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ABSTRACT

Theoretical molecular biologists attempt to describe cellular
processes and regulatory networks with continuous and dis-
crete mathematical models. Previous practice has been to de-
velop models largely by hand, and then to validate them pri-
marily by comparing time series plots versus the observed ex-
perimental results. This paper reports our experiences in de-
signing and building a modeling support environment (MSE)
for cell cycle models. We describe improvements to the devel-
opment process for molecular network models by (a) identify-
ing the key elements of the existing modeling process, (b) in-
corporating simulation methodology into a revised modeling
process, and (c) building and testing software that supports the
revised modeling process.

1 INTRODUCTION

Mathematical models of biochemical control systems attempt
to derive observed physiological properties of cells from the
underlying molecular regulatory networks. Examples in-
clude growth and division, chemotaxis, secretion and circa-
dian rhythms. The hope is that creating such models will lead
to a higher-level understanding of the biological processes in-
volved. The common form of such models is (at some point
in the process) systems of differential equations with discrete
switching. A number of independent groups have been de-
veloping tools to support aspects of the modeling process, a
sampling includes [24, 27, 33]. BioSPICE [8] is a major effort
by DARPA to provide a new generation of interoperable mod-
eling and simulation tools. It seeks to improve the quality of
pathway modeling by providing the community with common
languages for expressing models [15, 21] and interoperabil-
ity between various model description editors, simulators, and
analysis tools.

However, the recent state of pathway modeling has been

largely ad hoc and labor intensive as most modelers have not
tried existing tools, or those tools have proved inadequate for
their needs. Many modelers still work by hand-sketching their
ideas (see the discussion of wiring diagrams below) and then
manually converting those sketches to differential equations.
Analysis often involves visual comparisons between time se-
ries plots and experimentally collected results.

This paper describes how introducing appropriate modeling
tools can improve the speed and accuracy of the model devel-
opment process (which directly permits the creation of larger,
more complex models), and also can lead to a more disciplined
approach to the model lifecycle.

We present a brief description of typical molecular regu-
latory network models in Section 2. The original modeling
process observed in a representative portion of the commu-
nity is described in Section 3. Section 4 describes how the
conical methodology [29] relates to the observed modeling
process, and can be used to improve the modeling lifecycle.
Section 5 briefly describes the JigCell modeling support envi-
ronment (MSE) developed for cell cycle modeling and related
problems, and compares JigCell to existing pathway model-
ing software. Section 6 describes the impact that the Systems
Biology Markup Language (SBML) standardization effort and
the BioSPICE project, of which JigCell is a part, have had on
the modeling community. Section 7 presents our conclusions.

2 MOLECULAR REGULATORY NETWORKS

A simple example of a regulatory network is the set of reac-
tions controlling the activity of MPF (mitosis promoting fac-
tor) in frog eggs (Figure 2). Such networks are often repre-
sented as graphs where vertices represent substrates and prod-
ucts (collectively referred to as species), and labeled directed
edges connecting vertices represent the reactions. Chemical
reactions cause the concentrations of the chemical species (Ci)
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to change in time according to the equation

dCi

dt
=

R∑

j=1

Pijvj , i = 1, . . . , N

where R is the total number of reactions, vj is the velocity of
the jth reaction in the network, and Pij is the stoichiometric
coefficient of species i in reaction j (pij < 0 for substrates,
pij > 0 for products, pij = 0 if species i does not take part
in reaction j). The full set of rate equations is a mathemati-
cal representation of the temporal behavior of the regulatory
network. These equations are then solved numerically [35]
and the model behavior is interpreted from time-course output
of the species concentrations. Modelers are faced with many
computational problems: accurately and efficiently solving
equations when velocities are characterized by widely varied
time constants, finding steady state solutions, estimating rate
constants by fitting numerical solutions to experimental data,
and identifying bifurcation points in the multi-dimensional pa-
rameter space.

For example, a current model of the budding yeast cell cy-
cle consists of about 30 differential equations containing 100
rate constants. The parameters are estimated from the cell-
cycle behavior of more than 100 mutants defective in the reg-
ulatory network. Simulating the entire set takes from a few
minutes to an hour on a desktop PC for one choice of kinetic
constants. To fit the model to the data by nonlinear regression
will likely require thousands of repetitions of the full calcula-
tions. A model of such complexity (10-100 equations) repre-
sents the upper limit of what a dedicated modeler can produce
“by hand” with a good numerical integrator like LSODE [16].
To adequately describe fundamental physiological processes
(such as the control of cell division) in mammalian cells will
require models of at least 100-1000 equations. To handle this
next generation of dynamical models will require sophisticated
software to automate the modeling cycle: network specifica-
tion, equation generation, simulation and data management,
and parameter estimation.

