Introduction

Securities lending is an established practice in many custodial banks, including ours, wherein investment strategies backed by cash or non-cash collateral are enabled to support clients who wish to have additional returns on securities held. For example, the common method of shorting an equity or a fixed income security is to borrow the security and sell it. Later the short seller buys the security to return to the lender, profiting by any price decline net of lending fees. Those wishing to borrow or lend must search each other’s offerings and negotiate a lending fee. Determining the optimal fee requires the lender to balance returns with utilization.

Furthermore, the process of determining the optimal fee for securities lending involves careful consideration of various factors. Lenders need to strike a balance between maximizing their returns and ensuring the efficient utilization of their securities. Setting the lending fee too high may discourage potential borrowers, leading to underutilization of the available securities. On the other hand, setting the fee too low might attract a high demand for borrowing, but the lender may not fully capitalize on the potential returns. It becomes crucial for lenders to assess market conditions, evaluate the demand for specific securities, and factor in the associated risks. By conducting thorough research and analysis, custodial banks can offer competitive lending fees that attract borrowers while optimizing the utilization of their securities. Additionally, establishing robust mechanisms for borrowers and lenders to connect and negotiate terms efficiently is paramount for the smooth functioning of securities lending operations. With effective fee determination strategies and streamlined processes, custodial banks can continue to provide valuable support to clients seeking enhanced returns on their securities holdings.

Why is this problem challenging? First, the complexity of over 100 demand and supply factors exacerbate the impact of even small adjustments to fees and rates. This complicates manual approaches to set rates for securities lending. Second, inconsistent patterns underlie the regimes under which securities lending can be profitable. When a security is in demand, lending fees tend to be very volatile. With effective fee determination strategies and streamlined processes, custodial banks can continue to provide valuable support to clients seeking enhanced returns on their securities holdings.
1.1 Contributions
Our problem formulation here is to forecast both the direction and magnitude of lending fee movements. Our key contributions are three-fold.
- By forecasting magnitude along with the direction, our approach implicitly captures the nature of the security (e.g., general collateral, warm, special and hot). This suggests inputs to adjust the lending rate, especially when there is no market indication.
- We present a sequence-to-sequence (seq2seq) modeling framework that runs at scale in real-time to support securities lending in highly volatile environments.
- We outline applications and deployment in a large custodial setting demonstrating scalability to a large number of equities as well as newly introduced IPO-based securities.

1.2 Organization of this paper
Section 2 provides some background about securities lending. Section 3 surveys related research. Section 4 presents the overall methodology with example experimental results covered in Section 5. Finally, we present a discussion of the future implications of securities lending rate prediction in custodial markets.

2 BACKGROUND
As introduced earlier, the typical approach to short selling a stock or a fixed-income security involves borrowing the asset and subsequently selling it. Later, the short seller will repurchase the asset to return it to the lender, aiming to profit from any decrease in its price after deducting borrowing fees. Borrowers and lenders must find each other and agree on a fee through negotiation, which the lender sets to optimize utilization. When the collateral provided is non-cash, the borrower usually pays a fee, whereas for cash collateral, the borrower may receive a rebate, with the rebate rate determined by the lender (see Fig. 1).

![Figure 1: Overview of Securities Lending Transaction Collateralized With Cash (adapted from Morningstar Analytics) [1]](image)

Short selling has played a key role in recent market events and conditions. During the COVID-19 pandemic, the global financial markets experienced a severe downturn. As economic uncertainty grew, investors became increasingly concerned about the potential impact on various industries. In response, some investors engaged in short selling to profit from the anticipated decline in the stock prices of vulnerable companies. For instance, companies in the travel, hospitality, and oil sectors were heavily shorted as these industries faced significant challenges due to lockdowns and reduced consumer activity. Short sellers sought to capitalize on the price declines, which further added to the market volatility during that period.

As a second example, consider the GameStop Short Squeeze (2021). In early 2021, an extraordinary event unfolded in the stock market involving GameStop, a struggling video game retailer. A group of retail investors on a Reddit forum called WallStreetBets coordinated a massive buying campaign on GameStop’s shares, causing its stock price to skyrocket. This sudden surge put significant pressure on hedge funds and institutional investors who had heavily shorted GameStop’s stock, as they were facing massive losses. The short squeeze resulted in a rapid and unexpected upward movement in the stock’s price, leading to considerable loss for short sellers and a notable shift in market dynamics.

