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Abstract

Regulatory network analysis and other bioinformatics tasks require the ability to induce
and represent arbitrary boolean expressions from data sources. We introduce a novel frame-
work, called BLOSOM, for mining (frequent) boolean expressions over binary-valued datasets.
Boolean expressions can be grouped into four categories: pure conjunctions, pure disjunctions,
conjunction of disjunctions, and disjunction of conjunctions. Our main focus on mining the
simplest expressions (the minimal generators), but we also propose closure operators that yield
closed (or unique maximal) boolean expressions. BLOSOM efficiently mines frequent boolean
expressions by utilizing a number of methodical pruning techniques. Experiments showcase the
behavior of BLOSOM for different input settings and parameter thresholds. Application studies
on gene expression and gene regulation patterns showcase the effectiveness of our approach.

Keywords: Minimal Generators, Closed Patterns, Boolean Expressions, Itemset Mining

1 Introduction

A key class of problems in biological knowledge discovery pertain to modeling complex relationships
between entities, such as GO category descriptions, genetic regulatory connections, and metabolic
pathway networks. To effectively address these tasks, we require data mining techniques that
possess the expressiveness to model arbitrary boolean connections. However, many state-of-the-art
techniques are rather restrictive in the class of expressions they can mine.

For example, itemset mining (Agrawal et al., 1996) takes as input a binary-valued dataset and
discovers patterns that are pure conjunctions of items. Admittedly, such techniques are useful in
bioinformatics, but have limited scope. For example, given the expression levels (high or low) of
genes for various cancers, we may find that cancerous tissues have high levels of genes (g1 and g5
and g13) or (g10 and g15). This might indicate that these groups of genes are co-regulated and
somehow linked to cancer. These techniques can be generalized to include negations of descriptions
and used to mine redescriptions (Ramakrishnan et al., 2004), that is, finding alternative ways of
describing a group of genes. For instance, from yeast gene expression data, we may find that the
gene highly expressed at time point 15 mins (d183), but not involved in mannose transportation
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(d388) or fructose metabolism (d515) or not part of external protective structure (d460), are the
exact same genes also highly expressed at time point 20 mins (d184), provided they do not have
unknown molecular function (d309). This redescription can be written as an equivalence of boolean
expressions: d183 and (not d388) and (not d460) and (not d515) ⇐⇒ d184 and (not d309).

We seek to generalize these approaches to mine arbitrary boolean expressions. Boolean expres-
sion mining can provide tremendous value, but there are two main challenges to contend with.
The first deals with the problem of high computational complexity. With n items (or variables),
there are 22

n

possible distinct-valued boolean expressions1, far too many to enumerate. To make
the search practical we focus on only the frequent boolean expressions. Also instead of mining all
frequent boolean expressions, we focus on mining a lossless subset that retains complete frequency
information, namely closed boolean expression. The second challenge relates to comprehension of
the patterns, i.e., they may be complex and difficult to understand. Here we focus on mining the
simplest or minimal expressions (which are in fact the minimal generators of the closed expressions)
that still from a lossless representation of all possible boolean expressions.

In this paper, we present a novel framework, called BLOSOM (an anagram of the bold letters in
BOOLean expression Mining over attribute Sets), the first such approach to simultaneously mine
closed boolean expressions over attribute sets and their minimal generators.2 Our main contribu-
tions are as follows: We organize boolean expressions into four categories: (i) pure conjunctions
(and-clauses), (ii) pure disjunctions (or-clauses), (iii) conjunctive normal form (CNF; conjunction
of disjunctions), and (iv) disjunctive normal form (DNF; disjunction of conjunctions). For both
CNF and DNF expressions we propose a closure operator, and we give a characterization of the
minimal generators. BLOSOM employs a number of effective pruning techniques for searching over
the space of boolean expressions, yielding orders of magnitude in speedup. We conducted several
experiments on synthetic datasets to study the behavior of BLOSOM with respect to (w.r.t.) dif-
ferent input settings and parameter thresholds. We also highlight some of the patterns found using
BLOSOM on real datasets from bioinformatics applications such as analysis of gene expression
patterns, and boolean gene regulatory network discovery.

2 Preliminary Concepts

Lattice Theory: Let us first review a few facts from lattice theory (Davey & Priestley, 1990),
which will be useful in our discussion. Let (P,⊆) be a partially ordered set (also called a poset). Let
X,Y ∈ P and let f : P → P be a function on P . f is called monotone if X ⊆ Y ⇒ f(X) ⊆ f(Y ).
We say that f is idempotent if f(X) = f(f(X)). f is called extensive (or expansive) if X ⊆ f(X).
Finally, f is called intensive (or contractive) if f(X) ⊆ X. A closure operator on P is a function
C : P → P such that C is monotone, idempotent, and extensive. X is called closed if C(X) = X. On
the other hand, a kernel operator on P is a function K : P → P , which is monotone, idempotent, and
intensive. X is called open if K(X) = X. The set of all closed and open members of P form the fixed-
point of the closure (C) and kernel (K) operators, respectively. Given two posets (P,⊆) and (Q,≤),
a monotone Galois connection between them consists of two order-preserving functions, φ : P → Q
and ψ : Q → P , such that for all X ∈ P and Y ∈ Q, we have: X ⊆ ψ(Y ) ⇐⇒ φ(X) ≤ Y . The

1With n items, there are 2n distinct ways of assigning true/false values to the n terms, and for any such assignment
the truth value of the expression can be set to true or false, giving the 22

n

value.
2Please note that a preliminary version of this paper appeared as a short paper in the ACM SIGKDD Confer-

ence (Zhao et al., 2006).
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composite function ψ ◦ φ : P → P is a closure operator, whereas the function φ ◦ ψ : Q → Q is
a kernel operator, on P and Q, respectively (Davey & Priestley, 1990). Given posets (P,⊆) and
(Q,≤), a anti-monotone Galois connection (Davey & Priestley, 1990) between them consists of two
order-reversing functions, φ : P → Q and ψ : Q→ P , such that for all X ∈ P and Y ∈ Q, we have:
X ⊆ ψ(Y ) ⇐⇒ Y ≤ φ(X). The composite functions ψ ◦ φ : P → P and φ ◦ ψ : Q→ Q are both
closure operators on P and Q, respectively (Davey & Priestley, 1990).

Boolean Expressions: Let I = {i1, i2, . . . , im} be a set of binary-valued attributes or items.
Let and, or, and not denote the usual logical operators. We denote a negated item (not i) as
i. We use the symbol | to denote or, and we simply omit the and operator whenever there is no
ambiguity. For example, (i3 and i4) or (i1 and (not i7)) is rewritten as (i3i4)|(i1i7). A literal
is either an item i or its negation i. A clause is either the logical and or logical or of one or
more literals. An and-clause is a clause that has only the and operator over all its literals, and
an or-clause is one that has only the oroperator over all its literals. We assume without loss of
generality that a clause has all distinct literals (since a clause is either an and- or an or-clause,
repeated literals are logically redundant). A boolean expression is the logical and or or of one or
more clauses.

A boolean expression is said to be in negation normal form (NNF) if all not operators di-
rectly precede literals (any expression can be converted to NNF by pushing all negations into the
clauses). An NNF boolean expression is said to be in conjunctive normal form (CNF) if it is an
and of or-clauses. An NNF expression is said to be in disjunctive normal form (DNF) if it is an or

of and-clauses. For example, (i3i4)|(i1i5i7) is in DNF, whereas (i2|i3)(i0|i1|i3) is in CNF. Note that
by definition, single or-clauses and single and-clauses, are in both CNF and DNF. Furthermore,
when considering negated literals, we disallow a tautology like the or-clause containing (i|i) which
is always true. Similarly, we disallow a contradiction like the and-clause containing (i i) since this
is always false. Note that a CNF expression is a tautology if and only if (iff) each one of its clauses
contains both an item and its negation. Likewise, a DNF expression is a contradiction iff each one
of its clauses contains both a variable and its negation. Thus by disallowing the tautologies in indi-
vidual clauses, we disallow tautologies in CNF expressions. Likewise, by eliminating contradictions
in clauses, we eliminate contradictions in DNF expressions. We also disallow any clause that is a
superset of another clause.

