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Abstract – In remote sensing and other disciplines,
clustering is frequently used in classification to assign
labels to data. In particular, the iterative guided spectral
class rejection (IGSCR) classification algorithm uses labeled
data and a statistical hypothesis test to determine which
clusters should be used in classification. Rejected clusters
(based on this evaluation method) are then refined. The
hypothesis test used in IGSCR is based on the binomial
distribution, which effectively models hard cluster and class
memberships. This work proposes an analogous hypothesis
test for soft cluster evaluation.
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1 Background
Clustering is frequently used in the classification

of remotely sensed images in both unsupervised and
hybrid classification methods. Unsupervised methods
do not require prior information such as training data,
but require that clusters be labeled with classes after
clustering. Hybrid classification methods combine
supervised and unsupervised techniques. One such
method is the iterative guided spectral class rejection
(IGSCR) classification method ([1], [2], [3]) that clusters
data and uses labeled points to associate each cluster
with a class automatically. Each cluster should
correspond to only one class, but unfortunately, there
is no guarantee that a cluster will be representative of
only one class. IGSCR uses a statistical hypothesis
test to determine whether a cluster should be associated
with a class. If a cluster fails this test, it is subjected
to further refinement. The test used in IGSCR is based
on the binomial distribution, and is only appropriate
for hard clusters. The purpose of this work is to
develop a similar test for soft clusters created by fuzzy
K-means that can be used in a soft version of IGSCR.
A soft cluster evaluation method will have applicability
in other methods that use soft clusters for classification.

The remainder of the paper is organized as follows.
Section 2 describes fuzzy K-means, a soft clustering
method used for the derivation of the soft cluster
evaluation. Section 3 discusses evaluating clusters and
Section 4 describes the statistical distribution used to
model fuzzy cluster and class memberships for a sample.
Section 5 introduces two potential hypothesis tests used
for soft cluster evaluation, and Section 6 concludes the
paper.

2 FuzzyK-means
Consider a soft clustering algorithm that minimizes

the objective function [4]

J(ρ) =

n
∑

i=1

K
∑

j=1

wpijρij subject to

K
∑

j=1

wij = 1 for each i

(1)

where n is the number of samples, K is the number
of clusters, wij ∈ (0, 1) is the value in the ith row and

jth column of the weight matrix W ∈ ℜn×K , U (j) ∈ ℜB
is the jth cluster prototype, x(i) ∈ ℜB is the ith data

sample, p > 1, and ρij = ρ(x(i), U (j)) = ||x(i) − U (j)||22
is the Euclidean distance squared. The algorithm that
minimizes this objective function first calculates

wij =
(1/ρij)

1/(p−1)

K
∑

k=1

(1/ρik)
1/(p−1)

for all i and j followed by calculating updated cluster
prototypes

U (j) =

n
∑

i=1

wpijx
(i)

/

n
∑

i=1

wpij .

This iteration (recalculation of the weights followed
by recalculation of cluster prototypes, following by
recalculation of the weights, etc.) is guaranteed to



converge (with these definitions of ρij , U
(j), and wij)

for p > 1 [5].

3 Cluster Evaluation
A key component in the IGSCR clustering framework

is the homogeneity test used to determine if a cluster
contains a statistically significant proportion of one
class. This test provides a basis for rejecting a cluster
for further refinement. The test for cluster purity
is performed using the labeled training set. Let Vc,j
be the binomial random variable denoting the number
of labeled samples assigned to the jth cluster that
are labeled with a particular cth class. Let p be
the user-supplied cluster homogeneity threshold (p = .9
would indicate a cluster is 90% pure with respect to the
majority class), and let α be the user-supplied acceptable
one-sided Type-I error for a statistical hypothesis test.
Then if c is the majority class represented in the jth
cluster, the jth cluster is rejected if P (Z < ẑ) < 1 − α
where Z is a standard normal random variable, m is the
number of labeled samples in the jth cluster, and

ẑ =
vc,j −mp

√

mp(1 − p)
. (2)

(Typically a continuity correction of 0.5 is added in the
numerator of (2).)

A cluster might be composed of more than one class
because the cluster itself is in fact composed of more
than one cluster. A cluster might also contain more than
one class because the initial clusters were determined in
such a way as to prevent a cluster from moving toward
a particular class. It would be useful to determine
which clusters are not spectrally pure (contain more
than one class with high probability) so that the cluster
can be further refined, and if no refinement is possible
(any number of iteration ending criteria are met), the
cluster should not be used in the classification model.
Statistical hypothesis tests provide a mechanism for
determining class purity once an appropriate statistical
model is selected for the data.

