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Abstract – This work introduces an iterative soft clus-
ter refinement method that extensively uses soft cluster
evaluation to determine which clusters would discriminate
between classes in a classification scheme. This iterative
refinement is part of the continuous iterative guided spectral
class rejection (CIGSCR) classification method for remotely
sensed images. Results indicate that CIGSCR produces good
classifications of remotely sensed images, and classification
accuracies are higher using the iterative refinement in
CIGSCR than classifications derived from soft clustering
without iterative refinement.
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1 Background
Semisupervised classification has received a good deal

of attention in the remote sensing community as remote
sensing datasets are characterized by a large number of
dimensions (hyperspectral imagery) and limited train-
ing data. Semisupervised classification algorithms that
involve clustering such as the iterative guided spectral
class rejection (IGSCR) algorithm ([1],[2], [3]) have the
additional benefit of providing a high level of automation
compared to strictly supervised classification algorithms.
In remote sensing, informational class categories that
make up a classification scheme are defined prior to
classification and are identified by humans, whereas
spectral classes or clusters have mathematical properties
(such as mathematically homogeneous spectral wave-
forms) and are more difficult for humans to identify.
For example, suppose a forest/nonforest classification is
desired, and forest and nonforest are the informational
class categories. Each informational class is composed of
multiple spectral classes that can be used in supervised
classification, and the individual spectral classes may

not be spectrally similar to each other despite all being
part of one informational class. Consider the wide range
of tree species that could potentially make up a forest
informational class in a particular image. An unsuper-
vised technique such as clustering can identify individual
classes that are mathematically homogeneous, and has
the additional property of guaranteeing that all types
of land cover present in a dataset are represented in
the spectral classes (clusters). Both tasks are nontrivial
for humans to perform when identifying spectral classes
for supervised classification. Therefore semisupervised
classification algorithms that involve clustering can au-
tomatically identify and label spectral classes, providing
significant automation over supervised or unsupervised
classification alone.

The purpose of this work is to develop an iterative
soft cluster refinement framework, analogous to the
framework in IGSCR, that is capable of producing soft
classifications of remotely sensed images. This frame-
work will potentially affect classification algorithms that
have labeled data and involve clustering. Soft clustering
retains all information regarding the proximity of data
points to clusters, and will directly produce a soft
classification and potentially provide better training
spectral classes for a supervised decision rule.

2 IGSCR
IGSCR is a classification method that uses clustering

to generate a classification model p(ci|x) where x is a
multivariate sample to be classified and ci, i = 1, . . .,
C, is the ith class where there are C classes in the
classification scheme. IGSCR uses clustering to estimate
p(kj |x) in the expression

p(ci|x) =

K
∑

j=1

p(ci, kj |x) =

K
∑

j=1

p(ci|kj , x)p(kj |x), (1)



where kj , j = 1, . . ., K, is the jth cluster out of K
total clusters. IGSCR also uses the clusters to train a
decision rule using Bayes’ theorem [4]

p(kj |x) =
p(x|kj)p(kj)

K
∑

i=1

p(x|ki)p(ki)

. (2)

The prior probabilities of the clusters p(kj) are assumed
to be equal.

Clustering is performed using a discrete clustering
method such as k-means that minimizes the objective
function

J(ρ) =
n

∑

i=1

K
∑

j=1

wijρij (3)

subject to
K

∑

j=1

wij = 1

where wij ∈ {0, 1} is the value in the ith row and jth

column of the partition matrix W ∈ ℜn×K , U (j) ∈ ℜB

is the prototype for the jth cluster kj , x(i) ∈ ℜB is the

ith data point, and ρij = ||x(i) − U (j)||22. The clusters

k1, . . ., kK form a partition of {x(i)}n
i=1. The algorithm

for k-means requires K initial cluster prototypes and
iteratively assigns each sample to the closest cluster
using

wij =

{

1, if j = argmin
1≤j≤K

ρij ,

0, otherwise,

followed by the cluster prototype (mean) recalculation

U (j) =

n
∑

i=1

(wijx
(i))

/

n
∑

i=1

wij

once W has been calculated [5]. This process, guaranteed
to terminate in a finite number of iterations, continues
until no further improvement is possible, terminating at
a local minimum point of (3).