D DT D

tid set of items

1 ACD
2 BC
3 ABCD
4 ADE
5 E

item tidset

A 134
B 23
C 123
D 134
E 45

tid set of items

1 B E

2 A D E

3 E

4 B C

5 A B C D

Figure 1: Dataset D and its transpose DT and complement D

Dataset: Let I = {i1, i2, . . . , im} be a set of items, let T = {t1, t2, . . . , tn} be a set of transaction
identifiers (tids). A dataset D is then a subset of T × I; in other words, the dataset D is a set of
tuples of the form (t, t.X), where t ∈ T is the tid of the transaction containing the set of items
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t.X ⊆ I. Note that any categorical dataset can be transformed into this transactional form, by
assigning a unique item for each attribute-value pair.

Given dataset D, we denote by DT the transposed dataset that consists of a set of tuples of the
form (i, i.Y ), where i ∈ I and i.Y ⊆ T is the set of tids of transactions containing i. Fig. 1 shows
a dataset and its transpose, which we will use as a running example in this paper. It has five items
I = {A,B,C,D,E} and five tids T = {1, 2, 3, 4, 5}. Note that in D, transaction t1 contains the set
of items {A,C,D} (for convenience, we write it as ACD), and in DT , the set of tids of transactions
that contain item A is {1, 3, 4} (again, for convenience we write it as 134).

Let ℵ(t.X) = {i | i ∈ I \ t.X}, denote the negated items that do not appear in a transaction
t.X. For example, for (1, ACD), we have ℵ(ACD) = B E. Define D as the complement of database
D, given as D = {(t,ℵ(t.X)) | t.X ∈ D }. Fig. 1 also shows the complemented dataset D for our
running example.

Tidset and Support: Given a transaction (t, t.X) ∈ D, with t ∈ T and t.X ⊆ I, we say that
tid t satisfies an item/literal i ∈ I if i ∈ t.X, and t satisfies the literal i if i 6∈ t.X. For a literal l,
the truth value of l in transaction t, denoted Vt(l) is given as follows:

Vt(l) =

{

1 if t satisfies l

0 if t does not satisfy l

We say that a transaction t ∈ T satisfies a boolean expression E if the truth-value of E, denoted
Vt(E), evaluates to true when we replace every literal l in E with Vt(l). For any boolean expression
E, t(E) = {t ∈ T : Vt(E) = 1} denotes the set of tids (also called a tidset), that satisfy E.

The support of a boolean expression E in dataset D is the number of transactions which satisfy
E, i.e., |t(E)|. An expression is frequent if its support is more than or equal to a user-specified
minimum support (min sup) value, i.e., if |t(E)| ≥ min sup. For disjunctive expressions, we also
impose amaximum support threshold (max sup) to disallow any expression with too high a support.
Setting min sup = 1 and max sup =∞ allows mining all possible expressions.

Boolean Expression Mining Tasks: Given a dataset D and support thresholds min sup and
max sup, the task is to mine minimal and closed frequent boolean expressions, such as and-clauses,
or-clauses, CNF and DNF, as specified by the user.

One of the goals of mining for different boolean expressions to find the minimal (and/or closed)
boolean expressions that characterize a set of transactions (the tidset), i.e., the tids in the tidset
satisfy only the given boolean expressions. In this view, both and-clauses and or-clauses, by defini-
tion, convey different kinds of information. For example, some tidsets can only be characterized by
an and-clause, and while others may only be characterized by an or-clause. For some others, the
simpler and- and or-clauses are not enough, and we have to consider CNF (or DNF) expressions
to completely characterize them. As such, CNF and DNF are logically equivalent, in the sense that
any CNF expression can be transformed into a DNF expression and vice-versa. However, sometimes
such a transformation can lead to an exponential growth in the number of clauses. For example,
the DNF expression with n clauses, (a1 b1)|(a2 b2)| · · · |(an bn), yields a CNF expression with 2n

clauses. For instance, (a1 b1)|(a2 b2) = (a1|a2)(a1|b2)(b1|a2)(b1|b2). For the sake of simplicity, we
may desire to retain either the DNF or CNF expression for the analyst. Furthermore, note that for
different minsup and maxsup settings, due to support based pruning, the two sets of expressions
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from CNF or DNF mining may be different. For these reasons, we explicitly consider both CNF
and DNF expression in this paper.

Before presenting the BLOSOM framework, we will first study the structure and properties
of four classes of boolean expressions; we consider each case separately – and-clauses, or-clauses,
CNF and DNF. For simplicity of exposition, we will restrict our examples to only positive literals,
but our approach is applicable to negated literals as well. In essence, we treat each negated
literal as a separate item. We eliminate simple tautologies (contradictions) in or(and)-clauses
by eliminating any clause containing both literals i and i. However, since our current approach
does not check for tautologies/contradictions in more complex expressions, it can find logically
redundant or contradictory patterns. Integrating full tautology/contradiction checking is part of
future work.

3 Related Work

Mining frequent itemsets (i.e., pure conjunctions) has been extensively studied within the context of
itemset mining (Agrawal et al., 1996). The closure operator for itemsets (and-clauses) was proposed
in (Ganter & Wille, 1999), and the notion of minimal generators for itemsets was introduced
in (Bastide et al., 2000). Many algorithms for mining closed itemsets (see (Goethals & Zaki, 2003)),
and a few to mine minimal generators (Bastide et al., 2000; Zaki & Ramakrishnan, 2005; Dong
et al., 2005) have also been proposed in the past. The work in (Dong et al., 2005) focuses on finding
the succinct (or essential) minimal generators for itemsets. CHARM-L (Zaki & Ramakrishnan,
2005) finds the minimal generators for itemsets (MA), based on the differential lower shadows of
closed itemsets. The task of mining closed and minimal monotone DNF expressions was proposed
in (Shima et al., 2004). It gives a direct definition of the closed and minimal DNF expressions
(i.e., a closed expression is one that doesn’t have a superset with the same support and a minimal
expression is one that doesn’t have a subset with the same support). The authors further give a
level-wise Apriori-style algorithm. In contrast, the novel contribution of our work is the structural
characterization of the different classes of boolean expressions via the use of closure operators and
minimal generators, as well as the framework for mining arbitrary expressions.

Within the association rule context, there has been previous work on mining negative rules (Savasere
et al., 1998; Yuan et al., 2002; Wu et al., 2004; Antonie & Zaiane, 2004), as well as disjunctive
rules (Nanavati et al., 2001). Unlike these methods we are interested in characterizing such rules
within the general framework of boolean expression mining. However, as pointed out above, our
current framework relies on a relatively straightforward approach to handle negated literals. Using
more sophisticated methods, as suggested by some of the existing works on negative rules, can
speed up the computation time. One can also use approaches that approximate the support of
arbitrary boolean expressions (Calders & Goethals, 2005; Jaroszewicz & Simovici, 2002; Mannila
& Toivonen, 1996) to deliver further performance gains.

Also related is the mining of optimal rules according to some constraints (Bayardo & Agrawal,
1999), since the boolean expressions can be considered as constraints on the patterns. More general
notions of itemsets (including negated items and disjunctions) have been considered in the context
of concise representations (Calders & Goethals, 2003; Kryszkiewicz, 2001; Kryszkiewicz, 2005).
Another point of comparison is w.r.t. the work in (Gunopulos et al., 2003) where the authors aim
to find frequent and (maximally) interesting sentences w.r.t. a variety of criteria. Many data mining
tasks, including inferring boolean functions, are instantiations of this problem. Also of relevance
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is the task of mining redescriptions. The CARTwheels algorithm (Ramakrishnan et al., 2004)
mines redescriptions only between length-limited boolean expressions in disjunctive normal form
and CHARM-L (Zaki & Ramakrishnan, 2005) is restricted to redescriptions between conjunctions.
None of these algorithms can mine redescriptions between arbitrary boolean expressions, as done
here.

The theoretical machine learning (PAC) community has focused on learning boolean expres-
sions (Bshouty, 1995) in the presence of membership queries and equivalence queries. Mitchell (Mitchell,
1982) proposed the concept of version spaces (which are basically a partial order over expressions)
to organize the search for expressions consistent with a given set of data. However, these works
conform to the classical supervised learning scenario where both positive and negative examples of
the unknown function are supplied. In contrast, our work aims to find boolean expressions without
explicit direction about the examples they cover. We note that a preliminary version of this paper
appeared in (Zhao et al., 2006).

4 Characterizing and- and or-Clauses

As already noted, mining and-clauses, has beed widely studied ever since frequent itemsets (i.e.,
pure conjunctions) were introduced (Agrawal et al., 1996). Mining of or-clauses, on the other hand
has not received that much attention. Note that or and and clauses are duals of each other, in
the sense that Y = (l1l2 . . . lk) is an and-clause in D iff Y = (l1|l2| · · · |lk) is an or-clause in D.
This duality between or- and and-clauses allows one to transform each problem into the other for
the purposes of mining. Since the theory of minimal and closed and-clauses is well developed, we
include only a brief overview here, for the sake of completeness.