To operationalize the securities lending situation here, we view the underlying business problem as one of increasing fee and rebate rate as close to the market rate, while keeping the utilization high and providing revenue uplift. The fee provided by the data is spread which contains volume weighted number for both cash collateral as well as non-cash collateral. Forecasts from our machine learning models are made available daily to the desk for repricing analysis. By identifying where the forecasted rate is in relation to the market mean and the securities relative volatility, combined with the directional and magnitude prediction, we obtain greater insights into potential rate movements.

3 RELATED RESEARCH
Forecasting models have long been employed for decision making in economics and financial sectors. Several modeling paradigms have been developed for modeling financial time-series. The paradigms can be broadly divided into model-based and data-driven approaches. Model-based approaches. Such approaches for forecasting financial time-series are primarily developed by experts in quantitative econometric modeling and are based on established econometric theory. Such approaches employ significant domain knowledge and rely on domain experts to sift through and isolate the drivers of a process of interest. In such approaches, the process being modeled is usually decomposed using traditional time-series decomposition techniques [31] to isolate trends, seasonality and cycles following which auto-regressive approaches [12] (e.g., Vector-Autoregression, Autoregressive Integrated Moving Average) are employed to model the residual transition dynamics. Several approaches based on state-space models like Kalman Filters have also been employed for modeling commodity prices, process risk [28] and evolution of inflation [6]. However, many of these state-space modeling approaches require at least a partial knowledge of transition dynamics, are mostly linear (or locally non-linear e.g., Extended-Kalman Filter) and make strong assumptions about process distributions. Model-based approaches have been developed for forecasting lending, inflation and interest rates [5] and rely on statistical techniques to analyze historical lending rate data, identifying patterns and relationships with various market factors. For instance, researchers have explored the impact of supply and demand dynamics [2], market volatility [20], interest rates, and credit risk on lending rates. By incorporating these variables into econometric models, researchers have achieved varying degrees of success in forecasting lending rates accurately.
Data-Driven Approaches. With the recent trends in generation and availability of massive troves of process data and the development of sophisticated statistical and machine learning (ML), more recent econometric forecasting efforts have been geared towards leveraging the power of ML techniques. The advantage of these techniques is their ability to model more sophisticated (non-linear) functions with no domain-knowledge. These algorithms leverage advanced computational techniques to analyze large volumes of historical data and identify complex patterns that may be difficult to capture with traditional econometric models. Researchers have employed various Bayesian and frequentist methods from machine learning (ML) such as support vector machines [21], random forests to predict various processes like stock prices [25], security prices [38], and bank loan loss defaults [4]. Although several works [14, 18, 33, 36] employ machine learning solutions for stock price prediction, to the best of our knowledge, we are the first to address the problem of ML-assisted Optimization of Securities Lending.

Deep Learning for Time-Series Forecasting. Traditional data-driven techniques although flexible, require sophisticated feature-engineering and feature selection techniques to be successful. Recently, with the advent of affordable commodity GPUs, the paradigm of developing and training large deep neural network models has come to the fore. Deep learning (DL) pipelines have proved highly effective in various domains such as NLP [13], computer vision [8, 37], image generation [19], and time-series generation [9, 39], due to their ability to model complex functions and their ability to automatically learn representations through non-trivial compositions of raw data. DL models have also been widely adopted for various economic forecasting tasks [35]. Such approaches have shown effective performance in forecasting the evolution of financial processes [35] like prices of stocks, bonds, indices, commodities [41] and the price variations therein. Further, DL models have also been employed to forecast changes and evolution in interest rates [26]. In contrast to other modeling paradigms, DL pipelines in financial modeling contexts are able to learn from a wide range of input variables, including market indices, asset characteristics, and macroeconomic indicators, to improve the accuracy of their forecasts of a process of interest.

Many previous works have successfully employed motif mining to extract high level temporal behavior from data [29, 30]. Additionally, motif mining enables discretization of time series behavior, thereby alleviating any adverse effects of process noise [11]. In this work, we hence leverage time series discretization via motif mining and encode the temporal dynamics of the discretized time series using DL techniques (Long-short term memory networks [3, 7, 15, 17, 40]) for the task of forecasting lending rates.