IGSCR uses labeled data in a semisupervised clus-
tering framework to locate clusters that correspond to
classes in a given classification scheme. IGSCR requires
a labeled set of training data comprised of individual
samples within the image to be classified and corre-
sponding class labels. Rather than using the labeled
data to train a decision rule directly, the entire image is
clustered, thereby capturing the inherent structure of all
the data and not just the labeled samples. The clusters
represent spectral classes, and in remote sensing, each
spectral class ideally maps to exactly one class in the
final classification scheme. Once clusters are generated,
each cluster must be assigned to one class or rejected as
impure. While theoretically each cluster should contain

samples belonging to only one informational class, in
practice clusters (spectral classes) that predominantly
contain samples of one class can contain a few samples
from other classes because of inherent errors. However,
if a cluster contains too many samples from different
classes, the cluster itself is considered confused and
should not be labeled with one class. Impure clusters
are rejected and can be further refined in the iterative
part of the algorithm.

The homogeneity test for cluster purity is performed
using the labeled training set. IGSCR produces a
hard classification and uses a discrete clustering method
where each sample is assigned to exactly one cluster.
Let Vc,j be the binomial random variable denoting the
number of labeled samples assigned to the jth cluster
that are labeled with a particular cth class. Let
p be the user-supplied cluster homogeneity threshold
(p = .9 would indicate a cluster is 90% pure with
respect to the majority class), and let α be the
user- supplied acceptable one-sided Type-I error for a
statistical hypothesis test. Then if c is the majority
class represented in the jth cluster, the jth cluster is
rejected if P (Z < ẑ) < 1 − α where Z is a standard
normal random variable, m is the number of labeled
samples in the jth cluster, and

ẑ =
vc,j − mp

√

mp(1 − p)
. (4)

(Typically a continuity correction of 0.5 is added in the
numerator of (4).)

If a cluster is rejected, the samples making up that
cluster can be reclustered in subsequent iterations. All
samples belonging to pure clusters are removed from
the image being clustered, resulting in only samples
belonging to impure clusters being reclustered. Once
more clusters are generated, those clusters are evaluated
for purity, removed from the image, and clustering
is performed again until termination criteria are met.
All samples can belong to pure clusters, leaving no
remaining samples to be clustered, no pure clusters
could be found in the previous iteration, meaning
that the clustering would continue to be performed
on the same data, resulting in the same impure
clusters (assuming deterministic cluster seeding), or a
set number of iterations can be reached, resulting in
termination of the iteration. Note that deterministic
seeding ensures that the iteration will terminate, even
without specifying a maximum number of iterations.

Once the iterative clustering is complete, one or more
classifications is performed. The first classification is
called the iterative stacked (IS) classification because
it is the result of combining or “stacking” all cluster
assignments over all iterations (each sample will be
assigned to at most one accepted cluster). Assume



that all samples not assigned to an accepted cluster
are combined to form one cluster kK+1, and the class
assignment for that cluster is “unclassified” or cC+1.
Then the IS assignment for a pixel using (1) is

IS(x) = argmax
1≤i≤C+1

p(ci|x)

= argmax
1≤i≤C+1

K+1
∑

j=1

p(ci|kj , x)p(kj |x),

where

p(ci|kj , x) =

{

1, if kj is labeled ci,
0, otherwise,

and

p(kj |x) =

{

1, if x ∈ kj ,
0, otherwise,

since cluster assignments are discrete.
The second possible classification, the decision rule

(DR) classification, uses the pure clusters to form a
decision rule. Recall in (2) that

p(kj |x) =
p(x|kj)

∑K
i=1 p(x|ki)

when all the p(kj) are equal. Traditionally, the maxi-
mum likelihood decision rule, assuming a multivariate
normal distribution

p(x|kj) = 2π−B/2|Σj |
−1/2e−

1
2 (x−U(j))T Σ−1

j
(x−U(j)),

is used where Σj is the covariance matrix of the jth

cluster [6]. Since IGSCR produces hard classifications,
the full probability need not be calculated as deter-
mining only the cluster associated with the maximum
probability is necessary. The DR classification function
is

DR(x) = argmax
1≤i≤C

p(ci|x)

= argmax
1≤i≤C

K
∑

j=1

p(ci|kj , x)p(kj |x),
(5)

where

p(kj |x) =











1, if j = argmax
1≤j≤K

(− ln |Σj |

−(x − U (j))T Σ−1
j (x − U (j))

)

,
0, otherwise.