4.1 Characterizing and-Clauses

Closed and-clauses have been well studied in data mining as closed itemsets (Pasquier et al., 1999),
as well as in the Formal Concept Analysis as concepts (Ganter & Wille, 1999). The notion of min-
imal generators for and-clauses has also been previously proposed in (Bastide et al., 2000). Many
algorithms for mining closed and-clauses (eg. Charm (Zaki & Hsiao, 2005) and others (Goethals
& Zaki, 2003)), and a few to mine minimal clauses (Bastide et al., 2000; Zaki & Ramakrishnan,
2005), have been proposed.

Given dataset D, and thresholds min sup and max sup, the goal here is to mine and-clauses
that occur in at least min sup and in at most max sup transactions. Let E∧ be the set of all
and-clauses over the set of items I. Given posets (E∧,⊆) and (2T ,⊆), and X ∈ E∧, Y ∈ 2T , the
following two mappings form an anti-monotone Galois connection (Ganter & Wille, 1999):

φ = t : E∧ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i : 2T 7→ E∧, i(Y ) = {i ∈ I | Y ⊆ t(i)}

Since (t, i) forms an anti-monotone Galois connection, it follows that C = i ◦ t : E∧ → E∧, and
t◦i : 2T → 2T both form a closure operator for and-clauses (Ganter & Wille, 1999). An and-clause
X is called closed if C(X) = X. Y is called a minimal generator for a closed and-clause X iff Y is
a minimal subset of X such that t(Y ) = t(X). We use the notation C(E∧) andM(E∧) to denote
the set of all closed and minimal generators of and-clauses, respectively. Consider our example
dataset (Fig. 1) for which Fig. 2 shows the set of all closed and-clauses (in rectangles) and their
minimal generators (in circles), as well as the groupings of the generators for the and-clauses. The
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Figure 2: The Lattice of and-Clauses (min sup = 1, max sup = 5)

tidset for each clause is also shown. As in the case of or-clauses, it is clear that the closed and
minimal and-clauses are the most specific and most general clauses relating to a group of tidsets.

Tidset Closed Min Generators

3 ABCD AB, BD
4 ADE AE, DE
13 ACD AC, CD
23 BC B
45 E E
123 C C
134 AD A, D

Table 1: Closed (CA) and Minimal Generators (MA) for and-clauses

In terms of the structure of minimal generators for a closed and-clause X, they can be consid-
ered as the minimal hitting sets of its differential lower shadow (Pfaltz & Jamison, 2001). Further-
more, closed and-clauses have also been characterized as those resulting from finite intersections
of transactions (Mielikainen, 2003). We focus instead on a direct characterization of the closed and
minimal generators for and-clauses. We define an intersection tidset to be a tidset obtained by
finite intersections over the set of tidsets for single items, {t(i)|i ∈ I}. It is easy to see that every
distinct tidset T obtained as a finite intersection of other tidsets is closed, with an associated closed
and-clause, and its minimal generators. Table 1 lists the set of all closed (CA) and-clauses, the
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minimal generators (MA), and the corresponding tidsets.
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Figure 3: The Lattice of or-clauses (min sup = 1, max sup = 5)

4.2 Characterizing or-Clauses

Given dataset D, and thresholds min sup and max sup, the goal here is to mine or-clauses that
occur in at least min sup and in at most max sup transactions. Let E∨ be the set of all possible
or-clauses over the set of items I; T is the set of all tids as before. For an or-clause X ∈ E∨, let
L(X) = {l|l is a literal in X} denote the set of its literals. Given X,Y ∈ E∨, we define the relation
⊆ between or-clauses as follows: X⊆Y iff L(X) ⊆ L(Y ). Then ⊆ induces a partial order over E∨.
For example, A|C ⊆ A|B|C, since L(A|C) ⊆ L(A|B|C). Let X ∈ E∨ be an or-clause, and let l ∈ X
be some literal inX. Then t(X) =

⋃

l∈X t(l). For example, t(A|B) = t(A)∪t(B) = 134∪23 = 1234.
For convenience we write the or-clause l1|l2| · · · |lk as

∨

{l1l2 · · · lk}. Also for or-clauses, define
t(∅) = ∅.

Let (E∨,⊆) be the partial order over or-clauses, and let (2T ,⊆) be the partial order over the
tidsets under the usual subset (⊆) relationship.

Theorem 1 Given posets (E∨,⊆) and (2T ,⊆). Let X ∈ E∨ and Y ∈ 2T . Then the following two
mappings form a monotone Galois connection over E∨ and 2T :

φ = t : E∨ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i : 2T 7→ E∨, i(Y ) =

∨

{i ∈ I | t(i) ⊆ Y }
Proof: We have to show X ⊆ i(Y ) ⇐⇒ t(X) ⊆ Y .

8



a) First we prove X ⊆ i(Y )⇒ t(X) ⊆ Y . Observe that X ⊆ i(Y )⇒ t(X) ⊆ t(i(Y )). However, by
definition of i, ∀i ∈ i(Y ), we have t(i) ⊆ Y . This means that t(i(Y )) =

⋃

i∈i(Y ) t(i) ⊆ Y . Thus
t(X) ⊆ Y .

b) We now prove t(X) ⊆ Y ⇒ X ⊆ i(Y ). Assume that X 6⊆ i(Y ). This implies that ∃i ∈ X, such
that i 6∈ i(Y ). By definition of i, this means that t(i) 6⊆ Y . But, this is a contradiction since
i ∈ X ⇒ t(i) ⊆ Y . Thus X ⊆ i(Y ).

Since (t, i) forms a monotone Galois connection, it follows immediately that C = i◦t : E∨ → E∨

is a closure operator and K = t ◦ i : 2T → 2T is a kernel operator for or-clauses (see Sec. 2). For
example, in our example dataset from Fig. 1, C(A|C) = i(t(A|C)) = i(1234) = A|B|C|D. Thus
A|B|C|D is a closed or-clause. On the other hand K(234) = t(i(234)) = t(B) = 23. Thus 23
is an open tidset. It is also easy to see that the corresponding tidset for a closed or-clause is
always open. Fig. 3 shows all the closed or-clauses (enclosed in boxes) and their corresponding
open tidsets obtained from our example dataset. For example, the closed or-clause A|D has the
open tidset 134. We use the notation C(E∨) to denote the set of all closed or-clauses. The set of
all minimal generators of closed or-clauses in E∨ is given as M(E∨) =

⋃

X∈C(E∨)M(X). Recall
that a closed or-clause X is the unique maximal or-clause that describes a given set of objects
T = t(X). On the other hand, a minimal generator of X is the minimal or simplest or-clause that
still describes the same object set T . Fig. 3 shows the groups of all generators of closed or-clauses
in our example dataset (from Fig. 1). Within each group the unique maximal element is the closed
clause (enclosed in a rectangle). The minimal elements of each group are the minimal generators
(enclosed in dark circles). One can observe that the tidsets are the same for each member of a
group, but different across groups. All the minimal generators and closed or-clauses, and their
corresponding tidsets, for our example database (from Fig. 1), are summarized in Table 2.

Tidset Closed Min Generators

23 B B
45 E E
123 B|C C
134 A|D A,D
1234 A|B|C|D A|B,A|C,B|D,C|D
1345 A|D|E A|E,D|E
2345 B|E B|E
12345 A|B|C|D|E A|B|E,B|D|E,C|E

Table 2: Closed (CO) and Minimal (MO) or-Clauses

Both closed or-clauses (CO) and minimal or-clauses (MO), along with their tidsets, individ-
ually serve as a lossless representation of the set of all possible (frequent) or-clauses. We are
particularly interested in minimal or-clauses, since they represent the most general expressions
that characterize the corresponding tidsets, and as such may be easier to comprehend. We would
like to gain further insight into the structure of these minimal generators.