Ongoing efforts such as the DARPA BioSPICE initiative [8]
aspire to support the necessary increase in model size. This
project supports approximately fifteen research groups, in-
cluding our own. The goals of BioSPICE are to advance the
broad efforts of biochemical pathway modeling by supporting
modeling efforts, experimentation efforts, and software tool-
building efforts together. Software efforts are not just to pro-
vide sets of tools to modelers, but to make the tools developed
by the various groups interoperable. Additionally, tools de-
veloped as part of BioSPICE are made freely available under
an open source license. While it is not known yet whether
the interoperability goals will be met, the BioSPICE project
is generating the potential for interaction through the defini-
tion of APIs for communication between tools, and language
definitions for data such as model definitions and simulation
outputs.

refit

Equations

Time Series
Plots

Idea

Publish

Wiring
Diagram

evaluate

translate

design

accept

restart

redesign

repair
Differential

Figure 1: Original Modeling Process

3 ORIGINAL MODELING PROCESS

Figure 1 shows a modeling process that has successfully de-
veloped several biochemical pathway models [36]. The pro-
cess evolved over more than 10 years of developing models.
It is not based on formalisms nor documented; new modelers
learn the process through demonstration and mentoring. Until
recently, the modelers’ tools were primarily off-the-shelf for
solving and analyzing differential equations, and not special-
ized for pathway modeling.

Before a model can be developed, there must be a problem
that the model intends to solve. Problem formulation includes
analysis of requirements, identification of a solution method,
and specification of modeling objectives [4]. Without a for-
mulated problem, the modeler risks inadequately solving the
problem or solving the wrong problem. A notable feature of
the original modeling process is that it deals solely with model
development and does not contain problem formulation. Over
the past two years of our observation, this particular group of
modelers has not formulated a completely new problem (in the
sense of wishing to develop a model for a new organism, or ap-
ply new solution techniques to a previously developed model).
Instead, they expand existing models by attempting to match
additional experimental observations. Is this infrequent refor-
mulation an inherent property of the problems these modelers
are attempting to solve or a side effect of the current model-
ing process? Observations with different modeling processes
might answer this question in the future.

The original modeling process has four primary stages: de-
sign, translate, evaluate, and accept. Models are created and
refined in the design and translate stages. Testing occurs dur-
ing the evaluate stage. The accept stage produces a presentable
model from the information the modeler has recorded. This
may be the simplest process that could successfully build a
model.

In the ensuing text, a stage labeled “x” in a diagram will be
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Figure 2: Wiring Diagram

denoted by x
−→, and such symbols are used to mark the para-

graph where those stages are discussed. Stages drawn with
solid lines in diagrams indicate successful completion of a pro-
cess. Stages drawn with dashed lines indicate error-recovery
activities.
design
−−−−→ The design stage begins with creating a wiring di-
agram from an idea of how a biological process is carried
out. The wiring diagram is a graph that captures the chemical
species (also known as products and reactants) at the nodes,
and represents interactions that create, destroy, and convert
these species at the arcs. Additionally, the wiring diagram may
note the kinetic information for a reaction: describing the me-
chanics of the reaction and the rate at which the reaction oc-
curs. Figure 2 is a wiring diagram depicting post-translational
modification of cyclin, an important regulation process, in frog
egg extracts based on the model in [25].

The notation for wiring diagrams is not currently standard-
ized. Modelers often invent ad hoc notation to express abstrac-
tions, replication, and unusual processes. Kinetic information
is frequently presented separately from the wiring diagram or
must be inferred from figures. Without full information about
the rate laws and constants, the model can be structurally ana-
lyzed but not simulated.

Since the wiring diagram often lacks full details of the ki-
netics, it is typical for our modelers to first rewrite the model as
a series of chemical reaction equations, along with appropriate
kinetic functions to describe the reaction.
translate
−−−−−−→ The translate stage is the process of converting the
reaction equations to systems of ordinary differential equa-
tions. For each species in the system, the modeler creates a
differential equation. Reactions that involve the species de-
termine the right hand side of the differential equations. Pa-
rameters for the differential equations are set according to the
kinetic information for the reaction. Frequently, exact values
for these parameters are not known. In this case, estimates
are made for the parameter values and updated as the model is
developed.