4 METHODOLOGY

Security lending is a problem where we aim to optimize the stock fee to maximize our revenue by lending securities. Usually the evolution of the stock fee for a particular ticker is locally smooth from a temporal context. Specifically, if we consider a particular ticker τ, a stock fee at time t, y_t^τ is on average, strongly correlated with the stock fee values at time-steps $(t-1):(t-w)$ for some local horizon $'w'$. Taking advantage of this property of locally-deterministic temporal evolution of the stock fee process, we cast the problem of optimal stock fee estimation as a time-series forecasting problem. In general it is known that the evolution of the stock fee is also influenced by other factors like stock quantity and historical utilization.

Task Description. Let us denote the stock fee of a ticker τ over a particular horizon from start time t_s to end time t_e as $y_{t_s:t_e}^\tau \in \mathbb{R}^{1 \times h}$. Further, let us denote the corresponding values of exogenous variables (e.g., stock quantity and historical utilization) that are known to influence stock fee evolution as $e_{t_s:t_e}^\tau \in \mathbb{R}^{k \times h}$. Here, h indicates the size of the time duration in days (i.e., $h = |t_e - t_s|$) and k is the number of exogenous factors considered to influence the stock fee. Our goal is to forecast the stock fee $y_{t_s:t_e}^\tau$ from t_s to t_e for a ticker τ, conditioned upon historical information $X_{t_s:w\cdot t_e}^\tau = \{e_{t_s:w\cdot t_e}^\tau, y_{t_s:w\cdot t_e}^\tau\}$. Here, $X_{t_s:w\cdot t_e}^\tau \in \mathbb{R}^{(q+1)\times w}$ are the holistic set of input features for our proposed estimation task of stock fee for ticker τ in the horizon $t_s:t_e$. We employ a DL pipeline trained using empirical risk minimization (ERM) to model the evolution of our target task. Given, a training corpus of pairs of inputs, targets $X = \{(X_{t_s:w\cdot t_e}^\tau, y_{t_s:t_e}^\tau)\}_{w \leq t_s \leq M - h \land w + h \leq t_e \leq M}$, Eq. 1 details the estimation objective.

$$\theta^*_{opt} = \arg \min_{\theta \in \Theta} \mathbb{E}_{(X,Y)} \left[\mathcal{L}(Y^\tau, f_\theta(X^\tau)) \right]$$

(1)

In Eq. 1, for each ticker τ, we learn a stock fee prediction function $f_\theta(\cdot)$ parameterized by learnable parameters θ and conditioned upon historical endogenous and exogenous inputs X^τ. The ERM optimization objective in Eq. 1 yields, θ^*_{opt}, which is the optimal

We have dropped the temporal subscript notation for ease of understanding.
set of parameters that can be employed to yield estimates of stock fees in future time-steps.

The stock fee of each ticker exhibits unique and complex evolutionary characteristics owing to the multivariate dependence on various exogenous factors. Fig. 3 demonstrates the uniqueness of evolutionary characteristics of the stock fee magnitude and the corresponding change of the stock fee price (i.e., stock fee direction) for different ticker symbols. Hence, attempting to model the stock fee with standard regression based DL models leads to sub-optimal forecasting model useless. To address this issue, we adopt a discretized modeling approach for the stock fee estimation task.

Discretization We employ a time-series discretization function \(g : \mathbb{R}^Y \rightarrow \mathbb{B}^Y \) such that \(\mathbb{R}^Y \) is the continuous space comprising the raw stock fee data and \(\mathbb{B}^Y \) is the space of corresponding discretized representation.

For example (as Fig. 4), one instance of a simple discretization function could be one that discretizes a stock fee timeseries \(Y_{t_1:t_M} \in \mathbb{R}^{1\times M} \) for a particular stock ticker \(t \), based on quartiles (i.e., into a 4 symbol sequence) \(Y_{t_1:t_M} \in \mathbb{B}^{4\times M} \) where each time-step of the discretized sequence represents a 4-dimensional one-hot binary condition. Essentially, each \(Y_{ij}^{\tau} \in Y^{\tau} \) represents the predicted probability (by \(f_\theta(\cdot) \) conditioned on inputs \(X^{\tau} \)) of occurrence of discrete symbol \(i \) at time sequence step \(j \).