We give two separate characterizations of the minimal generators, one based on the closed
clauses and the other a direct one. They are both based on the notion of hitting sets. Let X =
{X1,X2, · · · ,Xk} be a set of subsets over some universe U . The set Z ⊆ U is called a hitting set
(or transversal) of X iff Z ∩Xi 6= ∅ for all i ∈ [1, k]. Let H(X) denote the set of all hitting sets
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of X. Z is called a minimal hitting set if there does not exist another hitting set Z ′, such that
Z ′ ⊂ Z. Let X be a closed or-clause, we define the lower-shadow of X as the set Xℓ = {Xi}i∈[1,k]
where for all i ∈ [1, k], Xi ⊂ X, Xi is closed, and there doesn’t exist any other closed or-clause
Y , such that Xi ⊂ Y ⊂ X. In other words, the lower shadow of X is the set of closed or-clauses
that are immediate subsets of X. We further define the differential lower-shadow of X as the set
Xδ = {X −Xi}i∈[1,k], where Xi ∈ Xℓ.

Using the duality between and- and or-clauses, and the characterization of minimal and-
clauses (Pfaltz & Jamison, 2001), it is not hard to show that the minimal generators of a closed
or-clause X are exactly the minimal hitting sets of the differential lower shadow of X. For example,
consider the closed clause X = A|B|C|D|E. From Fig. 3 we obtain as its lower shadow the set
of closed clauses Xℓ = {A|B|C|D, A|D|E, B|E}. Thus the differential lower shadow of X is
given as Xδ = {E,B|C,A|C|D}. The minimal hitting sets of Xδ are given as min⊆{H(X

δ)} =
{C|E,A|B|E,B|D|E}. We can see from Table 2, that the minimal hitting sets are identical to the
minimal generators of A|B|C|D|E.

The above characterization of minimal generators relies on knowing the closed sets and their
lower shadows. There is in fact a direct structural description of the closed and minimal or-
clauses. We define a union tidset to be a tidset obtained by finite unions over the set of tidsets
for single items, {t(i)|i ∈ I}. Let U be the set of all distinct union tidsets. For a union tidset
T ∈ U , we define the transaction set of T , as the set R(T ) = {t.X|t ∈ T, (t, t.X) ∈ D}, i.e.,
the set of transactions (i.e., itemsets) in D with tids t ∈ T . One can show that every distinct
tidset T obtained as a union of other tidsets produces minimal generators for the closed or-clause
associated with the open tidset T . For example, let T = 1345 = t(A) ∪ t(E) in our example
database in Fig. 1. Then R(T ) = {ACD,ABCD,ADE,E}. The hitting sets Z with t(Z) = T
and that are minimal are given as follows {A|E,D|E}. Note that C|E is a minimal hitting set of
R(T ), but t(C|E) = 12345 6= T , thus we reject it. We can see from Table 2 that these minimal
hitting sets form the minimal generators of the closed or-clause A|D|E with tidset T = 1345.

5 Characterizing Normal Forms

Our approach for DNF and CNF mining builds upon the pure or- and and-clauses. Here we give
structural characterizations for the minimal DNF and CNF expressions.

5.1 Characterizing DNF Expressions

Let Ednf denote the set of all boolean expressions in DNF, i.e., each X ∈ Ednf is an or of and-
clauses. For convenience we denote a DNF-expression X as X =

∨

Xi, where each Xi is an

and-clause. By definition E∧ ⊆ Ednf. Also E∨ ⊆ Ednf, since an or-clause is a DNF-expression over
single literal (and) clauses. We assume we have already computed the closed (C(E∧)) and minimal
(M(E∧)) and-clauses, and their corresponding tidsets.

Note that any DNF-expression X =
∨

Xi is equivalent to the DNF expression X ′ =
∨

C(Xi),
since any tidset that satisfies Xi must satisfy C(Xi) as well. Similarly X is also equivalent to the
DNF expression X ′′ =

∨

M(Xi), since t(Xi) = t(M(Xi)). We say that X =
∨

Xi is a min-DNF-
expression if for each and-clause Xi there does not exist another Xj (i 6= j) such that Xi ⊆ Xj .
Note that any DNF-expression can easily be made a min-DNF-expression by simply deleting the
offending clauses. For example in the DNF-expression (AD)|(ADE), we have AD ⊆ ADE; thus
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the expression is logically equivalent to its min-DNF form (AD). For any DNF-expression X, we

use the notation mindnf(X) to denote its min-DNF form. Given X,Y ∈ Ednf, with X =
∨

Xi

and Y =
∨

Yi, we say that X is more general than Y , denoted X⊆Y , if there exists an injective
mapping f that maps each Xi ∈ X to f(Xi) = Yj ∈ Y , such that Xi ⊆ Yj.

Tidset Closed (maximal min-DNF) Min Generators

34 (ABCD)|(ADE) (AB)|(AE), (AB)|(DE), (BD)|(AE), (BD)|(DE)
123 (ACD)|(BC) C
134 (ACD)|(ADE) A,D
234 (ADE)|(BC) B|(AE), B|(DE)
345 (ABCD)|E (AB)|E, (BD)|E
1234 (ACD)|(ADE)|(BC) A|B,A|C,B|D,C|D
1345 (ACD)|E A|E,D|E
2345 (BC)|E B|E
12345 (ACD)|(BC)|E A|B|E,B|D|E,C|E

Table 3: Additional/changed Closed (CD) and Minimal Generators (MD) for DNF

Closed DNF: We now define a closure operator for DNF expressions. First, we consider DNF
expressions consisting only of closed and-clauses. Then if we treat each Xi ∈ C(E∧) as a composite
item, we can define two monotone mappings that form a monotone Galois connection as follows:
Let X =

∨

Xi be a DNF expression, such that Xi ∈ C(E∧), and let Y ∈ 2T . Define t(X) = {t ∈
T | t satisfies X}, and i(Y ) =

∨

{Xi | Xi ∈ C(E∧) and t(Xi) ⊆ Y }. This implies that C = i ◦ t is a
closure operator. For example, consider each closed and-clause in Table 1 as an “item”. Consider
X = AD|E. C(X) = i(t(AD|E)) = i(1345) = ABCD|ADE|ACD|E|AD, which is a closed DNF
expression. However it is logically redundant. What we want is the maximal min-DNF expression
equivalent to C(X), which is ACD|E. That is, among all the min-DNF expressions (i.e., with no
clause a subset of another) with tidset equal to t(X), the maximum one is defined as the closure.

Minimal DNF: Let T ∈ 2T be a union tidset obtained as the finite union of tidsets of closed
and-clauses. As before the transaction set of T , denoted R(T ), is the set of transactions in D

with tid t ∈ T . We can characterize the minimal DNF expressions as the set min⊆{Z ∈ E
dnf |

Z ∈ H(R(T )) and ∄T ′ ⊃ T such that Z ∈ H(R(T ′))}, which is the set of all minimal hitting
sets of R(T ) having the tidset T . For example, consider the union tidset T = 34 (which is the
union of t(ABCD) and t(ADE). The minimal DNF hitting sets that hit only the tidset 34 are
AB|AE,AB|DE,BD|AE,BD|DE. In fact minimal hitting sets can be obtained directly from
minimal and-clauses.

Lemma 2 Let T be a union tidset, and let X be the closed DNF-expression with t(X) = T . Then
M(X) = min⊆{Z =

∨

Zi|Zi ∈ M(E∧) and t(Z) = T}.
Proof: Let G =

∨

iGi ∈ M(X). Then t(G) = T . Further, each Gi ∈ M(E∧), since otherwise G
would not be minimal. Finally minimality of G implies it is a minimal DNF expression satisfying
the right hand side. For the opposite direction, let Z =

∨

Zi ∈ M(E∧), be a minimal expression
with t(Z) = T . But this means Z is a minimal generator of X.
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For example, for T = 34, we see in Table 1 that {AB,BD} are the minimal generators with tidset
3, and {AE,DE} have tidset 4. Taking the minimal or expressions obtained from these two sets,
we get all the minimal generators having tidset T = 34, namely AB|AE,AB|DE,BD|AE,BD|DE.
Table 3 shows the closed and minimal DNF expressions, in addition to those shown in Tables 2
and 1. Some entries are repeated since the closed expressions in DNF have changed. Also the new
union tidsets are marked in bold. These new tidsets represent expressions that cannot be generated
using pure clauses; they require the full power of a DNF expression to characterize them.