In some cases, a protein is never created nor destroyed, but
is converted between different forms. When this occurs, the
quantity is said to be conserved, and one of the differential
equations is replaced with an algebraic expression called a
conservation relation. In addition to the continuous differential

Table 1: Equations from Wiring Diagram

dC25a

dt
=

k25f ∗ (MPFa + ε1) ∗ C25i

J25f + C25i

−
k25r ∗ C25a

J25r + C25a

C25i = 1.0− C25a

dCycB
dt

= k1 − CycB ∗ (Cyclosome + k3 ∗ Cdk1)

Cyclosome = (k′

2
∗ Csomi + k′′

2
∗ Csoma)

dMPFa

dt
= k3 ∗ CycB ∗ Cdk1 + (k′

c ∗ C25i + k′′

c ∗ C25a) ∗ MPFi

− (k′

w ∗ Weei + k′′

w ∗ Weea + Cyclosome) ∗ MPFa

dMPFi

dt
= (k′

w ∗ Weei + k′′

w ∗ Weea)

− (k′

c ∗ C25i + k′′

c ∗ C25a + Cyclosome) ∗ MPFi

Cdk1 = 1.0− MPFa − MPFi

dWeea

dt
=

kWeer ∗ Weei

JWeer + Weei

−
kWeef ∗ (MPFa + ε2) ∗ Weea

JWeef + Weea

Weei = 1.0− Weea

dCsoma

dt
=

kcyf ∗ (MPFa + ε3) ∗ Csomi

Jcyf + Csomi

−
kcyr ∗ Csoma

Jcyr + Csoma

Csomi = 1.0− Csoma

equation model, there is also a discrete event model. Certain
cellular processes, such as cell division, are modeled by dis-
crete events that set species values, alter rate laws or constants,
and switch between sets of differential equations driving the
continuous model. Table 1 shows a system of ordinary dif-
ferential equations and conservation relations produced from
Figure 2.
evaluate
−−−−−→ The evaluate stage begins by generating time se-
ries plots of important species concentrations from the model.
These plots correspond to experimental observations of the
process in the lab. The modeler compares the time series
plots with the experimental observations and judges whether
the model adequately represents the biological process. In ad-
dition to determining if a time series matches observed con-
centrations, the modeler might also seek to determine if gross
physical behavior has been reproduced, such as an appropri-
ate mass at cell division or death of the cell at the appropriate
stage in the cell cycle.
accept
−−−−→ The accept stage is an assertion that the model ade-
quately represents the biological process and consists of final
preparations for archiving and disseminating the model.

The remaining stages in the original modeling process are
error recovery stages. Errors are detected by informal exami-
nation of time series plots. The modeler must infer the nature
and location of the error from experience. Because the devel-
oped models are typically underspecified, the modeler cannot
always accurately identify the cause of an error. Laboratory
experiments can test hypotheses, but are extremely expensive.
In general, the goal of the modelers is to match the existing
collection of laboratory results.
redesign
−−−−−→ The redesign stage corrects errors in the wiring dia-
gram. Reactions are added and deleted based on the modeler’s
developing intuition about what mechanisms must be included
in the model to adequately reproduce the desired experimental
behavior.
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repair
−−−−→ The repair stage corrects errors made in the translation
between wiring diagram and differential equations. Manually
creating differential equations is time consuming and prone
to error. Tedious checking between the wiring diagram and
differential equations is required to detect and correct errors in
translation.
refit
−−−→ The refit stage corrects errors made in the assignment
of differential equation parameters. New estimates are made
for the kinetic rate constants based on comparison with known
experimental results. The modeler typically changes only a
small number of rate constants at each iteration due to their
potential interactions.
restart
−−−−→ The restart stage is the termination of a particular
model and marks the start of the next idea of how a biolog-
ical process is carried out.

4 APPLYING A METHODOLOGY

The original modeling process has successfully developed
models that define the current state of the art. However, the
modeling community recognizes that they are at the limit of
the complexity their current methodology can support, which
is driving many new efforts in tool development such as
BioSPICE. Methodologies assist in understanding the model
development process, and indicate requirements for support-
ing that process [6]. Formal methodological approaches pro-
vide well-defined and tested techniques for the model devel-
opment process.

Based on our experience with the original modeling process,
we enumerate some capabilities that a methodology needs to
support this modeling community. Modelers have an ulti-
mate goal of producing models that are validated and accepted.
Demonstrating that their models are valid and should be ac-
cepted requires performing verification, validation, and testing
(VV&T). Modelers should employ VV&T frequently to min-
imize wasted effort on bad models. Models developed by the
original modeling process have proved extremely long-lived
and are repeatedly adapted to meet changes in specification.
We expect this to continue and so require a modeling process
that is capable of introducing change at any stage without un-
due cost. Computational technology is also expected to change
significantly during the lifetime of a model; models and the
modeling process need to be insensitive to the runtime host
and adaptable to high performance computing techniques of
the next 10 years. Using the terminology of [30], our model-
ing process must primarily support correctness and testability,
secondarily support adaptability, maintainability, and portabil-
ity, and test throughout the model lifecycle.