A final classification, the iterative stacked plus (IS+)
classification, combines the DR and IS classifications. If
a sample is labeled as unclassified in the IS classification,
the DR class value is used for the IS+ classification,
otherwise the IS class value is used for that particular
sample. The IS+ classification function is

IS+(x) =

{

IS(x), if x /∈ kK+1,
DR(x), otherwise.

3 CIGSCR
Continuous IGSCR (CIGSCR) uses a similar semisu-

pervised clustering framework to the one established in

IGSCR to produce a soft or probabilistic classification

instead of a hard classification, and uses continuous

algorithms and models instead of discrete algorithms

and models. Recall in (1) that p(ci|kj , x) and p(kj |x) are

either 0 or 1 (discrete) in practice in IGSCR. p(ci|kj , x)

is necessarily discrete because while several clusters can

comprise one class, only one class (theoretically) can

label the members of a particular cluster, but there are

no similar restrictions on p(kj |x). In fact, the clustering

algorithm and the maximum likelihood decision rule in-

dicate positive probabilities that a sample is associated

with each cluster, but IGSCR makes an assignment only

to the cluster with the highest probability.

Consider a soft clustering algorithm that minimizes

the objective function [7]

J(ρ) =

n
∑

i=1

K
∑

j=1

wp
ijρij subject to

K
∑

j=1

wij = 1 for each i

(6)

where wij ∈ (0, 1) is the value in the ith row and jth

column of the weight matrix W ∈ ℜn×K (analogous

to the partition matrix W in (3)), U (j) ∈ ℜB is the

jth cluster prototype, p > 1, and ρij = ρ(x(i), U (j)) =

||x(i) − U (j)||22 is the Euclidean distance squared. The

algorithm that minimizes this objective function is

similar to that of k-means in that it first calculates

wij =
(1/ρij)

1/(p−1)

K
∑

k=1

(1/ρik)1/(p−1)

for all i and j followed by calculating updated cluster

prototypes

U (j) =

n
∑

i=1

wp
ijx

(i)
/

n
∑

i=1

wp
ij .

This iteration (recalculation of the weights followed

by recalculation of cluster prototypes, following by

recalculation of the weights, etc.) is guaranteed to

converge (with these definitions of ρij , U (j), and wij)

for p > 1 [8].

The classification function for IS classification is

IS(x) = p(ci|x) =

K
∑

j=1

p(ci|kj , x)p(kj |x), (7)



where p(kj |x) is estimated using wij and p(ci|kj , x) does
not change from IGSCR. The classification function for
the DR classification is

DR(x) = p(ci|x) =

K
∑

j=1

p(ci|kj , x)p(kj |x)

=

K
∑

j=1

p(ci|kj , x)

[

2e−
1
2 (x−U(j))T Σ−1

j
(x−U(j))

πB/2|Σj |1/2

]

K
∑

l=1

[

2e−
1
2 (x−U(l))T Σ−1

l
(x−U(l))

πB/2|Σl|1/2

] . (8)

An analog for the IS+ classification is unnecessary in
CIGSCR as all samples will be part of pure clusters and
will be classified.

4 Association Significance Test
Clusters will be evaluated using the association

significance test developed in a companion paper. The
association significance test is based on a statistical
hypothesis test using the Wald statistic

ẑ =
yc,j − ncwj

√

√

√

√pc

C
∑

d=1

nd

(

S2
wd,j

+ (1 − pc)w
2
d,j

)

, (9)

where yc,j is the sum of cluster weights for samples
labeled with the cth class to the jth cluster, nc is the
number of samples labeled with the cth class, wj is the
sample mean of all weights in the jth cluster, pc is nc

n ,
n is the number of labeled samples,

wc,j =
1

nc

∑

i∈Jc

wij ,

S2
wc,j

=
1

nc − 1

∑

i∈Jc

(wij − wc,j)
2,

and Jc is the index set of all samples labeled with the
cth class.

The null hypothesis that the average cluster weights
for the cth class are not statistically significantly
different from other cluster weights in the jth cluster
is rejected if P (Z > ẑ) < α, meaning the cluster is not
rejected.