5.2 Characterizing CNF Expressions

Let Ecnf denote the set of all boolean expressions in CNF, i.e., each X ∈ Ecnf is an and of or-
clauses. By definition E∨ ⊆ Ecnf and E∧ ⊆ Ecnf. For convenience we denote a CNF-expression X
as X =

∧

Xi, where each Xi is an or-clause. We say that X is a min-CNF-expression if for each
or-clause Xi there does not exist another Xj (i 6= j) such that Xi⊆Xj . For a CNF expression X,

we use the notation mincnf(X) to denote its min-CNF form. Let Ecnf denote the set of all min-

CNF-expressions. Given X,Y ∈ Ecnf, with X =
∧

Xi and Y =
∧

Yi, we say that X is more general
than Y , denoted X⊆Y , if there exists an injective f that maps each Xi ∈ X to f(Xi) = Yj ∈ Y ,
such that Xi⊆Yj. Analogously to DNF expressions, we can define the closed and minimal CNF
expressions directly from the set of all closed (C(E∨)) and minimal (M(E∨)) or-clauses, and their
corresponding tidsets.

Let us treat each Xi ∈ C(E∨) as a composite item; we can then define two anti-monotone
mappings that form an anti-monotone Galois connection as follows: Let X =

∧

Xi be a CNF
expression, such that Xi ∈ C(E∨), and let Y ∈ 2T . Define t(X) = {t ∈ T | t satisfies X}, and
i(Y ) =

∧

{Xi | Xi ∈ C(E∨) and Y ⊆ t(X)}. This implies that C = i◦t is a closure operator. For ex-
ample, consider each closed or-clause in Table 2 as an “item”. ConsiderX = (A|D)(B|C). C(X) =
i(t((A|D)(B|C))) = i(13) = (B|C)(A|D)(A|B|C|D)(A|D|E)(A|B|C|D|E), which is closed. How-
ever it is logically redundant. What we want is the maximal min-CNF expression equivalent to
C(X), which is (A|D|E)(B|C). That is among all the min-CNF expressions with tidset equal to
t(X) the maximum one is defined as the closure.

Lemma 3 Let T ∈ 2T be an intersection tidset obtained as the finite intersection of tidsets of
closed or-clauses. Let X be the closed CNF-expression with t(X) = T . ThenM(X) = min⊆{Z =
∧

Zi|Zi ∈ M(E∨) and t(Z) = T}.
Proof: Let G =

∧

iGi ∈ M(X). Then t(G) = T . Further, each Gi ∈ M(E∨), since otherwise G
would not be minimal. Finally minimality of G implies it is a minimal CNF expression satisfying
the right hand side. In the other direction, let Z =

∧

Zi ∈ M(E∨), be a minimal expression with
t(Z) = T . But this means Z is a minimal generator of X.

For example, let T = 13. We can obtain 13 as the intersection of several minimal or-clauses’
tidsets, e.g., the minimal or-clauses C and {A|E,D|E}. However the minimal among all of these
are C and {A,D}, giving the two minimal CNF expressions: AC and CD. Table 4 shows the closed
CNF expressions and their minimal generators in addition to those already shown in Tables 2 and
1, or those that have changed. The bold tidsets represent expressions that cannot be generated
using pure clauses; they require the full power of a CNF expression to characterize them.
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Tidset Closed (maximal min-CNF) Min Generators

3 B(A|D) AB,BD
13 (B|C)(A|D|E) AC,CD
34 (A|D)(B|E) A(B|E),D(B|E)
234 (A|B|C|D)(B|E) (A|B)(B|E), (A|C)(B|E), (B|D)(B|E), (C|D)(B|E)
345 (A|D|E)(B|E) (A|E)(B|E), (D|E)(B|E)

Table 4: Additional/changed Closed (CC) and Minimal Generators (MC) for CNF

6 The BLOSOM Framework

The BLOSOM framework for mining arbitrary boolean expressions supports several different algo-
rithms, as listed in Table 5. Our main focus in on efficiently mining the minimal boolean expressions
due to their inherent simplicity. We do propose algorithms for mining closed clauses, which can
easily be extended to mine closed normal forms.

Algorithm Mining Task

BLOSOM-MO Minimal or-clauses
BLOSOM-MA Minimal and-clauses
BLOSOM-MD Minimal DNF expressions
BLOSOM-MC Minimal CNF expressions
BLOSOM-CO Closed or-clauses
BLOSOM-CA Closed and-clauses
BLOSOM-CD Closed DNF expressions
BLOSOM-CC Closed CNF expressions

Table 5: Algorithms in the BLOSOM Framework

BLOSOM assumes that the input dataset is D, and it then transforms it to work with the
transposed dataset DT . Starting with the single items (literals) and their tidsets, BLOSOM

performs a depth-first search (DFS) extending an existing expression by one more “item”. BLO-

SOM employs a number of effective pruning techniques for searching over the space of boolean
expressions, yielding orders of magnitude in speedup. These include: dynamic sibling reordering,
parent-child pruning, sibling merging, threshold pruning, and fast subsumption checking. Further
BLOSOM utilizes a novel extraset data structure for fast frequency computations, and to identify
the corresponding transaction set for a given arbitrary boolean expression.

6.1 BLOSOM-MO: Minimal or-Clauses

BLOSOM-MO mines all the minimal or-generators, and is broadly based on CHARM (Zaki
& Hsiao, 2005). However, CHARM mines only the closed and-clauses, whereas BLOSOM-MO

mines the minimal or-clauses. BLOSOM-MO takes as input the set of parameter values min sup,
max sup, max item and a dataset D (we implicitly convert it to DT ). The max item constraint is
used to limit the maximum size of any boolean expression, if desired. BLOSOM-MO conceptually
utilizes a DFS tree to search over the or-clauses. Each or-clause is stored as a set of items (the
or is implicitly assumed). Thus each node of the search tree is a pair of (T × I), where I is an
item set denoting an or-clause and T is a tidset (as shown in Fig. 5). In the description below, we
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use MO to denote a minimal generator of or-clauses. Before describing the pseudo-code we briefly
describe each of the optimizations used in the BLOSOM-MO.

6.1.1 Pruning and Optimization Techniques

Threshold Pruning: BLOSOM uses the three thresholds to prune the generators, based on
min sup,max sup and max item. Furthermore, if the item set I of the current node equals the set
of all items I, then we stop its expansion immediately, since any of its descendants will be pruned.
Dynamic Sibling Reordering: Before expanding a group of sibling nodes in the search tree,
BLOSOM-MO dynamically reorders them by their tidset size dynamically. Since smaller tidsets
are more likely to be contained in longer previous tidsets, this can prune out many branches.
Relationship Pruning: BLOSOM-MO makes use of two kinds of relationship pruning: parent-
child and sibling based. During the DFS expansion, if the tidset of a node is the same as any of
its parents’, the node and all of its descendants are pruned (based on the definition of minimal
generators). If some sibling nodes of the same parent node have the same tidset, they are merged
together by unioning their itemsets into a “composite node”. A prefix item set data structure is
utilized to deal with sibling merging. All sibling nodes of the same parent share a common prefix,
containing the item sets on the path from the root to the current node. The prefix also saves
memory, since all the siblings do not need to keep their separate prefix copies.
Fast Subsumption Checking: BLOSOM-MO maintains a hash table for storing the current
MO; the hash key of the MO is the tidsum (summation of tids in T ) of its transaction set T .
An element of the hash table is a pair (T ×MS), where T is a tidset and MS is the set of T ’s
MOs. Subsumption checking on MOs guarantees that the current generators are minimal, i.e. for
some transaction set T , any two of its generators do not contain each other. Before adding a new
generator G we remove any of its supersets in MS. Due to the nature of the enumeration process,
it is not necessary to check if G is minimal, i.e., G cannot be a superset of any MO of entry T , since
otherwise G would have been pruned previously by one of its ancestor nodes using the parent-child
pruning. So we only need to do the subsumption checking in one direction.
Extraset Technique: BLOSOM-MO utilizes a novel extraset technique to save set operation
time and memory usage for tidsets. The DFS expansion involves a lot of tidset unions, and each
node has to keep an intermediate set, which is a superset of the parent node’s tidset. So for each
node, inspired by the diffset (Zaki & Hsiao, 2005) technique, we simply retain the extra-part of its
parent’s tidset in a data structure we call extraset, which can save a lot of memory while storing
the intermediate tidsets. For example, in Fig. 1, we have t(A) = 134, and t(A|B) = 1234. The
extraset of A|B is given as t(A|B) − t(A) = 2. In effect an extraset keeps track of the additional
items added while performing unions of tidsets; as such it is the opposite of a diffset (Zaki & Hsiao,
2005), which keeps tracks of the items that drop out when performing intersections of tidsets, while
mining and-clauses. In addition, the set union operations on the original tidset are changed to the
operations on the extraset, which also saves a lot of time, due to the small size of extrasets.
No-Transaction-Set Optimization: Sometimes one needs only the frequency of a MO, instead
of the entire tidset. If tidsets are not required, we can avoid keeping large tidsets for each generator
and the corresponding costly comparisons. The additional overhead is to separate those generators
that share the same hash entry (if they share the same tidsum, but no the same tidset); however,
since most entries have one or only a few generators for most datasets, this overhead is minimal.
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Input : min sup, max sup, max item and DT