With hard clustering, the notion of a pure cluster is
clear. Each sample will belong to one and only one
cluster. A cluster can be 100% homogeneous when all
labeled samples contained within that cluster belong to
only one class. Although this is possible, it is unlikely
that one cluster contains only one class because of
inherent error in the labeling process and because two
different class categories can contain spectrally similar
samples. Once a homogeneity level is determined, a
rigorous hypothesis test can be applied to select clusters
that contain a certain percentage of one class, with
that percentage unlikely to be observed in a particular
cluster randomly.

Using soft clusters introduces complications to assess-
ing and determining cluster purity. The first question
might be whether a soft cluster can be spectrally
pure, because being soft might indicate that clusters
are naturally comprised of multiple classes. However,
just as hard clusters can be representative of just one
predominant class, soft clusters can be representative of
a dominant class. Soft clusters are composed of different
portions of each sample or pixel within an image,
meaning that each sample has a positive probability of
being in different individual classes or clusters. When
samples labeled with different classes have a positive
probability of belonging to the same cluster, that does
not indicate that the cluster really contains two different
classes, but rather perhaps that while the pixels have
strong associations with different classes, there is also a
positive (although possibly small) probability that each
pixel actually belongs to or partially belongs to the
majority class within the cluster. Both cases (the cluster
is confused or the cluster is not confused but the pixels
labeled with different classes still have small associations
with the same class) are possible in soft clustering. The
appropriate test for soft clusters is not which pixels
“belong” to a particular cluster (they all “belong” to
some degree), rather how strongly pixels from different
classes belong to a particular cluster. If pixels from only
one class have strong associations with a cluster when
compared to pixels labeled with other classes, then
the cluster should be labeled with that most strongly
associated class. In this manner, each pixel/sample is
associated by varying degrees with multiple spectrally
pure clusters that are mapped to individual classes,
ultimately producing a soft classification output when
each sample is then mapped to different individual
classes with varying probabilities.

4 Distribution
Developing a hypothesis test to assess purity of

clusters requires a random variable and knowledge of
the distribution of that random variable. In IGSCR, a
cluster can be considered pure and labeled with a class
if the number of labeled samples belonging to the class
is high compared to the number of labeled samples not
belonging to the class. The random variable of interest,

Vc,j =
∑

i∈Ij

Vic, is the count of the number of labeled

samples belonging to the cth class for a particular jth
cluster where i is the pixel index, Ij is the index set of
labeled pixels in the jth cluster, and Vic is the Bernoulli
random variable corresponding to the ith pixel being
associated with the cth class.

Using soft clustering, the random variable and
distribution are more complicated as there are class



memberships (either 0 or 1) and cluster memberships
(between 0 and 1). Building a test on only the
class memberships is not useful as each labeled sample
will have some positive probability of belonging to
a particular cluster, making the results of the test
the same for each cluster unless memberships are also
considered. In this case, the association of a sample
to a particular class (the majority class, for example)
is still a Bernoulli trial. Each pixel also has a weight
vector, wi·, indicating the probability of membership to
each cluster. The random variable of interest is the sum
of the memberships for the cth class and weights to the
jth cluster,

Yc,j = V1cW1j + V2cW2j + · · · + VncWnj ,

where n is the total number of labeled samples. The
labels of the classified pixels are independent of cluster
assignment, making an assumption that Vic and Wij

are independent reasonable. Furthermore, the training
samples are labeled prior to clustering, making the
random variable of interest

Yc,j |(V1c, V2c, . . . , Vnc) =

n
∑

i=1

Wijδφ(i),c,

where φ(i) is the label of the ith pixel, and

δφ(i),c =

{

0 if φ(i) 6= c,
1 if φ(i) = c,

is the Kronecker delta. The probability density function
(pdf) of Yc,j |(Vic, i = 1, . . . , n) =

∑n
i=1Wijδφ(i),c is the

pdf of a sum of individual cluster weights.
Figures 1 and 2 contain experimental frequency

histograms of weights wij for two clusters (K = 2) of a
satellite image. The distribution of the cluster weights
appears to be multimodal, which is consistent with the
data having multiple inherent classes, indicating that
Wij , i = 1, . . ., n, j = 1, . . ., K would not be identically
distributed. A closed form distribution is not readily
available for Wij , but a closed form distribution, or at
least a reasonable approximate closed form distribution,
for W+j =

∑n
i=1Wij exists.

