
Experiences with Mining Temporal Event Sequences
from Electronic Medical Records:

Initial Successes and Some Challenges

Debprakash Patnaik1

patnaik@vt.edu
Patrick Butler1

pabutler@vt.edu
Naren Ramakrishnan1

naren@cs.vt.edu

Laxmi Parida2

parida@us.ibm.com
Benjamin J. Keller3

bkeller@emich.edu
David A. Hanauer, MD4

hanauer@umich.edu
1Department of Computer Science and Discovery Analytics Center, Virginia Tech, VA 24061

2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
3Department of Computer Science, Eastern Michigan University, Ypsilanti, MI 48197

4Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109

ABSTRACT
The standardization and wider use of electronic medical
records (EMR) creates opportunities for better understand-
ing patterns of illness and care within and across medical
systems. Our interest is in the temporal history of event
codes embedded in patients’ records, specifically investigat-
ing frequently occurring sequences of event codes across pa-
tients. In studying data from more than 1.6 million pa-
tient histories at the University of Michigan Health system
we quickly realized that frequent sequences, while providing
one level of data reduction, still constitute a serious ana-
lytical challenge as many involve alternate serializations of
the same sets of codes. To further analyze these sequences,
we designed an approach where a partial order is mined
from frequent sequences of codes. We demonstrate an EMR
mining system called EMRView that enables exploration of
the precedence relationships to quickly identify and visualize
partial order information encoded in key classes of patients.
We demonstrate some important nuggets learned through
our approach and also outline key challenges for future re-
search based on our experiences.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical sciences—
Medical information systems

General Terms
Algorithms, Design, Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

Keywords
Medical informatics, temporal data mining, partial orders.

1. INTRODUCTION
The increased use of electronic medical records (EMRs) to
capture standardized patient information creates an oppor-
tunity to better understand both patterns of illness among
similar patients, as well as patterns of care within and across
medical systems. While the first allows us to identify “fin-
gerprints”of clinical symptoms that may help us capture the
progression toward catastrophic clinical transitions, the sec-
ond can help us understand how diagnoses and procedures
are applied within and across different clinical settings.

Two primary categories of information embedded in an
EMR are referred to as ICD and CPT codes. ICD 9 (In-
ternational Classification of Diseases and Related Health
Problems, v9) is a popular classification system used in
health care which is also heavily used for a wide variety
of research activities [8]. This system is primarily intended
to code signs, symptoms, injuries, diseases, and conditions.
CPT (Current Procedural Terminology) refers to a similar
categorization of medical procedures performed on a pa-
tient. CPT codes are 5 digit numeric codes, which are
published by the American Medical Association. The pur-
pose of this coding system is to provide uniform language
that accurately describes medical, surgical, and diagnos-
tic services (including radiology, anesthesiology, and eval-
uation/management services of physicians, hospitals, and
other health care providers). There are about 20,000 dis-
tinct ICD 9 codes and about 10,000 CPT codes in use to-
day. Thus an electronic medical record consists, in its most
basic sense, of an interleaved sequence of diagnostic (ICD)
and procedure (PCT) codes assigned to the patient every
time he/she received care along with other associated test
reports and doctor’s notes.

An EMR is intrinsically temporal in nature yet research
on temporal data mining in medical records is scarce. This
work seeks to fill this void. Our goal is to extract clinically
relevant sequences of event codes embedded in the patient
histories of more than 1.6 million subjects of the Univer-
sity of Michigan’s health system. A straightforward imple-

mentation of sequential mining approaches [1, 21] does help
provide one level of data reduction, but the resulting se-
quences are still too many for human consumption because
they are permutations or nearly permutations of each other
representing different serializations of the same sets of codes.
For instance, it is more likely to see a diagnosis of cardiac
ischemia before an aortic coronary bypass, but there are pa-
tients for which these occur in the opposite order. It is also
not satisfactory to simply lump together codes on the ev-
idence of multiple permutations, because not all sequences
are equally likely. We therefore present an approach to de-
rive a partial order from frequent sequences of codes, along
with a tool called EMRView that supports exploration of
these orders based on a physician’s selections of supporting
sequences.

2. INITIAL EXPLORATION
After obtaining approval from the Institutional Review

Board at the University of Michigan Medical School, we or-
ganized a dataset of information about 1.6 million patients
in the health system. The actual medical records contained
about 100 million time stamped ICD 9 and CPT 4 codes
and also other categories of data such as doctor’s notes, test
results, prescriptions and x-ray images. There are two main
concerns in using these other categories of data. The first
is to ensure the privacy of the patients concerned. With
freeform text this is a very hard problem to address. The sec-
ond concern pertains to transcribing the handwritten notes
into electronic form before they can be analyzed. Hence we
began our initial focus on the encoded procedure and diag-
nostic codes.

First, we replaced patient medical record numbers with
artificial research identifiers not tied to the medical record.
Time intervals were then used to replace specific dates (thus,
resetting the start of a patient’s record to time zero). See
Table 1 for an example. These codes represented over 10
years of clinical encounters in our electronic medical record
system. Data was securely transferred to Virginia Tech for
analysis. Specific details of the data are shown in Table 2.
The range of the number of entries/codes per patient varies
from 1 to 10K, i.e., there were many patients with few iso-
lated visits and also patients who have received their en-
tire lifetime of care from the particular healthcare provider.
These and other power law behaviors are shown in Fig. 1.
Some patient records extend over 20 years! In terms of the
diagnostic and procedure codes, there are over 40 million
and 38 million entries respectively of each type of code in
the data.

After a preliminary analysis, we decided to focus exclu-
sively on the diagnostic (ICD) codes. The reason for this
decision is that most of the procedure codes (CPT) appear
to have been initiated in response to a diagnosis and hence
actually served as proxy for conditions. This aided in sim-
plifying the search for patterns downstream although we run
the risk of missing infrequent classes of relationships (e.g.,
the administration of a procedure causing a complication
down the road).