Output : hash tableM containing all MO of DT

Initialization: NL = {t(i)× {i}|i ∈ I}, call BLOSOM-MO(∅, NL, 0, 0)

BLOSOM-MO(P, NL, sup, sum):
sort NL = {ni.T × ni} in decreasing order of |ni.T |1

while ∃ ni and nj ∈ NL such that ni.T = nj.T do2

ni.I ← ni.I ∪ nj.I /* sibling merging */3

NL← NL− nj4

foreach ni ∈ NL do5

P ′ ← P + ni.I6

sup′ = sup+ |ni.T |7

sum′ = sum+ summation(ni.T )8

If sup′ > max sup then skip to next ni /* goto line 6 */9

if sup′ ≥ min sup then10

foreach combination I ′ of P ′ do11

delete all supersets of I ′ inM[sup′×sum′]12

M[sup′×sum′]←M[sup′×sum′] + I ′13

If |P ′| ≥ max item then skip to next ni /* goto line 6 */14

NL′ ← ∅15

foreach nj ∈ NL ranking after ni do16

n′.T ← nj.T − ni.T /* get extraset */17

if |n′.T | 6= ∅ then18

n′.I ← nj.I19

NL′ ← NL′ + n′20

if NL′ 6= ∅ then21

BLOSOM-MO( P ′, NL′, sup′, sum′ )22

Figure 4: BLOSOM-MO Algorithm

6.1.2 Algorithmic Description

We now describe the BLOSOM-MO algorithm in detail, based on the pseudo-code in Fig. 4. It is
a recursive algorithm that, at each call accepts a current prefix queue P containing the I sets on
the path from the root to the current node, a node list NL containing a group of sibling nodes that
share the same parent, and two parameters of the current tidset T : support (|T |) and summation
(
∑

t∈T t). We use these instead of the original tidset T to save memory and corresponding copying
cost. The initial call is made with an empty P, the NL containing all the single items, and the
support and summation are set to 0. Line 1 sorts the current sibling nodes in NL in decreasing
order of support, which speeds up the convergence of the algorithm (dynamic sibling reordering).
Lines 2-4 merge the sibling nodes with the same tidset T by unioning their item sets together
(sibling merging). Lines 7-20 form the main loop to process each of the sibling nodes one by
one. Line 6 updates the current prefix queue for further recursive calls. Lines 7-8 generate the
transaction set support sup′ and summation sum′ by adding tids from the extraset ni.T . Line 9
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checks the max sup threshold. Lines 10-13 try to add the current sibling node satisfying min sup
and max sup to the hash table M. If the node satisfies max sup (line 9) and min sup (line 10),
then the algorithm will try to add every possible queue P ′ item combination to the current MO
hash table (lines 11-13). Each combination is generated by picking one and only one item from each
P ∈ P ′. At the same time, we also need to do subsumption checking and to delete any supersets
of the new MO I ′ to be added (line 12). The new MO I ′ must be minimal, i.e., it should not be
subsumed by any current MO in the hash table (fast subsumption checking). Line 14 checks the
max item threshold. Lines 15-22 produce node ni’s valid children nodes NL′ generated with other
sibling nodes ranked after ni (in sorted order). BLOSOM-MO tries every node pair (line 16) and
generates children nodes (line 17). It only saves the extraset (ni.T ∪ nj.T − ni.T = nj .T − ni.T )
to save memory and set operation time, which proves very efficient for dense datasets. If a child
node is not subsumed by its parents (line 18), then it is added to the valid children node list in
lines 19-20 (parent-child relationship pruning). Lines 21-22 make a recursive call with node ni’s
valid children. After the steps showed in Fig. 4, BLOSOM-MO needs to do some further work
to separate those generators that have the same support and tidsum but actually have different
tidsets. Since most entries of hash tableM have only one or a few generators, the separating stage
is not too costly.
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Figure 5: or-clause Mining Example: DFS Search Tree

An Example: Consider how BLOSOM-MO works on our example dataset DT (from Fig. 1).
Fig. 5 shows the DFS search tree. Initially the prefix queue P is empty, and node list NL contains
five single items. After sibling merging and reordering, they become AD×134, C×123, B×23 and
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E×45 as shown in Fig. 5. From P ′ = {A,D}, we get two item combinations: A andD. We thus add
A and D to the MOs hash tableM with the entry T ′ = ∅ ∪ 134 = 134, sup = 3, and tidsum = 1+
3+4 = 8, as shown in Table 6. In the table the subscript numbers represent the order in which MOs
are added to the table. Then we expand node {A,D}×134 by combining with node C×123, B×23
and E×45, and save the extraset of the tidset union for each combination pair as follows. Since
X∪Y−X=Y−X, the extrasets for the three new candidates (children of the node {A,D} × 134)
are 123−134=2, 23−134=2, and 45−134=5, respectively. After reordering and merging, NL′ =
{{B,C}×2, E×5}. Along with P={{A,D}} and T ′=134, BLOSOM is called recursively. Next
step from P ′={{A,D}, {B,C}}, we get four combinations: {A,B}, {A,C}, {B,D} and {C,D},
and we add them to the hash table with entry: T ′=134 ∪ 2=1234, sup = 4, tidsum = 10. Readers
can continue this process until all the MOs are generated as shown in Table 6 in subscript order.
Note that node B×∅ under the path Root→C→B is pruned using parent-child relationship because
of its empty extraset (i.e. generator BC is not minimal and generates the same tidset as one of
its parents). In addition, when generator CE is added to entry T = 12345 ofM, previously added
MOs ACE and CDE will be deleted (as marked by underlines) since they are supersets of generator
CE. Note that in Table 6, the tidsets T are actually not kept during the mining process, if only
support is desired. In this case we have to verify that the generators in each cell (sup×sum) of
the hash table do belong to the same entry. In Table 6, this check must be done for cells (4×10),
(5×15) and (4×13) to assure they belong to the same entry. For our example, all entries are correct.
Otherwise, we would need to separate them into different entries.

T sup sum Minimal or Generators

134 3 8 {A}1, {D}1
1234 4 10 {AB}2, {AC}2, {BD}2, {CD}2
12345 5 15 {ABE}3, {ACE}3, {BDE}3, {CDE}3, {CE}6
1345 4 13 {AE}4, {DE}4
123 3 6 {C}5
23 2 5 {B}7
2345 4 14 {BE}8
45 2 9 {E}9

Table 6: Hash TableM for MOs

6.2 BLOSOM-CO: Closed or-Clauses

Whereas BLOSOM-MO is designed for mining minimal generators, BLOSOM-CO is specific to
mining closed expressions. The main difference is that instead of finding the minimal elements, we
have to find the maximal elements corresponding to the given tidsets. Thus the logic of subsump-
tion checking, as well as relationship pruning (both parent-child and sibling), has to be reversed.
There are two additional pruning optimizations utilized in BLOSOM-CO, which are: a) Sibling
Containment Pruning: After sibling merging, another relationship among siblings can be utilized
for CO generation, i.e., containment relationship. When expanding a node N , any sibling node
ranking after N whose tidset is a subset of that of N , can be pruned in the next level of N ’s
expansion tree, and its item set is merged with the item set of the current node. b) Hash Pruning:
Assume M is the hash table of COs. If we find the item set of the current tree node (T × I) is
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subsumed by the entry of M, i.e. I ⊂ M(T ), then all the descendant nodes of the current node
will be pruned, since their item sets will be subsumed by that of the descendant nodes of T×M(T ).

6.3 Mining and-Clauses

To mine the minimal and closed and-clauses, we build upon BLOSOM-MO and BLOSOM-CO,
respectively. Note that by DeMorgan’s law, to mine the minimal and-clauses, we can mine the
minimal or-clauses over the complemented tidsets. For example in our example dataset in Fig. 1,
with T = 12345, we have t(AB) = t(A)∩t(B) = 134∩23 = 3. We can obtain the same results if we

mine for A|B in the complemented database. For example t(A)|t(B) = t(A) ∪ t(B) = 25 ∪ 145 =
1245 = 3. Thus to mine MA, we mine MO over complemented tidsets. Likewise, to mine CA, we
mine CO over the complemented tidsets. Note that if D is sparse and large it is better to mine it
directly instead of the complement database D, which will be large and dense. In such cases it is
easy to modify BLOSOM-MO to perform intersections of tidsets instead of unions.