5 Iteration
Together with the cluster association significance test,

the iteration forms the clustering framework in CIGSCR.
The application of a hypothesis test determines which
clusters should be used for classification, and an iteration
works to produce a set of associated clusters with each
class being represented by at least one associated cluster.

This is accomplished by introducing new clusters that
are likely to be associated, and when necessary, are
associated with a class not already represented by a
cluster.

In IGSCR, pure hard clusters are removed from
the image that is clustered in subsequent iterations,
focusing further refinement on clusters that failed to
pass the purity test. K clusters are used for each
iteration, presumably producing smaller clusters as less
data is divided into the same number of clusters. The
underlying assumption is that clusters that fail to pass
the purity test could actually be composed of multiple
clusters that would pass the purity test individually,
and clustering the remaining data into K more clusters
will reveal these smaller clusters. This method will not
directly work on soft clusters as soft clusters cannot be
removed simply by removing any sample associated with
a pure cluster—all samples have a positive probability
of belonging to any particular cluster.

In CIGSCR, unassociated clusters are targeted for
refinement by using their information to create new
clusters that will likely be associated. IGSCR is
effectively locating smaller clusters that when combined
to form a larger cluster would have been rejected.
IGSCR accomplishes this by finding the same number
of clusters (K) in the original dataset and then in
successively smaller subsets of that original dataset. A
similar approach that would locate smaller pure clusters
in rejected clusters is “splitting” a cluster, employed
by Ball and Hall [9] in ISODATA. Clusters are split
by partitioning a cluster into two new clusters and
recalculating new means. Soft clusters are represented
by cluster means, and splitting a soft cluster would
equate with replacing one cluster mean with two cluster
means (calculated based on data associated with a
cluster).

A cleaner algorithmic solution is to add one new
cluster using information contained in the target cluster
(the cluster that would be split), which effectively splits
the cluster into two clusters. When using a clustering
algorithm based on objective function (6), adding a
new cluster guarantees a smaller function value (shown
below) when p = 2. Using only the labeled samples
belonging to the majority class (as determined in the
cluster association significance test) to seed a new
cluster would have the effect of pulling the new cluster
toward those samples. Once another clustering iteration
is completed, the targeted cluster would produce one
cluster that is likely to be associated with the majority
class and another cluster that retains relatively strong
associations with all other classes. In CIGSCR, once the
association significance test is performed, if at least one
cluster is unassociated (and there are no unassociated
classes), the cluster with the lowest value of ẑ is used



to generate a new cluster. The new cluster mean is
determined using

U (K+1) =

∑

i∈Jck

wikX(i)

∑

i∈Jck

wik

, (10)

where k is the cluster with the lowest value of ẑ, ck

is the majority class in cluster k, and recall that Jc is
the index set of labeled samples whose label is c. This
formula also works when a class other than the majority
class is used to seed a new cluster mean.

A shortcoming in IGSCR is that there is no guarantee
that any clusters will be created and labeled with
any particular class, and if a particular class is not
represented by a cluster, the desired classification cannot
be performed. In CIGSCR, this issue is addressed by
adding a new cluster using information from a particular
class if that class is not represented in the associated
clusters. If a class c is not represented in the associated
clusters, the cluster that is closest to being associated
with c is used to generate a new cluster using (10) with
ck = c. The “closest” cluster is determined to be the
cluster with the highest ratio of the average membership
of class c to the average membership of the majority
class.

When there are classes not represented by associated
clusters and there are unassociated clusters, only one
method can be used to determine the creation of a new
cluster. If a cluster is unassociated, it is simply not used
in classification. It is more important to have each class
represented by the associated clusters than to refine an
unassociated cluster, because the desired classification
cannot be applied unless all classes are represented by
associated clusters. Therefore adding a new cluster
so that all classes will be represented takes precedence
over adding a new cluster because an existing cluster is
unassociated.

Finally, the theorem proving that adding one cluster
mean will result in a smaller value of (6) is presented
below.