4.1 Normal Approximation to Yc,j

Suppose an image x contains n pixels x(i) ∈ ℜB,

i = 1, . . ., n. For K fixed cluster centers U (k) ∈ ℜB,
k = 1, . . ., K, the assigned weight of the ith pixel to the
jth cluster is

wij =
1/||x(i) − U (j)||22

1
/

K
∑

k=1

||x(i) − U (k)||22

,

which is the inverse of the distance squared over the sum
of the inverse squared distances. (Such inverse distance
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Figure 1. Histogram of cluster weights in one cluster, K=2.
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Figure 2. Histogram of cluster weights in one cluster, K=5.

weights are widely used, e.g., by Shepard’s algorithm
for sparse data interpolation.) Note this is the specific
case in the soft clustering algorithm described above
when p = 2. In this case where a remotely sensed
image is to be clustered, it is reasonable to assume

that x(i), i = 1, . . ., n are generated from a finite
number of multivariate normal distributions. The act
of clustering assumes that the data are generated from
a finite number of distributions, and remotely sensed
earth data are assumed to be generated from normal
distributions. The following proof demonstrates that
under these assumptions (pixels are generated from a
finite number of normal distributions), the Lindeberg
condition is satisfied and therefore the central limit
theorem applies to the sum of a sequence of cluster
weight random variables

∑n
i=1Wij . Let q = ψ(i) denote

the distribution from which X(i) was sampled.

Theorem: Let X(i) , i = 1, 2, . . ., be B-dimensional
random vectors having one of Q distinct multivariate
normal distributions. For i = 1, 2, . . . and j = 1, . . ., K
define the random variables

Wij = Wj(X
(i)) =

1/||X(i) − U (j)||22
∑K

k=1 1/||X(i) − U (k)||22
,



where K is the number of clusters and U (k) ∈ ℜB is the
kth cluster center (and is considered fixed for weight
calculation). Then for any j = 1, . . ., K,

P

{

1

Bnj

n
∑

i=1

(Wij − aij) < x

}

→ 1√
2π

∫ x

−∞
e−

z2

2 dz

as n → ∞, where aij = E[Wij ], b
2
ij = Var[Wij ], and

B2
nj =

∑n
i=1 b

2
ij .

Proof. Wij is a bounded (0 ≤ Wij ≤ 1) measurable
function of a normal random variable, and is therefore
a random variable with finite mean and variance. Fix j
for the remainder of the proof, and let q = ψ(i) denote

which of the Q distributions X(i) is from. In order to
prove

P

{

1

Bnj

n
∑

i=1

(Wij − aij) < x

}

→ 1√
2π

∫ x

−∞
e−

z2

2 dz,

it is sufficient to verify the Lindeberg condition [6]:

lim
n→∞

1

B2
nj

n
∑

i=1

∫

|x−aij|>τBnj

(x− aij)
2dFψ(i),j(x) = 0,

for any constant τ > 0 where Fψ(i),j(x) is the cumulative

distribution function for Wij .

For each q, 1 ≤ q ≤ Q, define Iq = ψ−1(q) =
{i | ψ(i) = q, 1 ≤ i ≤ n}, nq = |Iq |, and for i ∈ Iq
let E[Wij ] = aij = αqj and Var[Wij ] = b2ij = β2

qj .

Now considering only the independent and identically
distributed random variables Wij , i ∈ Iq, the Lindeberg
condition holds:

lim
nq→∞

1

nqβ2
qj

∑

i∈Iq

∫

|x−αqj |>τ√nqβqj

(x− αqj)
2dFqj(x)

= lim
nq→∞

1

β2
qj

∫

|x−αqj |>τ√nqβqj

(x− αqj)
2dFqj(x) = 0.

Since βqj is positive and finite, and the integral is finite,
the limit of the integral is zero as

√
nqβqj → ∞.

Wij , i = 1, 2, . . . , are random variables from Q iid
distributions, Fqj , q = 1, . . . , Q, where the mean of the

qth distribution is αqj , the variance is β2
qj , and the

number of random variables from that distribution is
nq, where

∑Q
q=1 nq = n. As n→ ∞ there is at least one

q for which nq → ∞. For this sequence of independent
random variables from Q distributions, the Lindeberg
condition is

lim
n→∞

1

B2
nj

n
∑

i=1

∫

|x−aij|>τBnj

(x− aij)
2dFψ(i),j(x)

= lim
n→∞

1
Q

∑

k=1

nkβ
2
kj

Q
∑

q=1

nq
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Figure 3. Pdf of Y (normalized) compared to a standard

normal distribution.

·
∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x)

= lim
n→∞

Q
∑

q=1

nq
∑Q
k=1 nkβ

2
kj

·
∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x)

≤ lim
n→∞

Q
∑

q=1

1

β2
qj

∫

|x−αqj |>τBnj

(x− αqj)
2dFqj(x) = 0.