6.4 Minimal DNF and CNF Expressions

Input : min sup ≥ min sup′, max sup, max item and dataset DT

Output : hash tableMMD containing all MD of DT

BLOSOM-MD(min sup, minsup′, max sup, max item, DT ):
MMA ← BLOSOM-MA(min sup′, max sup, max item, DT )1

foreach G ∈MMA do2

re-generate t(G)3

DT
new ← CreateNewDB({G× t(G)|G ∈ MMA})4

M′
MD ← BLOSOM-MO(min sup, max sup, max item, DT

new)5

foreach G′ ∈ M′
MD do6

G← min-DNF(G′)7

MMD ←MMD +G8

Figure 6: The BLOSOM-MD Algorithm

Following the structural characterization of minimal DNF expressions outlined in Sec. 5.1,
BLOSOM-MD follows a two-phase approach. It first extracts all the minimal and-clauses and
then finds the minimal DNF expressions using those. Fig. 6 shows the pseudo-code of BLOSOM-

MD. We use BLOSOM-MA to get all minimal and-clause generators (MMA) using the original
dataset (line 1). Then, we regenerate the tidsets for each entry in MMA (lines 2-3). Using the
minimal and-clause generators along with their tidsets, we create a new dataset DT

new (line 4). The
CreateNewDB method assigns a new label to each generator G ∈MMA and uses the tidsets t(G)
as the new dataset. Note that, as an optimization, only one label is used per distinct tidset, even
though there may be multiple corresponding minimal generators. Next, we call BLOSOM-MO to
get all or-clause generators over the new labels using the new dataset DT

new (line 5), which in fact
represent the initial set of minimal DNF generators. Note that in this step we implicitly replace
each label by the original set of minimal generators. Finally, in lines 6-8, we delete produce the
final set of min-DNF generatorsMMD.
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Figure 7: DNF Mining Example: DNF expressions are added to M′
MD in DFS manner. Shaded

boxes represent expressions that are not minimal, and are thus pruned. The extrasets are shown
under each expression.

Another point that needs further elaboration is the effect min sup when mining DNF expres-
sions. If we use the min sup constraint while mining and-clauses, then it is possible that we will
miss some frequent DNF expressions, which have support more than min sup, after considering
the tidset unions. For example, with min sup = 3 in our running example, only the minimal and-
generators C × 123 and {A,D} × 134 remain frequent from Table 1. It is clear that in this case,
we will fail to generate minimal DNF generators like (AB|E,BD|E)× 345, (B|AE,B|DE)× 234,
and so on. To guarantee completeness, one has to set min sup = 1 to mine all possible DNF
expressions. Nevertheless, from a practical view-point this may generate to many and-clauses to
mine the DNF expressions. One may adopt a compromise solution, whereby we impose a new
lower minimum support constraint min sup′ < min sup for the and-clauses, and use the min sup
constraint for the DNF expressions. This is not unreasonable, since it imposes the constraint that
any individual clause in the DNF expression is above min sup′. Note that max sup constraint does
not impact and-clause mining (in line 1), and really applies only for the DNF expression mining
(in line 5).

An Example: Fig. 7 shows the steps involved in mining DNF expressions, using the example
dataset in Fig. 1. The figure shows as starting point the dataset DT

new obtained after applying
BLOSOM-MA on D and regenerating the tidsets (i.e., after steps 1-4 in Fig. 6). Mining the
and-clauses yields the seven unique tidsets, and the corresponding minimal generators shown in
Table 1. After sorting the tidsets in decreasing order of cardinality, these and-clauses form the
initial level in Fig. 7 (note that for simplicity, original minimal generator groups are shown, as
opposed to using new labels to represent them). Applying BLOSOM-MO on the new dataset,
yields the full DFS tree, as shown in Figure 7. As an example, consider the extensions under node
A,D. New candidates are created by performing tidset unions will all other siblings. However, if
for a node X, its tidset is a subset of t(A,D), then X is discarded, since it will yield a non-minimal
generator. Thus the only valid children under A,D are C (with extraset 123 − 134 = 2), E (with
extraset 45− 134 = 4), and B (with extraset 23− 134 = 2). Due to the sibling merging technique
(see Sec. 6.1.1), C and B are collapsed into a single node B,C (with extraset 2). Note that the
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complete DNF expression at each node can be obtained by adding the or operator to the sets on
the path from the root to that node. Likewise the complete tidset can be obtained by taking the
union of the extrasets on the path from the root to that node. For example, the child B,C under
A,D, represents the composite DNF expression {A,D}|{B,C}, which when expanded, yields the
four minimal DNF generators A|B, A|C, B|D, C|D characterizing the tidset 1234. Note that as
each new composite expression is produced it is added the hash-tableM′

MD, and fast-subsumption
checking is used to prune non-minimal branches. For example, consider the child node AE,DE
under C, representing the generators C|{AE,DE} with tidset 1234. When we try to add this to
the hash-table, we find that there is already an entry in the cell with tidset 1234, inserted earlier
(in DFS order) for the generators {A,D}|{B,C}. Since C|{A,D} ⊆ C|{AE,DE}, the new node
does not represent a minimal generator and is pruned. Note that even after such pruning we need
to finally generate min-DNF expressions, once we expand the composite generators. For example,
for the tidset 12345, we have the following entries in the hash table: {A,D}|{B,C}|E, and C|E.
When we expand the first composite entry, we obtain the generators A|B|E, A|C|E, D|B|E, D|C|E.
However, A|C|E and D|C|E are not minimal, due to C|E. Thus, the final min-DNF generators for
12345 are A|B|E, and B|D|E, and C|E.

6.5 Mining Closed DNF, and CNF Expressions

For mining the minimal CNF expressions, the roles of BLOSOM-MA and BLOSOM-MO are
reversed. BLOSOM-MC starts by mining the minimal or-clauses and then computes the minimal
and-clauses by treating each of them as a new item. Finally any subsumed generators are purged
to obtain the min-CNF forms.

Finally, consider the approach for mining the closed DNF and CNF expressions. For min-
ing closed DNF expressions, we follow the same pseudo-code as for BLOSOM-MD, replacing
BLOSOM-MA and BLOSOM-MO with BLOSOM-CA and BLOSOM-CO, respectively. That
is, we assume we know the closed and-clauses, and then treating each of these as a new items,
we mine the closed or-clauses. Finally, convert each such expression in the maximal min-DNF
form. Note that the roles of min sup and max sup are also reversed in CNF mining. That is while
mining or-clauses, we use max sup′ ≥ max sup to extract the base or-generators, and use the
original max sup to mine the CNF generators. For closed CNF expressions, reverse the roles of
BLOSOM-CO and BLOSOM-CA, and output the maximal min-CNF expressions.

7 Experiments

All experiments were done on a Ubuntu virtual machine (over WindowsXP & VMware) with 448MB
memory, and a 1.4GHz Pentium-M processor. We used both synthetic and real datasets to evaluate
BLOSOM. The synthetic datasets are generated with three parameters: the number of items |I|,
the number of transactions |T | and dataset density, δ. The size of the dataset is |I|×|T |. For each
item i, the average size of its transaction set t(i), is given as δ×|T |. The average size is distributed
uniformly in the interval [0, |T |], and the tids are distributed in t(i) with equal probability.

7.1 Performance Study

Effect of Optimizations: We first study the effect of various optimizations proposed in Sec. 6.1.1
on the performance of BLOSOM-MO, as shown in Fig. 8. The x-axis shows the number of items
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Figure 8: The effects of the speedup optimizations

|I| in the synthetic datasets. The number of transactions were generated as |T | = 2|I|. Each
curve in the figure shows the running time after applying the optimizations specified in succession.
Thus the final curve for no-transaction-set includes all previous optimizations. In the legends,
original stands for the unoptimized version, hash means using a hash table for subsumption,
parent-son means doing parent-child pruning, dynamic-reordering is the reordering of nodes,
no-superset stands for one directional subsumption checking, sibling-merging is self explana-
tory, one-parent-son means we check only the left parent in parent-child relationship pruning
due to the application of dynamic-sorting, extrasets is obvious, and finally no-transaction-set

means we avoid storing the entire tidset. We can see that the cumulative effect of the optimizations
is substantial; BLOSOM-MO can process a dataset around 10 times ((38 × 76)/(12 × 24) = 10)
larger than the base algorithm can in the same running time. Thus all the optimizations together
deliver a speedup of over an order of magnitude compared to the base version.