Theorem:Given an integer K > 0, positive real numbers
ρij , i = 1, . . ., n; j = 1, . . ., K + 1, defining a point

ρ ∈ ℜn×K+1, and the objective function

J (K)(ρ) =

n
∑

i=1

K
∑

j=1

w2
ijρij ,

for K clusters where

wij =
1/ρij

K
∑

k=1

1/ρik

,

the objective function

J (K+1)(ρ) =

n
∑

i=1

K+1
∑

j=1

ŵ2
ijρij ,

for K + 1 clusters where

ŵij =
1/ρij

K+1
∑

k=1

1/ρik

,

satisfies

J (K+1)(ρ) < J (K)(ρ).

Proof: Note that the ρij do not change with the

addition of the (K + 1)st cluster prototype, however
ŵij < wij for j < K + 1 because the denominator of

ŵij has an additional term. Let J
(K)
i =

∑K
j=1 w2

ijρij

and J
(K+1)
i =

∑K+1
j=1 ŵ2

ijρij . It is sufficient to show that

J
(K+1)
i < J

(K)
i for each i to prove that J (K+1) < J (K).

Let

S1 =

K
∑

k=1

1/ρik and S2 =

K+1
∑

k=1

1/ρik.

Then

w2
ij =

(1/ρij)
2

S2
1

and ŵ2
ij =

(1/ρij)
2

S2
2

.

J
(K)
i − J

(K+1)
i =

K
∑

j=1

(1/ρij)

S2
1

−

K+1
∑

j=1

(1/ρij)

S2
2

=
S2

2

∑K
j=1(1/ρij) − S2

1

∑K+1
j=1 (1/ρij)

S2
1S2

2

.

Examining only the numerator in the previous term,

(S1+(1/ρi,K+1))
2

K
∑

j=1

(1/ρij)

− S2
1





K
∑

j=1

(1/ρij) + (1/ρi,K+1)





= (S1 + (1/ρi,K+1))
2S1 − S2

1(S1 + (1/ρi,K+1))

= S3
1 + 2S2

1(1/ρi,K+1) + S1(1/ρi,K+1)
2

− S3
1 − S2

1(1/ρi,K+1)

= S2
1(1/ρi,K+1) + S1(1/ρi,K+1)

2

> 0

yielding

J
(K+1)
i < J

(K)
i .

Q.E.D.



Assuming that the clustering algorithm locates a
local minimum point of the objective function, the
combination of the clustering algorithm and this cluster
prototype addition are guaranteed to move toward a
smaller objective function value. If left unchecked,
infinitely many clusters could be added, and the
algorithm would continue to find smaller objective
function values. The association significance test plays
a crucial role in the termination of this iterative process.
Once all clusters pass the association significance test
and each class has at least one associated cluster, the
iteration stops because the higher level objective has
been met: clusters that significantly correspond to all
classes have been located. The iteration also terminates
when a maximum number of clusters is reached, and
only those clusters that pass the association significance
test are used for classification.

6 Experimental Results and Discussion
The dataset used to obtain experimental results for

IGSCR and CIGSCR is a mosaicked Landsat Thematic
Mapper (TM) satellite image taken from Landsat
Worldwide Reference System (WRS) path 17, row 34,
located in Virginia, USA, shown in Figure 1. This
image, hereafter referred to as VA1734, was acquired
on November 2, 2003 and consists largely of forested,
mountainous regions, and a few developed regions that
are predominantly light blue and light pink in Figure 1.
Figure 1 contains a three color representation of VA1734
where the red color band in Figure 1 corresponds to
the near infrared wavelength in VA1734, the green color
band in Figure 1 corresponds to the red wavelength in
VA1734, and the blue color band in Figure 1 corresponds
to the green wavelength in VA1734.

The training data for this image was created by
the interpretation of point locations from a systematic,
hexagonal grid over Virginia Base Mapping Program
(VBMP) true color digital orthophotographs. A two
class classification was performed (forest/ nonforest),
and classification parameters and results are given in
Tables 1 and 2. Classification images for this dataset
are given in Figures 2 (DR image) and 3 (IS image).

Validation data in the form of point locations at the
center of USDA Forest Service Forest Inventory and
Analysis (FIA) ground plots were used to assess the
accuracy of this classification. Since these validation
data are typically used to evaluate crisp classifications,
only homogeneous FIA plots were used (either 100
percent forest or nonforest), and these plots were
obtained between 1997 and 2001. Accuracy was assessed
based on an error matrix where classification results for
specific points (not included in the training data set) are
compared against known class values. The accuracies

0 20 4010 Kilometers

Legend

Virginia 17-34

RGB

Red:    NIR

Green: Red

Blue:   Green

Figure 1. Landsat ETM+ path 17/row 34 over Virginia, USA

with area of interest highlighted..