Let us denote the medical record of the ith patient as an
ordered sequence of diagnostic codes:

Si = 〈(E1, t1), . . . , (Ej , tj), . . . , (E|Si|, t|Si|)〉

where Ej is the jth diagnostic code and tj is the associated

time stamp. An entire EMR database consisting of several
patient records is denoted by D = {S1, . . . , S|D|}.

Table 1: Example EMR.
Patient
ID

Code Type Desc. Timestamp
(in days)

149970 99243 CPT Office consultation 0
149970 145.9 ICD Malignant neoplasm of

mouth, unspecified.
0

149970 88321 CPT Microslide consultation. 1
149970 792.9 ICD Other nonspecific abnor-

mal findings in body
substances.

1

Table 2: Characteristics of the EMR database.
Property Value
Number of patients 1,620,681
Number of diagnostic (ICD) codes 41,186,511
Number of procedure (CPT) codes 38,942,605
Max. number of codes in a record 10,430
Min. number of codes in a record 1
Max. span of a record in days 8202 days≈ 22.5 years
Min. span of a record in days 1

One interesting characteristic of the data was observed
when we plotted the distribution of time differences between
consecutive diagnostic codes across all records (see Fig. 2).
Note the different modes at multiples of 7 days, an artifact of
how followup visits to the health care provider are typically
scheduled.

Finally, just as stopword elimination is employed in in-
formation retrieval, we conducted ‘stopcode elimination’ to
remove diagnostic codes that are too frequently used. Specif-
ically, codes that surfaced in more than 0.49% of patient
records were eliminated (the most frequent code surfaced in
9% of patients).

0

0.5

1

1.5

2

2.5

1 7 14 21 28 35 42 49 56

M
illi

on
s

of
 O

cc
ur

re
nc

es

Days Between Records

Figure 2: Distribution of interarrival times

3. METHOD OVERVIEW
Figure 3 provides an overview of our proposed methodol-

ogy for unearthing partial orders from EMR data. There are
three broad stages: i) mining parallel episodes, ii) tracking
serial extensions, and iii) learning partial orders.
Mining parallel episodes: Parallel episodes are very similar
to itemsets but take temporal information into account in
the form of expiry constraints. We present a counting algo-
rithm in Section 4.1 that discovers parallel episodes which
are frequent above a given threshold. It is well known that
patterns with support higher than a threshold may not al-
ways be interesting because certain high frequency items can
randomly co-occur. Hence, we apply the maximum entropy

100

101

102

103

104

105

0.0 x10 2.0 x105 4.0 x105 6.0 x105 8.0 x105 1.0 x106 1.2 x106 1.4 x106 1.6 x106

R
ec

or
ds

 p
er

 P
at

ie
nt

s

Patient

(a) No. of ICD codes per record

100

101

102

103

0.0 x10 2.0 x105 4.0 x105 6.0 x105 8.0 x105 1.0 x106 1.2 x106 1.4 x106 1.6 x106

U
ni

qu
e

R
ec

or
d

Ty
pe

s
pe

r P
at

ie
nt

Patient

(b) No. of distinct ICD codes per record

100

101

102

103

104

0.0 x10 2.0 x105 4.0 x105 6.0 x105 8.0 x105 1.0 x106 1.2 x106 1.4 x106 1.6 x106

D
ay

s
R

ec
or

de
d

pe
r P

at
ie

nt

Patient

(c) Span of record in days

100

101

102

103

104

105

106

0.0 x10 2.0 x103 4.0 x103 6.0 x103 8.0 x103 1.0 x104 1.2 x104 1.4 x104

C
ou

nt

Diagnostic Code

(d) No. of occurrences of an ICD code

100

101

102

103

104

105

106

0.0 x10 2.0 x103 4.0 x103 6.0 x103 8.0 x103 1.0 x104 1.2 x104 1.4 x104

Pa
tie

nt
s

U
si

ng
 D

ia
gn

os
tic

 C
od

e

Diagnostic Code

(e) No. of patients assigned an ICD code

Figure 1: Plots of various distributions seen in the real EMR data.

EMR Database Parallel Episodes Partial Orders Visualization

Reports

Sequences

Patient Records

S1: 009.0, 362.21, 564.3!
S2: 188.8,188.9,239.4,188.8,188.9,239.4,235.5,157.0,157.9!
S3: 009.0, 362.21, 564.3!
S4: 188.8,188.9,239.4,188.8,188.9,239.4,157.0,157.9!
S5: 157.9!
S6: 009.0, 362.21, 564.3!
S7: 188.8,188.9,239.4,239.4,235.5,157.0,157.9!
S8: 188.8,188.9,188.8,188.9,239.4,235.5,157.0,157.9!
S9: 188.9,239.4,235.5,157.0,157.9!
S10: 188.8,188.9,239.4,188.8,188.9,239.4,235.5!

{239.4,239.4,235.5,157.0}!
{239.4,235.5}!

{009.0,362.21,564.3}!
!362.21,564.3"#

{235.5,157.0,157.9}!

Frequently co-occurring
codes & significant

Min.
Support

{009.0,362.21,564.3}!

362.21 009.0 564.3!
009.0 362.21 564.3!

009.0 564.3 362.21!

!!"#!$

%&'#'($

)&*#%$009.0
362.21 564.3

PQ Tree Partial Order

Sequences

EMRView GUI

Interactive
exploration

Figure 3: Overview of the proposed EMR analysis methodology.

principle[14] to predict the support of an episode and exam-
ine the actual support to impart a score of significance. This
score is used to order episodes and is carried out offline.
Tracking serial extensions: After mining a set of frequent
parallel episodes, we find order information embedded in
these frequently co-occurring sets of diagnostic codes. The
intuition behind searching for order is to unearth potential
evidence (or lack thereof) for sequentiality in the data. For
a n sized frequent parallel episode, there could potentially
be n! permutations exhibited in the data.
Learning partial orders: The set of all serial extensions de-
termined in the previous step is compacted into a partial
order using a special PQ tree algorithm. PQ trees[4] enable
an expressive class of partial orders to be learnt and the user
has the flexibility to interactively aid the search for partial
orders by selecting the set of extensions to be modeled. This
part of the procedure is thus interactive so that the medical
professional can iteratively generalize and specialize partial
orders in order to arrive at an understanding of the under-
lying orders.