Parameters MO/MA MC/MD

|I| 50 15

|T | 300 30

δ 0.5 0.5

min sup 1 1

max sup |T | |T |
max item 4 3

Table 7: Common experimental parameters
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Figure 9: Synthetic Data: Effect of number of items, number of transactions, and density
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Effect of Parameters: The base-line parameters for the synthetic datasets are shown in Table 7.
Note that we set min sup = 1 and max sup = |T |, which means the entire set of all possible
expressions will be mined. In the experiments we vary one parameter at a time, and study the
effect. Fig. 9 shows how the the mining time varies with |I| (top row), with |T | (middle row),
and with density δ (bottom row). The figure shows the effect for minimal clauses (MO/MA;
left col.), minimal CNF/CNF expressions (MC/MD; middle col.), and closed clauses (CO/CA;
right col.). From these graphs we observe several trends. Notice that as we increase number of
items/transactions and density, the disjunction times (for CO, MO, MD) tend to be higher than the
conjunction times (CA, MA, MC). This is mainly because “unions” of tidsets tend to produce more
distinct tidsets than “intersections”, resulting in a larger search space. The trend for increasing
|I| and |T | are as expected; the more the number of items or transactions, the longer the running
time. However, with increasing density, the running time reaches the peak and then comes down.
This is mainly because when density is closer to 50% we tend to mine patterns in the middle of the
lattice, resulting in larger search spaces.
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Figure 10: BLOSOM-MA vs. CHARM-L

Comparison with CHARM-L: We compared BLOSOM-MA with CHARM-L (Zaki & Ra-
makrishnan, 2005), which can also mine the minimal generators for and-clauses (i.e., itemsets).
We used the chess dataset, from the UCI machine learning repository, which has 3196 rows and 75
items. From Fig. 10 we can see that BLOSOM-MA can be about ten times faster than CHARM-
L, and the gap is increasing with decreasing support. This is mainly because CHARM-L first
finds all closed expressions and then uses their differential lower shadows to compute the minimal
and-clauses. In contrast, BLOSOM-MA directly mines the minimal generators, and uses effective
optimizations to speed up the search. We do not compare with the approach in (Bastide et al.,
2000), since it is Apriori-based and not likely to be as effective as BLOSOM-MA. We know of
no other algorithms to mine minimal OR-clauses, and closed/minimal CNF and DNF expressions.
However, note that is should be possible to modify several of the newly proposed closed itemset
mining algorithms in the FIMI (Goethals & Zaki, 2003) repository to give effective algorithms for
minimal clauses. Our work is the first step in this direction.

Scalability: Finally, to test the scalability of our framework with respect to the number of trans-
actions, we show used the IBM synthetic dataset generator (Agrawal et al., 1996), to generate
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Figure 11: Scalability of BLOSOM.

datasets with up to 5 million transactions, and with 50 base items, and all other default param-
eters. Fig. 11 shows the scalability of the different instances of the BLOSOM framework. In
essence, the methods all scale linearly in the number of transactions.

7.2 Bioinformatics Applications

We applied our BLOSOM framework on the problem of gene exression patterns and regulatory
network discovery.

Gene Expression: We applied BLOSOM to mine frequent boolean expressions as well as re-
descriptions between descriptors on a gene expression dataset from (Ramakrishnan et al., 2004).
This dataset involves 74 genes participating in 824 descriptors, derived from Gene Ontology (GO;
www.geneontology.org) categories, gene expression bucketing, and k-means clustering. We specif-
ically focus on finding minimal generators to help redescribe the descriptors corresponding to k-
means clusters. There are 70 clusters, and we are interested if any of these can be redescribed by the
other terms, at a particular Jaccard level (i.e., the Jaccard coefficient of the corresponding tidsets
should be above a certain level). One potential application is to obtain more expressive functional
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Figure 12: Gene Expression: Running Time

enrichments of these clusters in terms of GO categories. Fig. 12 shows the running time with re-
spect to min sup. With the minimum support set to 1, we were able to extract redescriptions for
9 of the 70 clusters, involving 221 minimal or-generators at Jaccard level 0.75. For instance, a set
of six genes participating in a k-means cluster, represented by descriptor d512 was approximately
redescribed in DNF form as: d512 ⇔ d507 or d685 or d700, with Jaccard’s coefficient 0.83 (i.e.,
t(d512) ∩ t(d507|d685|d700)
t(d512) ∪ t(d507|d685|d700) =

5
6 = 0.83), where d507 denotes genes in the GO biological process category

‘response to heat,’ d685 corresponds to genes in GO cellular location category ‘extracellular,’ and
d700 corresponds to genes in GO molecular function category ‘exopeptidase.’ This redescription
shows that the concerted activity of a set of genes in a heat shock experiment derives from their
role as either heat shock factors, extracellular signaling, or the (downstream) catalytic removal
of an amino acid from a polypeptide chain. This showcases the power of BLOSOM to uncover
meaningful biological descriptions of gene clusters.

Gene Regulatory Networks: Another application of BLOSOM is in finding complex gene
regulatory networks, which can be represented in a simplified form, as boolean networks (Akutsu
et al., 1998). Consider the network involving 16 genes, taken from (Akutsu et al., 1998), shown in
Fig. 13.

Here ⊕ and ⊖ denote gene activation and deactivation, respv. For example, genes B, E, H,
J , and M are expressed if their parents are not expressed. On the other hand G, L, and D
express if all of their parents express. For example, D depends on C, F , X1 and X2. Note
that F expresses if A does, but not L. Finally A, C, I, K, N , X1 and X2 do not depend on
anyone, and can thus be considered as input variables for the boolean network. We generated
the truth table corresponding to the 7 input genes but BLOSOM was provided the values for
all genes, without explicit instruction about which are inputs and which are outputs. This yields
a dataset with 128 rows and 16 items (genes). We then ran BLOSOM to discover the boolean
expression corresponding to this gene network. We mined using min sup = 1 and extracted only
those patterns with support 100%, since we want to find expressions that are true for the entire set
of assignments. BLOSOM output 65 expressions in 0.36s, which hold true for the entire dataset.
After simplification these can be reduced to the equivalent expression, as shown in Fig. 14. We
verified that indeed this expression is true for all the rows in the dataset! It also allows us to
reconstruct the boolean gene network shown in Fig. 13. For example, the first component of the
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Figure 13: Gene Network

expression in the first row D | (ABCEFGHJKLMX1X2) can be converted into the implication
D ⇒ (ABCEFGHJKLMX1X2), which means that D depends on the variables on the right
hand side (RHS). If, at this point, we supply any partial knowledge about the input variables or of
the maximum fan-out of the network, we could project the RHS only on those variables to obtain
(ACKX1X2), which happens to be precisely the relationship given in Fig. 13. The second row
tells us that L depends on the activation of C and inactivation of K, i.e., K, if we restrict ourselves
to the input variables. Also C and K give the values for the remaining variables in the second row.
Note that other dependencies in the boolean network are also included in the mined expression. For
example, we find that B and A always have opposite values, and so do B and E, and K and M . G
and B always have the same values, and so on. Thus this example shows the power of BLOSOM

in mining gene regulatory networks.

(

D | (A B C E F G H J K L M X1 X2)
)

and
(

L | (C F H J K M)
)

and
(

(A B E G) | C | D | L | X1 | X2
)

and
(

(A B E G) | (C L) | (F H J)
)

and
(

(F H J) | (A B C E G) | (A B E G K M)
)

Figure 14: Boolean Network Expression

8 Conclusions

In this paper we present the first algorithm, BLOSOM, to simultaneously mine closed boolean
expressions over attribute sets and their minimal generators. Our four-category division of the
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space of boolean expressions yields a compositional approach to the mining of arbitrary expressions,
along with their minimal generators. The pruning operators employed here have resulted in orders
of magnitude speedup, producing highly efficient implementations.

There are still many interesting issues to consider. The first one involves the effective handling
of negative literals without being overwhelmed by dataset density. The second issue is to push
tautological considerations deeper into the mining algorithm by designing new pruning operators.
Finally, given a general propositional reasoning framework, we are interested in mining the simplest
boolean expressions necessary for inference in that framework.
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