0 30 6015 Kilometers

Legend

Virginia 17-34 CIGSCR DR

Forest
High : 1

Low : 0

Figure 2. CIGSCR DR classification using 10 initial clusters ..

reported in Tables 1 and 2 were obtained by first
converting all soft classifications to hard classifications
for the purpose of comparing hard classification values
to hard ground truth values.

The soft clustering and soft classification in CIGSCR
can result in qualitatively different classifications than
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Figure 3. CIGSCR IS classification using 10 initial clusters ..

Table 1. IGSCR and CIGSCR decision rule (DR)
classification accuracies for VA1734.

no. init. IGSCR CIGSCR clustering

clusters p = .9, α = .01 α = .0001 (no iteration)

10 75.49 88.74 72.26
15 74.56 80.50 73.72
20 89.57 79.87 76.54
25 84.25 81.44 77.58

Table 2. IGSCR iterative stacked plus (IS+)
and CIGSCR iterative stacked (IS) classification
accuracies for VA1734.

no. init. IGSCR CIGSCR clustering

clusters p = .9, α = .01 α = .0001 (no iteration)

10 75.39 83.63 72.26
15 74.56 76.96 72.99
20 88.95 75.60 76.85
25 83.94 78.52 76.75

IGSCR. Even when the final classifications are similar,
CIGSCR provides more information through soft clas-
sification. Furthermore, based on accuracies reported
in Tables 1 and 2, CIGSCR is less sensitive to the

number of initial clusters than IGSCR. As shown in
Tables 1 and 2, IGSCR can be sensitive to the number
of initial clusters. The set of clusters ultimately used
for classification in IGSCR is directly affected by the

number of initial clusters and the homogeneity test,
and furthermore, when all clusters fail the homogeneity

test, the iteration terminates and no more clusters are
found. The number of clusters used for classification
can vary widely depending on the number of iterations
completed as each iteration potentially produces several
pure clusters. The classification accuracies reported
for CIGSCR in Tables 1 and 2 are more consistent
as CIGSCR does not have the same sensitivity issues.
First, the association significance test no longer requires
a user input threshold like the homogeneity test. The
homogeneity test evaluates the observed values against
a user supplied probability of observing a specific
class (within a cluster), but the association significance
test determines if the average cluster memberships per
class are statistically significantly different (requiring no
user specified probability). Secondly, the iteration in
CIGSCR is fundamentally different from the iteration in
IGSCR. While each iteration in IGSCR locates multiple
clusters, each iteration in CIGSCR adds one additional
cluster, and terminating this iteration potentially ex-
cludes many fewer clusters from the final classification
than terminating the iteration in IGSCR (especially
when few iterations occur). As classification methods
are already sensitive to training data and clustering
methods are sensitive to initial prototype locations,
classifications being sensitive to fewer parameters is a
desirable property.

Perhaps the most important question about this
iterative clustering scheme is whether using the com-
bination of the association significance test and the
iteration improves the clustering for the purposes of
classification. Each cluster is labeled with the class
that has the highest average membership in the cluster.
Observe in experimental runs in Tables 1 and 2 that
all classification accuracies using just clustering are
lower than corresponding classification accuracies using
CIGSCR. Based on the available results in Tables 1
and 2, the semisupervised clustering scheme in CIGSCR
improves classification accuracies when training data
are available to influence clustering.

7 Conclusions
This paper introduces an iterative soft clustering

mechanism for soft classification. By incorporating a soft
cluster evaluation method, the association significance
test presented in a companion paper, into the iteration
proposed in this paper, clusters are iteratively improved
for the purposes of classification. Results in this
paper demonstrated that a soft CIGSCR classification
method based on the association significance test and
iteration could produce classifications that contain more
information than IGSCR classifications. CIGSCR
classifications are less sensitive to the number of
initial clusters than IGSCR classifications. Finally,



classification accuracies were higher using the iterative
clustering method proposed in this paper than just soft
clustering with no refinement. The iterative clustering
refinement mechanism proposed in this paper has the
potential to affect other classification methods that
utilize clustering.
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