4. FREQUENT EPISODE MINING
In this section we briefly review the frequent episode min-

ing framework and related terminology.

Definition 4.1 (General Episode). An episode α is
defined as a tuple {Vα,≤α}, where Vα ⊆ A, A is the set all
symbols (i.e. diagnostic codes). The relation ≤α defines an
ordering of the codes in Vα. A general episode is a partial
order over Vα.

For example, consider an episode α given by Vα = {A,B,C}
with A ≤α B and A ≤α C. This defines an episode where
A must occur before B and C but (B,C) can occur in any
order and can be denoted as A→ (BC).

Definition 4.2 (Serial Episode). A serial episode is
an ordered sequence of symbols/codes. It represents a total
order where for any pair ai, aj ∈ Vα and ai 6= aj, either
(ai ≤α aj) or (aj ≤α ai) holds.

An example of a serial episode is A → B → C where the
relation ≤α is such that A ≤α B, A ≤α C and B ≤α C.

Definition 4.3 (Parallel Episode). A parallel episode
is an unordered set of symbols/codes i.e. ≤v= φ.

A sequence S supports an episode α, if Vα ⊆ {Ai : Ai ∈ S}
and for no pair Aj preceding Ai in S, Ai ≤α Aj holds. In
other words, the order of the symbols in S does not violate
the precedence order encoded by ≤α. The support of α is

the fraction of sequences in D that support it. In addition,
an expiry constraint TX can be specified for episodes which
requires that the symbols in S that constitute an occurrence
of the episode occur no further than TX time units apart
from each other.

Example 4.4. Consider an EMR dataset of 4 sequences
(Fig. 4). The highlighted codes constitute occurrences of the
parallel episode (ABC) (in S1,S2,S3 and S4), serial episode
A → B → C (in S2 and S3), and the partial order A →
(BC). Later we shall use this example to illustrate our
method.

S1: W,U,C,I,B,C,K,A,Y,E,K,J,H,A
S2: K,J,A,D,K,E,W,K,B,C,R,H
S3: Q,T,B,J,A,C,O,J,B,A,C,K,F,N,F
S4: L,M,A,N,C,V,J,H,B,I,U,W,G,B,G,G

Figure 4: Database of four sequences S1, S2, S3 and
S4. The time-stamps are not shown. Note that
support(ABC) = 4/4, support(A → B → C) = 2/4 and
support(A→ (BC) = 3/4.

4.1 Parallel Episodes with Expiry
Frequent episode mining follows the Apriori-style itemset

mining algorithm: the set of n-size frequent episodes are
used to generate the (n + 1)-size candidate episodes. The
counting algorithm then determines the support of each can-
didate episode over the database of ordered sequences D.
Typically, frequent episode mining is carried out over one
long sequence of time-stamped events. In a database of or-
dered sequences, episodes essentially reduce to sequential
patterns [1] so that support is defined as the fraction of se-
quences that have the pattern as a subsequence. Our expiry
constraint gives us an additional handle to control the ex-
plosion in candidates besides the support threshold.

Algorithm 1 Count parallel episodes of size-k.

Input: Set of candidate k size parallel episodes C, Sequence
database D, Expiry time constraint TX , Min support θ.

Output: Set of frequent parallel of episodes with counts.
1: A = Set of all codes in episodes in C
2: Initialize waits[A] = φ,∀A ∈ A
3: for all α ∈ C do
4: Set count[α] = 0
5: Set wait count[α,A] = 1 and T [α,A] = φ, ∀A ∈ α
6: Add α to waits[A]
7: for all S ∈ D do
8: for all (E, t) ∈ S do
9: for all α ∈ waits[E] do

10: Update wait count[α,E] = 0 and T [α,E] = t
11: for all A ∈ α do
12: if (t− T [α,A] > TX) or sid(A)! = S.id then
13: wait count[α,E] = 1
14: if

`P
A∈α wait count[α,A]

´
= 0 then

15: count[α] = count[α] + 1
16: Reset wait count(α,A) = 1, ∀A ∈ α,∀α ∈ C
17: return {α, count(α) : count(α) ≥ θ|D|}

Algorithm 1 sketches the counting algorithm for parallel
episodes with expiry time constraint. The algorithm makes
one pass of the database to determine the support of all
episodes in the set of candidates. It uses a hash-map data
structure to efficiently reference episodes that need to be up-
dated for each code seen in a sequence. The data structure

wait count[.] tracks the codes that are remaining to com-
plete an occurrence and T [.] stores the latest time stamp
of each code. Note that tracking the latest time-stamp en-
sures that the span of the resulting occurrence is minimum.
Hence we correctly track all episode occurrences that satisfy
the expiry constraint.

4.2 Significance of parallel episodes
We utilize the maximum entropy formulation introduced

in [33] to assess significance of our episodes. Consider an
n-size parallel episode α = {E1, . . . , En}, where Ei’s are the
diagnostic codes. Let Ω be the sample space of all n-size
binary vectors and has a distribution p : Ω → [0, 1]. In the
context of the database D, p(ω) gives the fraction of the se-
quences which support the binary vector ω where each 0/1
represents the presence or absence of the corresponding code
Ei in a sequence. We compute the empirical distribution qα
over ω using the support of α and those of its sub-episodes.
Example 4.5 illustrates the use of inclusion-exclusion prin-
ciple to obtain qα.

Example 4.5 (Empirical distribution). Consider a
3-size parallel episode ABC. If ABC is frequent, all the sub-
episode supports are known. Table 3 illustrates the computa-
tion of the empirical distribution qABC using the inclusion-
exclusion principle over support (σ) of subepisodes.