Since each variance β2
qj is positive and finite, and

Bnj =
√

n1β2
1j + · · · ,+nQβ2

Qj → ∞ as at least one

nq → ∞, each integral converges to zero as n→ ∞, and
the Lindeberg condition is verified. Q.E.D.

Remark:The assumption that the X(i), i = 1, 2, . . ., are
generated from a finite number of normal distributions

is stronger than necessary. This proof holds if X(i),
i = 1, 2, . . ., are generated from a finite number of
arbitrary distributions.

Experimental results match this theoretical result, as
illustrated by one experiment in Figure 3.

5 Hypothesis Test
The hypothesis test used in IGSCR to assess the

significance of a cluster association to a class is based on
the normal approximation to the binomial distribution
(2). The null hypothesis is that the true probability of
a pixel belonging to the majority class (for the cluster
of interest) is less than p0, a user supplied value. If
P (Z > ẑ) < α, where α is the user provided Type-I
error, then the null hypothesis is rejected. The null
hypothesis corresponds to the case when the cluster
is impure, and rejecting the null hypothesis equates
with labeling the cluster pure; if the null hypothesis is



not rejected, the cluster is impure and the cluster is
“rejected.”

The hypothesis test for soft clusters is different as
the Bernoulli trials are fixed and testing the probability
p of a success is no longer relevant. A pure soft cluster
should have large weights for the majority class and
comparatively small weights for other classes. One
possible hypothesis test compares the average weight
for one particular cth class with the overall average
weight for all classes in the jth cluster. Starting with
the normal approximation for the sum of the cluster
weights, the standard normal test statistic would be

ẑ =

∑

i∈Jc

(

wij − E[Wij ]
)

√

∑

i∈Jc

Var[Wij ]

,

where Jc is the index set of pixels prelabeled with the
cth class. E[Wij ] and Var[Wij ] are unknown, but can be
reasonably approximated using the sample mean

wj =
1

n

n
∑

i=1

wij

and sample standard deviation

Swj
=

√

√

√

√

1

n− 1

n
∑

i=1

(wij − wj)
2.

The Wald statistic is then

ẑ =

√
nc(wc,j − wj)

Swj

, (3)

where nc = |Jc| and

wc,j =
1

nc

∑

i∈Jc

wij .

Since ẑ is generated (approximately) by the standard
normal distribution, a hypothesis test can be formed
where the null hypothesis is that the average clus-
ter weights corresponding to the cth class are not
significantly different from the average cluster weights
corresponding to all classes, and the alternate hypothesis
is that the average cluster weights corresponding to the
cth class are significantly different from the average
cluster weights corresponding to all classes. Again, since
class memberships are known a priori and all pixels
have some positive membership with all clusters, testing
for class memberships is not meaningful, but testing
for significantly different cluster weights is meaningful.
If P (Z > ẑ) < α, the probability of observing the
difference in the average cluster weights associated with
c and the average cluster weights associated with all
classes in the jth cluster is significant, and the null

hypothesis is rejected. If the null hypothesis is not
rejected, the cluster itself is rejected as impure, and
further refinement is necessary.

One potential issue with the above test is that
the sample mean and standard deviation calculations
assume the sample is identically distributed, which
is specifically not the assumption in this case. A
better hypothesis test acknowledges that the data are
not identically distributed, but are generated from a
finite number of distributions. Since the number of
distributions and the distributions are unknown, the
number of classes and the individual class labels, which
are assumed to correspond to inherent structure of
the data, are used to approximate the true mean
and variance of multiple clusters. Precisely, assume
that all labeled pixel indices i with distribution index
ψ(i) = q correspond to the same class label φ(i) = c. If

i ∈ ψ−1(q), then i ∈ φ−1(c), but i ∈ φ−1(c) does not

imply i ∈ ψ−1(q) (more than one distribution can map to

one class), and Jc = φ−1(c) = {i | φ(i) = c, 1 ≤ i ≤ n}.
The above hypothesis test requires modification to use
class information. In the previous test,

∑

i∈Jc

wij =
n

∑

i=1

wijδφ(i),c,

ẑ =

n
∑

i=1

(

wijδφ(i),c − E[Wijδφ(i),c]
)

√

√

√

√

n
∑

i=1

Var[Wijδφ(i),c]

,

n
∑

i=1

(wijδφ(i),c − E[Wijδφ(i),c])

=

n
∑

i=1

(wijδφ(i),c − aijδφ(i),c)

=

n
∑

i=1

(wijδφ(i),c − αqjδφ(i),c),

recalling that E[Wij ] = aij = αqj for i ∈ Iq. Assume

when φ(i) = c, and distribution index q = ψ(i) corre-
sponds to c = φ(i), then αqj can be approximated by