Weak Sobolev Regularization. Traditionally, DL pipelines make for an immensely powerful learning mechanism capable of modeling complicated functions. This capability can serve to be a doubled edged sword as it also brings with it the bane of over-fitting to the training data leading to dismal performance on unseen (test) data during inference, rendering the forecasting model useless. Regularization [34] has long been a popular technique in ML and DL employed to systematically curtail model complexity thereby reducing over-fitting. In addition to traditional (L1, L2) based regularization mechanisms, it has been recently shown that Sobolev losses [10] serve as effective regularizers in over-parameterized DL pipelines. We augment our training pipeline to incorporate a weak version of the Sobolev loss by training our DL pipeline to predict the k-discretized time-series of the gradient of the target time series i.e.,

![Figure 3: Showcase the stock fee (blue) and stock fee change (green) of various tickers. We notice that these processes exhibit complex temporal dynamics.](image)

![Figure 4: 4a - 4b showcase price time-series and their discretization \(g(\cdot) \) in various stocks (AMZN, GOOG).](image)
\[
\Delta y^T = g(\Delta y^r) \text{ where } g(\cdot) \text{ is a discretization function, } \Delta y^T \in \mathbb{R}^{1 \times h}
\]
is the first-difference (i.e. slope or direction of motion) at each point in the stock fee target series \(y^r \in \mathbb{R}^{1 \times h}\) and \(\Delta y^T \in \mathbb{R}^{k \times h}\) is the \(k\)-discretized version of the point-wise slope.\(^3\)

\[
\theta_{\text{opt}}^* = \arg \min_{\theta} \mathbb{E}(X^r, y^r) \cdot \alpha \left[\mathcal{L}(\mathcal{Y}^r, f_0(X^T)) + \mathcal{L}(\Delta \mathcal{Y}^r, f_0(X^T)) \right]
\]

Our final training loss function with weak Sobolev regularization in the discretized setting is detailed in Eq. 4.

4.1 Seq2seq Model Architecture

In an effort to encode the temporal nature of the target process of interest, we shall adopt recurrent deep learning architectures and a sequence-to-sequence forecasting design [23]. Our choice of modeling pipeline is an LSTM (long-short-term memory) network, which is adept at processing sequential data.

\[
i_t = \sigma(W_{ix}x_t + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \]
\[
f_t = \sigma(W_{fx}x_t + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \]
\[
c_t = f_t c_{t-1} + i_t \tan h(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \]
\[
o_t = \sigma(W_{ox}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o) \]
\[
h_t = o_t \tan h(c_t) \tag{5}
\]

Eq. 5\(^3\) details the multiple gating mechanisms existing within an LSTM network. Each \(W\) matrix represents a learnable set of projections of the input sequence \(x \in \mathbb{R}^{(q+1) \times w}\), hidden representations \(h_{t-1}\) or cell-states \(c_{t-1}\). By maintaining separate states (i.e., the hidden states and cell states) as well as mechanisms (termed gates) to include and forget \((f_t)\) information, LSTMs have been successful in overcoming the vanishing gradient [27] problems inherent to training vanilla Recurrent-neural networks (RNN).

The structure of our proposed LSTM pipeline is visually depicted in Fig. 5. Our proposed architecture comprises of two separate LSTM trunk models, each with the same structure of blocks. Each trunk net is designed to accept a different historical sequence length (one trunk accepts a 5 sequence input while the other accepts a 12 sequence input), thereby serving to incorporate multi-horizon effects into our modeling pipeline.

The architecture for both the LSTM models is identical – One input layer, One GroupNormalization layer, two LSTM layers (stacked LSTM) where each layer is followed by dropout layer and one Dense Layer on which ELU activation function is applied. The output from the models are combined using Average Layer where features generated during training from both the models are averaged and fed to another dense layer in order to generate the final prediction. Further, our model predicts yield to simultaneously forecast the \(k\)-discretized magnitude \(\left(\mathcal{Y}^r\right)\) and direction \(\left(\Delta \mathcal{Y}^r\right)\) of the stock fee for ticker \(\tau\). The activation function applied on the final dense layer is a softmax function. The loss function selected for optimization is categorical cross-entropy (see Eq. 3) and the optimizer selected is Adam.

Finally, we detail a feature normalization technique incorporated to ensure increased stability and robustness during training of our DL pipeline. It is well-known that initial values of the weights of a neural network can have a significant impact on the training process. Weights should be chosen randomly but in a way to ensure appropriate activation in the linear region of activation functions like the sigmoid to avoid saturation [32] and consequent sub-optimal training. Works like [22] have investigated the effect on vanishing gradient on neural network training and proposed techniques to alleviate the ill-effects of vanishing gradients gradients during training by intelligent weight initialization and weight scaling.