Table 3: Computing the empirical distribution qα
A B C Distribution qABC
0 0 0 σ(φ)− σ(A)− σ(B) + σ(AB)− σ(C) +

σ(AC) + σ(BC)− σ(ABC)
0 0 1 σ(C)− σ(AC)− σ(BC) + σ(ABC)
0 1 0 σ(B)− σ(AB)− σ(BC) + σ(ABC)
0 1 1 σ(BC)− σ(ABC)
1 0 0 σ(A)− σ(AB)− σ(AC) + σ(ABC)
1 0 1 σ(AC)− σ(ABC)
1 1 0 σ(AB)− σ(ABC)
1 1 1 σ(ABC)

We estimate the distribution p for α using only the sup-
port of its sub-episodes. This is done by estimating the
maximum entropy distribution pME

α (defined in Eq 1) that
represents a log-linear model.

pME
α (ω) =

1

Zα
exp

“X
λifi(ω)

”
(1)

Here each factor fi(w) is an indicator function:

fi(w) = I(ω covers ith subepisode of α)

We learn the maximum entropy model under the con-
straint that the expectations E〈fi〉 = 〈support of ith proper
subepisode of α〉. We use the KL-divergence measure be-
tween the empirical distribution and the maximum entropy
distribution estimated using only subepisodes to score the
significance of α (Eq 2).

score(α) =
X
ω

qα(ω) log
qα(ω)

pME
α (ω)

(2)

A higher score implies that the support of the episode is
more surprising given the subepisodes. This significance
score is used to rank the discovered patterns.

4.3 Tracking sequential extensions
After mining the lattice of frequent parallel episodes, we

make another pass through the data to record the number
of times different linear (serial) extensions of each frequent
parallel episode occur in the data. This is illustrated below
for the sequences in Example 4.4.

Example 4.6 (Sequential Extensions). Consider the
parallel episode (ABC). There are 3! = 6 possible permu-
tations or serial extensions of this episode. Now consider
the sequences shown in Example 4.4, where only 3 of the 6
permutations of (ABC) are seen in the data. The supports
of these sequences is noted below.

A→ B → C : 2/4; A→ C → B : 1/4; B → C → A : 1/4

5. LEARNING PARTIAL ORDERS
At this stage, we have mined sets of frequent episodes

that are permutations of each other, e.g. A→ B → C, A→
C → B and B → C → A. Since the parallel episode (ABC)
and each of these serial episodes is known to be frequent
in the data, we aim to find a partial order that describes
these sequences (and as few other sequences as possible).
A trivial solution is the already obtained null partial order:
(ABC) which, besides covering the above three extensions,
also covers B → A→ C, C → A→ B, and C → B → A. A
better solution is the partial order (A(BC)) which describes
only one other sequence in addition to above: C → B → A.

Mining partial orders is a difficult problem in general be-
cause the space of partial orders grows very quickly with
alphabet size. As a result, researchers have proposed focus-
ing on special cases of partial orders (e.g., series-parallel) to
make the problem tractable [22]. Here, we present a PQ tree
approach[17] for finding a recursive partial order over the set
of frequent serial episodes over the same set of symbols.

In the context of sequential data, a sequence S is compat-
ible with a partial order α, if for no pair a2 preceding a1 in
S, a1 ≤α a2 holds in α. In other words, the order of the
elements in S does not violate the precedence order encoded
by ≤α. A compatible S is also called an extension of ≤α.
Sequence S is called a complete extension of ≤α when S con-
tains all the elements of Vα. In the episodes framework, only
a complete extension is considered to support the episodes
α. We shall define S′ as the subsequence of S that is still
a complete extension of α but contains only the elements of
Vα. Subsequently, we shall refer to S′ as the serial extension
of α in the sequence S and denote it as S′ ∈ α.

A partial order can be represented by a directed graph
where each edge (a1, a2) represents the relation a1 ≤α a2.
Since the relation ≤α is antisymmetric, it is easy to see that
this graph is acyclic (i.e., a DAG). Further, the transitive
reduction G′α of the graph Gα also encodes the partial order
α such that when a1 ≤α a2, there is a directed path from a1

to a2 in G′α.

5.1 Maximal partial order problem
It is easy to see that S is a serial extension of the parallel

episode α where ≤α= φ for any sequence S on the alphabet
Vα. Also if S ∈ α(Vα,≤α), then S ∈ β(Vα,≤β) where (≤β
⊂≤α). Thus it is natural to talk about a maximal partial
order. We identify the following problem:

Problem 1. Given a set S of sequences Si, 1 ≤ i ≤ m,
each of length n defined over the same alphabet, find a max-

d

S E

a
b
c

S Ea

S Ea b c d

d c b
(a) α0 (b) α1 and α2

Figure 5: (a) One partial order, α0 and (b) two
partial orders, α1, α2 representing s1 = 〈a b c d〉 and
s2 = 〈d c b a〉.

imal partial order α such that all Si ∈ α and this does not
hold for any partial order β with Vα = Vβ and (≤β⊃≤α).

Here maximality implies that: given a pair (ai, aj), if ai
precedes dj in all the given m sequences then (ai ≤α aj)
must hold. A straightforward approach to solving the prob-
lem is to collect all pairs (a1, a2) such that a1 precedes a2 in
all sequences si ∈ S and then construct a (transitive reduc-
tion) DAG from these pairs.

5.2 Excess in partial orders
Consider s1 = 〈a b c d〉 and s2 = 〈d c b a〉. Notice that no

pair of characters preserve the order in s1 and s2, hence the
only partial order that s1 and s2 do not violate is shown
in Figure 5(a). However, any permutation of the characters
{a, b, c, d} also does not violate this partial order.

Let A(α) be the set of all complete extensions s ∈ α. Thus
it is clear that the partial order captures some but not all
the subtle ordering information in the data and the maximal
partial order α of S is such that A(α) ⊇ S. The gap, A(α)\S
is termed excess.