γcj , the mean of class c = φ(i). Ideally αqj should
be approximated directly, but there is no way to know
ψ−1(q), so essentially ψ−1(q) ⊂ φ−1(c) is being approxi-

mated by φ−1(c). Unfortunately, using the sample mean
of the cth class and the jth cluster to approximate γcj
and therefore αqj breaks down because the sample mean
of the cth class and the jth cluster is both the random
variable on the left side and the approximation of the
expected value on the right side of the minus sign. This



is illustrated below. Approximating γcj (and αqj) with

the sample mean for the cth class,

γcj ≈ wc,j =

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

,

the numerator of the test statistic ẑ becomes
n

∑

i=1

(

wijδφ(i),c − wc,jδφ(i),c

)

=
n

∑

i=1

wijδφ(i),c −

n
∑

k=1

wkjδφ(k),c

n
∑

k=1

δφ(k),c

n
∑

i=1

δφ(i),c

=

n
∑

i=1

wijδφ(i),c −
n

∑

k=1

wkjδφ(k),c = 0.

Thus this test statistic does not work because the

value being tested is the same as the estimated mean

for the cth class when using the Kronecker delta

instead of Bernoulli random variables. Recall that

Yc,j =
∑n
i=1 VicWij , where Vic, i = 1, . . ., n are known

prior to classification/clustering. Consider now the test

statistic

ẑ =
yc,j − E[Yc,j ]
√

Var[Yc,j]
.

Fixing j and c, and recalling that nq = |Iq |, the number

of indices i for which X(i) has the qth distribution,

E[Yc,j] = E

[

n
∑

i=1

WijVic

]

=

n
∑

i=1

E[WijVic]

=
n

∑

i=1

E[Wij ]E[Vic]

=

Q
∑

q=1

nqαqjpc

= pc

Q
∑

q=1

nqαqj ,

where pc is the probability that Vic = 1. Assuming

all the pixels are independent and recalling that

Var[Wij ] = b2ij = β2
qj where i ∈ Iq,

Var[Yc,j ] = Var

[

n
∑

i=1

WijVic

]

=
n

∑

i=1

Var[WijVic]

=

n
∑

i=1

(

E[W 2
ijV

2
ic] − E[WijVic]

2
)

=
n

∑

i=1

(pcE[W 2
ij ] − p2

ca
2
ij)

=

n
∑

i=1

(pc(b
2
ij + a2

ij) − p2
ca

2
ij)

=

Q
∑

q=1

nq
(

pc(β
2
qj + α2

qj) − p2
cα

2
qj

)

= pc

Q
∑

q=1

nq(β
2
qj + (1 − pc)α

2
qj).

In the above formula, pc would be approximated by
its maximum likelihood estimate nc/n = |Jc|/n. In
order to estimate αqj , assume that the qth distribution

corresponds to the cth class, ψ−1(q) ⊂ φ−1(c), and

αqj ≈ wc,j =
1

nc

∑

i∈Jc

wij , c = 1, . . . , C,

where C is the number of classes. Then

E[Yc,j ] = pc

Q
∑

q=1

nqαqj ≈ pc

C
∑

d=1

nd ·
1

nd

∑

i∈Jd

wij

=
nc
n

n
∑

i=1

wij = ncwj ,

and

Var[Yc,j] = pc

Q
∑

q=1

nq(β
2
qj + (1 − pc)α

2
qj)

≈ pc

C
∑

d=1

nd(S
2
wd,j

+ (1 − pc)w
2
d,j),

where

S2
wd,j

=
1

nd − 1

∑

i∈Jd

(wij − wd,j)
2.

Using these expressions for the mean and variance of
Yc,j , the Wald statistic is

ẑ =
yc,j − ncwj

√

√

√

√pc

C
∑

d=1

nd
(

S2
wd,j

+ (1 − pc)w
2
d,j

)

, (4)

and the null hypothesis is rejected if P (Z > ẑ) < α.



6 Conclusions
This paper introduced two possible statistical hy-

pothesis tests for the evaluation of soft clusters for
classification. Test (3) may not work for data sampled
from multiple distributions (the random variables are
assumed to be independent and identically distributed).
Test (4) attempts to use class information for the esti-
mation of means and variances since the distributions
of the data are unknown. Test (4) can be used to
determine if a soft cluster has a statistically significant
association with one particular class. Numerical results
for the application of these two hypothesis tests to soft
cluster evaluation, upon which classification is based, for
several large scale remotely sensed images are presented
in a companion paper.
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