Owing to the critical nature of this problem, we employ a technique based on Gaussian-Mixture-Models (GMM) to fit a feature distribution for each feature and employ the means and standard deviations of the learned GMM distribution to normalize and scale features in the neural network pipeline. Hyperparameters like the number of Gaussians in the GMM are obtained based on an elbow-curve method using a Bayesian-Information Criterion.

We report the effect of the GMM based feature-scaling procedure on the prediction performance of MH-LSTM in Table 1 (without GMM based feature scaling) and Table 2 (with GMM based feature scaling). We notice that incorporating feature scaling leads to increase in overall performance accuracy.
Table 1: Forecasting results for our proposed modeling pipeline before GMMN based normalization.

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.70</td>
<td>0.89</td>
<td>0.78</td>
</tr>
<tr>
<td>1</td>
<td>0.77</td>
<td>0.50</td>
<td>0.61</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>Macro Avg</td>
<td>0.73</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>Weighted Avg</td>
<td>0.73</td>
<td>0.72</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 2: Forecasting results employing our proposed modeling pipeline, after GMMN based normalization. We notice an increase in the accuracy, macro and weighted average metrics, relative to the performance of the variant without GMMN (see Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.76</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>Macro Avg</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Weighted Avg</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
</tbody>
</table>

5 EXPERIMENTAL RESULTS

We perform a holistic performance evaluation by investigating the performance of MH-LSTM on the direction prediction and the magnitude prediction for the target task of stock fee estimation on a dataset of US-based securities. Further, we investigate the model performance on an out-of-sample time-period in April 2022.

5.1 Direction Prediction Task

In order to demonstrate the performance of our proposed model on the stock fee direction prediction task, we first investigate the training loss curve (see Fig. 6) of our proposed multi-horizon LSTM pipeline. We notice that the convergence as depicted, increases and becomes more reliable as the number of training epochs increases. Further, Table 3 details the task performance of the model on the out-of-sample data. We see from the table that our trained model yields an average accuracy of 68% on the task of direction prediction, across the out-of-sample period, on the investigated dataset of US-based securities. Further, we discovered that calibrating the classification threshold to 60% (from its original balanced threshold value of 50%) yields a significant rise in classification accuracy with the new accuracy reaching 75% on the binary classification task of daily stock fee direction prediction. Overall, the table indicates consistent prediction performance of our proposed multi-horizon LSTM pipeline, across all the classes (0, 1). From the table, we glean that the overall accuracy over out-of-sample period is 68%. We further investigate the distribution of the accuracy across the evaluation dataset (containing data from 6500 tickers) and report the histogram in Fig. 7. We notice that a majority of the tickers (70% or more) are above 60% in accuracy mainly in 80% to 100% accuracy range. Although there exist a few tickers with individual accuracy less than 60%, as shown by the distribution plot, the predictions with accuracy higher can be used for decision making.

Figure 6: Loss Curve of direction prediction task in proposed multi-horizon LSTM model

Figure 7: MH-LSTM stock fee direction prediction accuracy histogram on out-of-sample period on US-securities dataset. We notice that a majority of the predictions for the direction prediction by MH-LSTM have high-accuracy i.e., our model demonstrates greater than 60% accuracy on a majority of tickers for the stock fee direction prediction task.

Fig. 8 and Fig. 9 show that MH-LSTM yields highly accurate results for a majority of its decisions on the stock fee direction prediction task. We observe that although the model can be less than 60% accurate during a few time periods (and for a few tickers),
Figure 8: Long-term evolution across the entire year 2020 of 5-day-ahead stock fee direction prediction accuracy. The plot showcases the change in accuracy for the 5-day-ahead stock direction prediction task by MH-LSTM for 5 sample tickers. We notice that MH-LSTM yields prediction accuracies in excess of 60% for a majority of the direction prediction decisions.

Figure 9: We isolate a sample ticker from Fig. 8 and depict (for a single month) a more granular evolution of 5-day prediction accuracy for the task of stock direction prediction by MH-LSTM. The plot depicts that MH-LSTM yields consistent and high accuracy (greater than or equal to 80%) for a majority of the decisions in the direction prediction task.

Figure 10: 5-day accuracy calculated everyday over 2022 prediction by MH-LSTM for the task of direction prediction on 5000 tickers.

Although a few regions in Fig. 10 showcase that MH-LSTM can yield prediction performance accuracy lower than 60%, we see that for a majority of the decisions, it is highly accurate and yields accuracy greater than 60%. Finally, we show the performance of tickers that are above a fixed threshold of 60%, in Fig. 11.

Figure 11: The performance of tickers that are above a fixed threshold of 60%.