One way to handle excess in partial order is allowing
for multiple partial orders, say α1 and α2 in Figure 5(b).
Clearly, given S, there has to be a balance between the num-
ber of partial orders and the excess in the single maximal
partial order α0.

It is easy to see that given n distinct sequences, n partial
orders (chains or total orders) give zero excess. Obviously
this is not an acceptable solution, and a trade off between
excess and the number of multiple partial orders needs to
be made. However getting an algorithmic handle on this
combinatorial problem, using excess, is non trivial. Other
researchers have assumed further restrictions, e.g., Mannila
and Meek [22] restrict their partial orders to have an MSVP
(minimal vertex series-parallel) DAG. Their aim is to count
the size of of A(α) (number of complete extensions of α)
since they are looking for a probabilistic model of an under-
lying generator.

5.3 Handling excess with PQ structures
We illustrate this approach starting with an example.

Example 5.1. Let S = {〈abcdegf〉, 〈bacedfg〉, 〈acbdefg〉,
〈edgfabc〉, 〈degfbac〉}. It is easy to see that the maximal
partial order is α0 shown in Figure 6. In α1, the alphabet is
augmented with {S1,E1,S2,E2,S3,E3} to obtain a tighter
description of S.

Here the solution to handling excess is to augment the
alphabet Vα with O(|Vα|) characters in the maximal partial
order DAG, Gα. Let this new set be V ′α. All complete
extension S′ are now on (Vα∪V ′α) and can be easily converted
to S on Vα by simply removing all the symbols Sk,Ek ∈ V ′α.

The boxed elements in Figure 6 are clusters of symbols
that always appear together, i.e., are uninterrupted in S.

b

d
e g

f
ES

ca a

S

S1

S2
d
e E2

f
g

S3

E3

E

E1
b
c

(a) Partial order, α0 (b) Augmented partial order, α1

Figure 6: α1 is a specialization of α0: If S ∈ α1, then
S ∈ α0, but not vice-versa. If S = 〈abdefcg〉, then
S ∈ α0 but S 6∈ α1.

Our scheme exploits this property to reduce excess. We use
the systematic representation of these recursive clusters in
reducing excess in partial orders. The recursive (order) no-
tation of clusters is naturally encoded by a data structure
called the PQ tree [4]. The equivalence of this order nota-
tion to a PQ structure, denoted by Tc, along with efficient
algorithms is discussed in [17].

A PQ tree is a rooted tree whose internal nodes are of
two types: P and Q. The children of a P node occur in no
particular order while those of a Q node must appear either
in a strict left to right or right to left order. We designate
a P node by a circle and a Q node by a rectangle. The
leaves of Tc are labeled bijectively by the elements of S.
The frontier of Tc, denoted by Fr(Tc), is the permutation of
the elements of S obtained by reading the labels of the leaves
from left to right. Two PQ trees Tc and Tc′ are equivalent,
denoted Tc ≡ Tc′ , if one can be obtained from the other by
applying a sequence of the following transformation rules:
(1) Arbitrarily permute the children of a P node, and (2)
Reverse the children of a Q node. C(Tc) is defined as follows:
C(Tc) = {Fr(Tc′)|Tc′ ≡ Tc}. An oriented PQ tree is a tree
where all the Q nodes are oriented similarly (in our case
left-to-right).

Given S, the minimal consensus PQ Tree is a structure
that captures all the common clusters that appear in each
s ∈ S. A linear time algorithm, O(|S| |Vα|), to compute
this tree is discussed in [17]. We make a simple modification
(not discussed here) in the algorithm to give oriented PQ
(oPQ) trees where each Q node follows the strict left-to-right
order. The number of augmented alphabet pairs Sk,Ek, in
the augmented DAG correspond to the number of internal
nodes in a PQ tree.

Algorithm 2 PQ Tree construction

Input: A set of sequences S each consisting of all symbols in V .
Output: A minimal consensus PQ Tree Tc for S.
1: Compute common intervals in sequences S = CΠ using algo-

rithm in [11].
2: Initialize Tc = {Universal tree}
3: for all c ∈ CΠ do
4: Tc = REDUCE(Tc, c){See reference [4]}
5: return Tc

To summarize, given S, our scheme works as follows: (1)
We first construct the minimal consensus oriented PQ tree
Tc of S using Algorithm 2. (2) For each internal P node
we construct an instance of Problem 1 and construct the
maximal partial order. (3) Using the PQ structure of step
(1) we combine all the maximal partial order DAGs of (step
2), with augmented characters Sk,Ek for each to obtain the
augmented maximal partial order.

Figure 7 shows the steps on the data of Example 5.1. (a)

c gfd ea b
d

E3e
f
g

S3

b
ca

S1 E1

S2
E2

(a) (b)

Figure 7: (a) The minimal consensus oriented PQ
structure for the data in Example 5.1. (b) The P
nodes as placed in parallel and the Q nodes are
placed serially.

shows the minimal consensus oriented PQ tree for the input
data. Then the P nodes are arranged in parallel and the Q
nodes are arranged serially as shown in (b). For each cluster,
the partial order problem is solved and the resulting DAG
is shown in Figure 6(b).

6. EMRVIEW
In this section we describe the features of the EMRView

graphical user interface (GUI) software that serves as a par-
tial order exploration tool. The parallel episode mining al-
gorithm runs offline to generate a set of frequent parallel
episodes for a user-defined support threshold. The parallel
episodes are ordered in decreasing order of the significance
score discussed earlier. This allows the user to focus his
attention on the most surprising patterns in the data first.
The offline mining algorithm also determines the support of
the sub-sequences in the EMR sequences that constitute the
occurrences of the given parallel episode. We learn a partial
order over a subset of these sequences chosen so as to ac-
count for a sufficient fraction of the support of the parallel
episode. This partial order brings out the ordering infor-
mation embedded in the EMR data and is displayed via its
Hasse diagram.

