’s
accuracy improves from 40.85 to 98.20 percent in
scenario 1, from 59.15 to 98.20 percent in scenario
2, from 59.28 o 98.20 percent in scenario 3, and
from 68.86 to 98.20 percent in scenario 4. (Note
that these patterns hold true for all three dynamic
schemes; the only difference is the rate of progress
toward these values).

We conducted yet another series of experiments
with the time-based scheme. Rather than having
each agent available with approximately a third of
its knowledge as a starting situation, we began with
no “known” agents in the setup. In other words,
Pythia-C did not know about the existence of any
agents or their capabilities. Then each agent was
introduced into the scenario with a small knowl-
edge base and their abilities were slowly increased.

For example, Agent 1 joins the group with a
small knowledge base and announces its existence
to Pythia-C. Pythia-C reverts to learning mode and
learns mappings from PDE problems to agents (in
this case, there is only one agent in the group).
After some time, Agent 3 joins the group and this
process is repeated. While new agents are being

|EEE INTERNET COMPUTING

added, the abilities of existing agents (like Agent 1)
are also changing. Thus, these two events happen
in parallel: New agents arc added and the knowl-
edge bases of existing agents are refined. Because
our neuro-fuzzy technique can introduce new class-
es on the fly, Pythia-C handled this situation well,
and the accuracy percentages converged to the val-
ues obtained for the static case shown in Figure 6.

Reactive. In the reactive scheme, Pythia-C waits for
other agents to broadcast information if their con-
fidence for some class of problems has changed sig-
nificantly. As with the time-based scheme, each
agent started the experiments with the same level
of ability and its expertise was slowly increased.
Because each agent indicates this change of exper-

tise to Pythia-C, the latter reverts to learning mode

appropriately. Thus, the accuracy percentages

Relative performances
of various agent scenarios

N
[N ]

(percent)

[0
(=]

1%
=]
T

Accuracy of Pythia-C
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o
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30 1 1 1 | 1
0O 10 20 30 40 50

Time steps
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Figure 12. Relative accuracies observed in the four scenarios for
the time-based dynamic scheme with the larger training set.
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Figure 13. Relative accuracies observed in the four scenarios for

the reactive scheme with the larger training set.
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Relative performances of various agent

scenarios for time-based reactive scheme
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Figure 14. Relative accuracies observed in the four scenarios for
the time-based reactive scheme with the larger fraining sef.
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approach the same values as in the time-based
scheme but follow a more progressive pattern, in
tune with the pattern of increase in the abilities of
the other Pythia agents.

These curves begin to resemble a “staircase” pat-
tern, as shown in Figure 13.

Time-Based Reactive. In the time-based reactive
scheme, we use a combination of the first two
approaches. Pythia-C sends out a message at peri-
odic intervals asking if any agent’s abilities has
changed significantly, and switches to learning mode
if it receives an affirmative reply. As in the other two
schemes, each agent started with the same level of
ability, and its expertise was slowly increased. It was
observed that the accuracy percentages follow an
even more stable pattern of improvement because
Pythia-C waits for other agents to signal change in
expertise but only at regular intervals.

Figure 14 summarizes the accuracy curves for all
four agent scenarios.

CONCLUSIONS

The results from our experiments with the various
schemes show that the techniques we propose enable
an agent to keep track of the dynamic capabilides (in
this casc, the knowledge bascs) of other agents. The
results also show that our approach can handle situ-
ations where agents appear and disappear over time.

Our approach has two major strengths. First,
since our basis is a “soft” computing scheme (fuzzy
logic), it can handle the uncertainties and impreci-
sions inherent in this task. For example, when ask-
ing the question, “Which agent or agents should
be consulted for a problem of type A,” the neuro-
fuzzy technique naturally incorporates the fact that

http://computer.org/internet/

different agents will be able to “best” answer to a
different degyee.

Second, our approach provides for “single pass”
learning, which means that the learning time is fairy
short and can therefore keep up with rapid changes.
Even though the initial experiments reported here are
with a small set of agents, we see no significant com-
putational burden when the system is scaled up.

At present, we have seen no significant differ-
ences between the reactive and time-based
approaches in disseminating updates. However, we
feel that further experiments with a larger number
of agents are needed to establish if one of these
schemes is actually better than the other. We are
presently conducting such experiments with our
schemes in the context of both Pythia and Web Per-
sonalization Systems. We note here that while we
have used Pythia in particular, and networked sci-
entific computing in general, as the framework in
which to develop our multiagent recommender sys-
tem, the techniques we have developed are applica-
ble to any multiagent system on the network.

In a full implementation, Pythia-C would learn
of the entry of a new Pythia agent by querying the
ANS. In our experimental studies, however, we used
an abstraction of this dynamic network resource
querying; Pythia-C is told of a new agent by adding
the appropriate entry in its learning input.

In ongoing work, we are adding facilities for col-
laborators to automatically add Pythia agents (con-
sistent with our specifications) and for Pythia-C to
become aware of them via the ANS.

We have also recently coupled Pythia agents
with the GAMS index of mathematical software
repositories.! However, the integration between Ell-
pack, GAMS, and Pythia is still not perfect. We
presently use the Shade/KQML API implementa-
tion of KQML from Lockheed, but ongoing efforts
will transition this to JATLite from Stanford.

The other platform-dependent component of
our recommender system is the CLIPS system.
However, a Java-based replacement, called JESS
(Java expert system shell),”? is being builc for
CLIPS. Thus, the entire Pythia system will be Java
based and, hence, platform independent. w
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