5.2 Magnitude Prediction Task

In this section we further investigate the performance of MH-LSTM on the out-of-sample set from April 2022.

Figure 12: Learning Curve for magnitude prediction task of MH-LSTM.

We once again showcase the training and validation losses of MH-LSTM on the magnitude prediction task (Fig. 12) and observe a simultaneous decreasing trend in training and validation losses indicating a stable training of MH-LSTM for the task.

Further, we once again calculate the precision/recall/F1 score of MH-LSTM on the 5-day stock fee magnitude prediction task and find that the overall accuracy of MH-LSTM on the stock fee magnitude prediction task is 73% for 6500 US tickers. The classification results, as shown in Table 4, is also based on out-of-sample test set of April 2022.

![Figure 13: Accuracy histogram of all tickers](image)

![Figure 14: Accuracy distribution](image)

Table 4: Performance of MH-LSTM model on the magnitude prediction task for US-based securities on the out-of-sample test set (April 15th - 22nd 2022). We obtain an average classification accuracy of 73% with balanced classification threshold.

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.76</td>
<td>0.74</td>
<td>0.75</td>
<td>17410</td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
<td>0.61</td>
<td>0.70</td>
<td>14535</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td>0.73</td>
<td>31945</td>
</tr>
<tr>
<td>Macro Avg</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>31945</td>
</tr>
<tr>
<td>Weighted Avg</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
<td>31945</td>
</tr>
</tbody>
</table>

Fig. 13 is the accuracy histogram of all tickers and it is also based on out of sample data on same period (2021/04/23 - 2021/04/30). Fig. 14 shows that majority of the tickers are in 60% to 100% accuracy range.
range in terms of individual accuracy. There will be tickers with individual accuracy less than 60% as shown by the distribution plot but the predictions with accuracy higher than 60% may be selected to make better decisions. Fig. 15 shows 5-day accuracy calculated for magnitude model: 500 tickers (everyday over one year (2020)).

![Figure 13: Accuracy histogram of all tickers. Y-axis is the frequency of tickers, where x-axis is the accuracy.](image)

![Figure 14: Accuracy histogram of all tickers. Y-axis is the frequency of tickers, where x-axis is the accuracy.](image)

![Figure 15: Accuracy evolution of MH-LSTM predictions for stock fee magnitude prediction task.](image)

The 5-day accuracy plot for individual ticker is also stable and can be visualized using Fig. 16a, Fig. 16b. Overall, our results demonstrate that MH-LSTM is able to yield stable and accurate predictions across diverse time ranges and tickers for the stock fee magnitude and direction prediction tasks.

6 CONCLUSION & FUTURE WORK

In this work, we have developed a scalable and integrated methodology based on a novel deep-learning pipeline for forecasting lending rates in security markets. Our flexible framework MH-LSTM, is able to model both the price and the direction of evolution of the lending rates making for a more holistic forecast. We have demonstrated the accurate and high-quality forecasts through rigorous qualitative and quantitative analyses employing 6500 tickers from the US equity market thereby demonstrating that our model is able to capture a large number of versatile market trends. Further, by developing our MH-LSTM model, scalability of the model to a large number of time series is an important problem that we have addressed. The benefit is double sided where we not only have a model that benefits from large dataset but also simplifies training, inference and process monitoring. Through our experiments we have learnt (and communicated) detailed and valuable lessons on the effectiveness of specialized normalization techniques for LSTM based neural networks.

In the future, we plan to augment our flexible DL pipeline to incorporate exogenous information based on market sentiment. Further, we shall also augment our DL based pipeline to incorporate the importance of market connectivity and provided insights into the dynamics of lending rate formation. Specifically, we shall incorporate the relationships and inter-connectedness between borrowers, lenders, and other market participants in the securities lending market. By analyzing the effects of the network structure on forecasting prowess, key influencers and nodes that play a crucial role in determining lending rates can be identified.

ACKNOWLEDGMENTS

We are grateful for comments and suggestions from Richard Marquis, William Kelly, Simon Tomlinson, Dave DiNardo, Christina Mackrell, and the Markets team at BNY Mellon. We are grateful to
Nikunj Bhalla for the engineering work and integration of model. We are also grateful to Eoin Lane for all the support and engagements and the Advanced solutions team. Finally, we are grateful for the critical leadership and support from Michael Demissie through the ML-assisted Optimization of Securities Lending ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA the entire project timeline.

REFERENCES