3

1

2

4 5

Figure 8: Screenshot of EMRView tool showing dif-
ferent panels of the interface.

Pattern loader (Panel 1): The offline result of parallel
episode mining together with counts of the sequences
constituting the occurrences of each parallel episode is
loaded into the visualization tool. The tool also allows
reading data in compressed/zip format.

Filtering results (Panel 2): For the parameters noted in
the result section, the number of frequent parallel episodes
is over 10,000. Looking through each of the paral-
lel episodes and its supporting subsequences can be
a daunting task. The EMRView tool allows the user
to filter the list of episodes based on multiple crite-
ria. The user can specify a set of diagnostic codes that
must be present in the reported episodes with the op-
tion for enforcing all or any of the codes. Similarly the
user can specify a set of diagnostic codes that must
not be present. Further the user can specify the size
of episodes that must be displayed.

Figure 9: Screenshot of EMRView diagnostic code
lookup interface.

A specially designed search dialog is presented to the
user to select diagnostic codes. This dialog allows the
user to search for the codes by entering either text
describing the diagnostic code or the code if available.
One could also pick codes by browsing through the
hierarchy of the ICD codes. Figure 9 shows the search
dialog illustrating the different options available for
finding and adding diagnostic codes.

Result display (Panel 3): The filtered parallel episodes
are displayed here. The first column gives an identi-
fier for the row. The second column shows the list of
codes in the parallel episode. Since there is no order
imposed on the codes, we sort them in alphabetical or-
der. The third column displays a partial order learnt
from the set of sequences which together account for
75% of the support of the parallel episode. The same
set of sequences are shown selected by default in Panel
4. Note that these sequences are ordered in descending
order of support. The forth and fifth columns present
the support (or count) and significance scores respec-
tively. The rows are presorted in decreasing order of
the significance score.

Figure 10: Panel 4: Pattern display

Pattern display (Panel 4): This panel lists the sequences
(more appropriately subsequence of the EMR sequences)
that constitute the occurrences of the parallel episode.
This panel is populated when the user selects a par-
allel episode in Panel 3. The sequences are listed in
decreasing order of support. By default, sequences are
selected until the sum of their support values exceeds
a threshold of 75% of the total support of the parallel
episode. The rationale is that these are likely the most
important orders encountered in the data for the par-
allel episode under consideration. The partial order
learnt from the selected sequences is displayed in the
adjacent panel. In addition the user can select/deselect
sequences. The partial order is updated online to re-
flect the selection. This puts the user in control of
selecting sequences he deems useful and the algorithm
summarizes them into a compatible partial order. As
this is the most important part of EMRView, Figure 10
shows an expanded view of Panel 4 (with a different
example).

7. RESULTS AND CLINICAL RELEVANCE
For the current study we chose to discover temporal pat-

terns that occurred within a consecutive 200 day (6.5 month)
period at support level ≥ 10−4. We did not identify any
truly novel patterns but were able to discover many that re-
flect the capabilities of our algorithm and the power of our
partial order discovery methodology.

Figure 11 shows the progression from a general diagnosis
of hip pain to a subsequent diagnosis of osteoarthritis and a
femur fracture, ultimately requiring a hip replacement. The
code 719.68 is rather nonspecific but is typical of diagno-
sis codes used for routine care, especially when uncertainty
exists in the final diagnosis.

Figure 11: A five-sequence pattern demonstrating
an initial diagnosis of pelvic pain (719.45) followed
by the variable sequence of (a) a poorly defined
joint symptom (719.68); (b) a femoral neck fracture
(820.8); and (c) pelvic osteoarthritis (715.95), with
a final common pathway converging on a hip joint
replacement (V43.64).

Another set of patterns related to sinusitis are shown in
Figures 12(a) and 12(b). In both of these sequential pat-
terns, an initial diagnosis (deviated septum or nasal polyps)
leads to various chronic sinusitis diagnoses. The sequence
in Figure 12(a) occurred 102 times among the patient pop-
ulation, whereas the two sequences shown in Figure 12(b)
occurred collectively 27 times. Similar sequences could also
be found in the dataset with varying frequencies.

Some sequences converged on a diagnosis or event, whereas
others diverged. This can be seen in Figures 13(a) and
13(b). Figure 13(a) shows events related to arm fractures
at a school playground (representing 84 distinct patients),
whereas Figure 13(b) shows events related to an initial pylenonephri-
tis (kidney infection) event with subsequent diagnoses of cal-
culi (stones) in the kidneys and urinary tracts. In this con-

(a)

(b)
Figure 12: Sequences showing events leading to a
sinusitis diagnosis. In (a) a deviated septum (470)
leads to maxillary sinusitis (473.0), followed by eth-
moidal sinusitis (473.2), and then a non-specific si-
nusitis diagnosis (473.8). In (b) nasal polyps (471.0)
leads to maxillary sinusitis (473.0) or a non-specific
sinusitis (473.9), followed by frontal sinusitis (473.1),
then ethmoidal sinusitis (473.2) and finally another
non-specific sinusitis (473.8).

text, a convergence means requiring a particular diagnosis
before continuing to make other diagnoses.

(a) (b)
Figure 13: Sequences that converge onto a common
event or diverge from a common event. The ele-
ments stacked vertically were found to occur inter-
changeably in the patterns found, suggesting that
the specific ordering does not matter. In (a) A
fall from playground equipment (E884.0) was as-
sociated in time with a lower humerus fracture(
812.40) as well as a supracondylar humerus fracture
(812.41), but all ended up with a follow-up exam
for the healed fracture (V67.4). The diagram in (b)
shows an initial pylenonephritis event (590.00) oc-
curring, followed by the diagnoses of kidney calcu-
lus (e.g., stone) (592.0), ureter calculus (592.1), and
non-specific urinary calculus (592.9).

The clinical relevance of the above patterns is quite imme-
diate. For instance, the presence of osteoarthritis is a recom-
mended, although controversial, indication for performing a
hip joint replacement after the occurrence of a femoral neck
fracture[10, 30, 19]. It is possible to imagine that someday
clinicians may wish to interrogate their local data with EM-
RView to determine local patterns of care in order to answer
questions such as “At our institution, what is our routine
process of care for patients with a finding of osteoarthritis
who subsequently develop a femoral neck fracture?” A key
component in such a query would be to include the temporal
concept of “subsequently” so that the timing of the fracture
in relation to the other relevant diagnoses can be taken into
account.

The observations regarding sinusitis are also interesting,
and support the use of EMRView for hypothesis generation.
It is well known that maxillary sinus is the most common
site for such an infection to occur, followed by the ethmoid
sinus (87% vs. 65%, respectively) [15], but it is worthwhile

to note that in our observations, for the sequences that con-
tained the codes for both maxillary (473.0) and ethmoidal
sinusitis (473.2) the maxillary preceded the ethmoidal in
the vast majority of cases. It may be that a severe max-
illary sinusitis can often lead to an ethmoid infection with
the reverse sequence being less common, or it may simply
be that maxillary sinusitis is easier to diagnose and only
later is an ethmoid sinusitis diagnosed in the same patient.
It is also noteworthy that this temporal pattern occurred
when the initial diagnoses was a deviated septum as well as
with nasal polyps. It is unclear why this temporal pattern
emerged. At least one source has reported that about 75%
of all polyps are located in the ethmoid sinuses [20], which
raises the question why the sinusitis was still primarily oc-
curring in the maxillary sinuses first.

Among the other events we reported, the relationship be-
tween arm/humerus fractures and falls from school play-
ground equipment is well documented in the literature [18,
12]. Nevertheless, monitoring how such patterns over time
change at a specific medical center might allow for the detec-
tion of playgrounds that are especially dangerous, or perhaps
the success of safety programs implemented to prevent such
accidents. The relationship between pyelonephritis (kidney
infections) and urinary system calculi also has important im-
plications. As outlined in a recent report, using ultrasound
to discover the calculi may be a useful tool when such in-
fections are diagnosed since calculi may be a complicating
factor in the management of the infections [5].

8. RELATED WORK
Many studies have explored temporal patterns in clini-

cal data: some have focused on extracting temporal pat-
terns from natural language descriptions in clinical docu-
ments [29, 9] whereas others have used coded administra-
tive data, similar to the data we used [7, 3]. Reis et al. [27]
used Bayesian models to predict future risks of abuse based
on past episodes. They theorized that such a system could
provide an early warning for clinicians to identify patients
at high risk for future abuse episodes. Others have used
temporal data mining to explore patterns related to specific
diseases such as diabetes [6] or specific time frames such as
adverse events following immunizations in a large cohort of
nearly a million children in Denmark [32].

Plaisant and colleagues [26] built into the Microsoft Amalga
software a user interface to help visualize patient specific
temporal patterns. This did not involve data mining and
the interface itself was significantly different from EMRView.
More closely related, however, was the methodology and in-
terface built by Moskovitch and Shahar [24] to identify and
visualize temporal patterns in clinical data which was ap-
plied to a dataset of about 2000 patients with diabetes.
More broadly, several published papers discuss the chal-
lenges faced in analyzing EMR data [2] starting from data
integration aspects [28, 16] to privacy issues [23, 31]. In-
terest in the KDD community has blossomed recently, e.g.,
in [34], a multi label classifier is proposed that learns inter-
code relationships from clinical free text. In another study
it has been shown that using the entropy of ICD9 codes it is
possible to categorize diseases as chronic or acute [25]. Our
work is novel in the application to a large scale database of
EMRs to mine frequent and significant episodes, in the new
partial order discovery algorithm, and in the development
of EMRView based on user needs.

9. DISCUSSION
Our exercise in using temporal data mining to identify

clinically relevant patterns in medical record data did demon-
strate the feasibility of the approach. We were able to find
hundreds of patterns using real world data that had been
collected as a part of routine care. The clinical relevance
of the patterns helps to confirm the validity of our mining
algorithms.

Our current analysis brings about many future challenges
for temporal mining in EMRs. For instance, thus far we have
limited the time frame for analysis to 200 days. While this
has the advantage, at least theoretically, of yielding greater
clinical relevance between events that are temporally corre-
lated, the disadvantage is the danger of missing correlated
events that are far apart. Asbestos exposure and subsequent
development of lung diseases is one such example [13]. Au-
tomatically identifying intervals for analysis is one area of
research.

A second major issue with our analysis is that it is easier
to obtain the data then it is to explore or assign meaning
to the results. There is nothing intrinsic in the data it-
self to inform if a temporal sequence is novel, important, or
even clinically valid. From our initial analysis the results do
seem to be valid, but there is no existing database of clinical
medicine with which to computationally compare our find-
ings. The more frequently occurring patterns are probably a
reflection of an event occurring more frequently among our
population. But it may very well be that the less frequently
occurring events are the ones that are not well described in
the literature and may represent novel discoveries. Finding
a scalable approach to explore this space is still an open
question.

Last, while we did have nearly 100 million events with
which to detect patterns, these codes still represent only a
tiny fraction of the clinical parameters that are relevant to
each patient. Many clinical details were not present in the
dataset that might have a significant impact on the inter-
pretation of the results. It will be important to develop
methods to incorporate these additional data into the data
mining algorithms to extract more meaningful results in the
future.

Acknowledgements
This work is supported in part by the Institute for Critical
Technology and Applied Science, Virginia Tech and by US
NSF grant CCF-0937133.

Availability of source code
The software is available at http://nostoc.cs.vt.edu/emr-view.

10. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In 11th ICDE, pages 3—14, Taipei, Taiwan,
1995.

[2] P. A. Bath. Health informatics: current issues and
challenges. J. Inf. Sci., 34:501–518, August 2008.

[3] R. Bellazzi et al. Methods and tools for mining
multivariate temporal data in clinical and biomedical
applications. In Conf Proc IEEE Eng Med Biol Soc.,
pages 5629–32, 2009.

[4] K. Booth and G. Lueker. Testing for the Consecutive
Ones Property, Interval Graphs, and Graph Planarity
using PQ-tree Algorithms. JCSS, 13(3):335–379, 1976.

[5] K. C. Chen, S. W. Hung, V. K. Seow, C. F. Chong,
T. L. Wang, Y. C. Li, and H. Chang. The role of
emergency ultrasound for evaluating acute
pyelonephritis in the ed. Am J Emerg Med, Apr 2010.

[6] S. Concaro et al. Temporal data mining for the
assessment of the costs related to diabetes mellitus
pharmacological treatment. In AMIA Annu Symp
Proc., pages 119–123, 2009.

[7] S. Concaro et al. Mining health care administrative
data with temporal association rules on hybrid events.
Methods Inf Med, 50(2), Dec 2010.

[8] C. De Coster et al. Identifying priorities in
methodological research using ICD-9-CM and ICD-10
administrative data: report from an international
consortium. BMC Health Serv Res., 6:77, Jun 2006.

[9] J. Denny et al. Extracting timing and status
descriptors for colonoscopy testing from electronic
medical records. J Am Med Inform Assoc.,
17(4):383–8, Jul-Aug 2010.

[10] W. L. Healy and R. Iorio. Total hip arthroplasty:
optimal treatment for displaced femoral neck fractures
in elderly patients. Clin Orthop Relat Res,
(429):43–48, Dec 2004.

[11] S. Heber and J. Stoye. Finding all common intervals of
k permutations. In Proc. of the 12th CPM’01, pages
207–218, London, UK, UK, 2001. Springer-Verlag.

[12] A. W. Howard, C. Macarthur, L. Rothman, A. Willan,
and A. K. Macpherson. School playground surfacing
and arm fractures in children: a cluster randomized
trial comparing sand to wood chip surfaces. PLoS
Med, 6(12), Dec 2009.

[13] E. Jamrozik, N. de Klerk, and A. Musk. Clinical
review: Asbestos-related disease. Intern Med J, Feb
2011.

[14] E. T. Jaynes. Information theory and statistical
mechanics. Phys. Rev., 106(4):620–630, May 1957.

[15] W. Kormos. Primary Care Medicine, chapter
Approach to the Patient With Sinusitis, pages
1402–1407. Lippincot WIlliams and WIlkins, 2009.

[16] R. Kukafka et al. Redesigning electronic health record
systems to support public health. J. of Biomedical
Informatics, 40:398–409, August 2007.

[17] G. Landau, L. Parida, and O. Weimann. Using PQ
Trees for Comparative Genomics. In Proc. CPM,
pages 128–143, 2005.

[18] R. T. Loder. The demographics of playground
equipment injuries in children. J Pediatr Surg,
43(4):691–699, Apr 2008.

[19] J. A. Lowe, B. D. Crist, M. Bhandari, and T. A.
Ferguson. Optimal treatment of femoral neck fractures
according to patient’s physiologic age: an
evidence-based review. Orthop Clin North Am,
41(2):157–166, Apr 2010.

[20] T. M and L. PL. Nasal Polyps: Origin, Etiology,
Pathenogensis, and Structure, chapter Diseases of the
sinuses: diagnosis and management, pages 57–68.
2001.

[21] H. Mannila et al. Discovery of frequent episodes in
event sequences. DMKD, 1:259–289, 1997.

[22] H. Mannila and C. Meek. Global Partial Orders from

Sequential Data. In Proc. KDD’00, pages 161–168,
2000.

[23] L. Martino and S. Ahuja. Privacy policies of personal
health records: an evaluation of their effectiveness in
protecting patient information. In Proc. of 1st ACM
Intl. Health Informatics Symp., pages 191–200, New
York, NY, USA, 2010. ACM.

[24] R. Moskovitch and Y. Shahar. Medical
temporal-knowledge discovery via temporal
abstraction. In AMIA Annu Symp Proc., pages
452–456, 2009.

[25] A. Perotte. Using the entropy of icd9 documentation
across patients to characterize using the entropy of
ICD9 documentation across patients to characterize
disease chronicity. AMIA Annual Symp., Nov 2010.

[26] C. Plaisant et al. Searching electronic health records
for temporal patterns in patient histories: a case study
with microsoft amalgaa. In AMIA Annu Symp Proc.
2008, pages 601–605, 2008.

[27] B. Reis et al. Longitudinal histories as predictors of
future diagnoses of domestic abuse: modelling study.
BMJ, 2009.

[28] D. Revere et al. Understanding the information needs
of public health practitioners: A literature review to
inform design of an interactive digital knowledge
management system. J. of Biomedical Informatics,
40:410–421, August 2007.

[29] G. Savova et al. Towards temporal relation discovery
from the clinical narrative. In AMIA Annu Symp
Proc., pages 569–572, 2009.

[30] E. Sendtner, T. Renkawitz, P. Kramny, M. Wenzl, and
J. Grifka. Fractured neck of femur–internal fixation
versus arthroplasty. Dtsch Arztebl Int,
107(23):401–407, Jun 2010.

[31] C. Stingl and D. Slamanig. Privacy enhancing
methods for e-health applications; how to prevent
statistical analyses and attacks. Int. J. Bus. Intell.
Data Min., 3:236–254, December 2008.

[32] H. Svanstrom et al. Temporal data mining for adverse
events following immunization in nationwide danish
healthcare databases. Drug Saf., 33(11):1015–25, Nov
2010.

[33] N. Tatti. Maximum entropy based significance of
itemsets. In Proc. 7th ICDM’07, pages 312–321, 2007.

[34] Y. Yan, G. Fung, J. G. Dy, and R. Rosales. Medical
coding classification by leveraging inter-code
relationships. In Proc. 16th KDD’10, pages 193–202,
New York, NY, USA, 2010. ACM.