We select the conical methodology [29], as a methodology
supportive of our requirements and with sufficient adaptabil-
ity to capture our original and desired modeling processes.
[4] describes a model lifecycle compatible with the conical
methodology; we will use similar terminology to describe
our modeling process. The primary objectives of the conical

methodology are correctness, testability, adaptability, reusabil-
ity, and maintainability [30]. This is a good match with our
primary and secondary requirements. The conical methodol-
ogy prescribes a top-down model definition phase followed by
a bottom-up model specification phase. As we are creating a
domain-specific MSE, we significantly reduce the amount of
work required in the definition phase by predefining constructs
in our tools.

4.1 Goals for Improving the Process

After we documented the original process, examined method-
ological frameworks, and listened to the concerns of modelers,
we identified four areas for which the modeling process needs
to be improved: documentation, testing, standardization, and
automation. These four areas are important for developing
models quickly and accurately. Independent verification and
validation are testing activities performed by someone other
than the model developer with the goal of improving the qual-
ity of the model [2]. Independent testing reduces potential
modeler bias in evaluation, promotes earlier error detection,
reduces error cost, and enhances operational correctness. We
want to introduce independence into the modeling process at
each iterative cycle with the goal of supporting independence
for all testing activities. This level of support requires signifi-
cant advances in the four outlined areas. We believe that mak-
ing these improvements will ultimately lead to an increased
rate of model accreditation and acceptance.

The goal of documentation is to record critical information
about the modeling process. Model documentation is needed
at every stage of the modeling process and is critical for fu-
ture planning of modeling tasks. We want to record the model
itself each time the description of the model is transformed.
We want to record the procedure used for testing to support
automated testing and review of VV&T methods. We want to
record the results from testing for presentation and for com-
parison against future tests.

Comparison with experimental data has been the main test-
ing technique used for validating these models. However, the
quantity and quality of experimental data available for a par-
ticular system may be limited. It is a major expense to conduct
new laboratory experiments for further testing or expansion
of the model. In contrast, modeler time is relatively cheap.
We emphasize verification during model construction to pre-
vent the introduction of errors that strain our limited testing re-
sources. The goal of testing is to introduce VV&T activities as
soon as possible into the modeling process and to continuously
monitor for introduced errors. We codify several indicators of
model credibility [3] as automated tests that can be performed
continuously during model development. When working with
the wiring diagram, we want to verify that the graph structure
of the diagram corresponds to the modeler’s understanding of
the structure. We want to verify that the names of species,
rate laws, and constants are used consistently across the dia-
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gram. When building the executable model, we want to verify
that the simulator can properly execute our model and that all
required information is available. We want to perform the pri-
mary testing activities from a recorded plan that can be defined
by an agent independent of the design or specification teams.

The goal of standardization is to adopt uniform notations
and processes that reduce burdens on communication and de-
velopment. For our modelers, a wiring diagram is the ini-
tial abstract representation for the model. Unfortunately, no
standards exist for the graphical language of wiring diagrams,
though the representation of Kohn [23] is becoming increas-
ingly popular. The pathway modeling community is currently
involved in standardizing the Systems Biology Markup Lan-
guage (SBML), an XML-based representation of models at the
chemical reaction level [18, 21]. While it is hoped that SBML
will apply to wiring diagrams in the sense that model editing
tools should be able to convert between SBML and wiring dia-
gram representations, SBML files are not meant to be directly
edited by modelers. The main purpose of SBML is to facilitate
model exchange between modeling groups, who will then load
the models into ad hoc editing tools. Biological models can
have operations repeated across multiple reactions and incor-
porate subcomponents developed as part of other models. Suf-
ficient support for interchanging model fragments would allow
replacing both with well-tested black-box subcomponents.

We can also employ standardization at each stage of the
modeling process by using domain-specific information to
construct uniform sequences of tasks. A uniform process re-
duces the developmental tasks required of modelers and can
prevent some errors in the planning stage of the modeling pro-
cess.

Most of the existing modeling process consists of work that
is performed repeatedly. The goal of automation is to have the
computer perform some of these repetitive tasks, and speed up
other tasks substantially. VV&T activities exist as automatable
tasks throughout the modeling process; supporting these ac-
tivities with automated tools can significantly reduce the time
and effort for model testing [5]. Modelers repeatedly mod-
ify parameter and initial condition sets, at each modification
comparing the revision against experimental data. We want to
perform regression testing as frequently as possible and repeat
testing activities from previous iterative cycles to ensure that
model quality is maintained after each model transformation.
Our testing activities should be numerous and specific so that
when an error is introduced, we can identify what stage the er-
ror was introduced at and in what component of the model the
error is located. When the user is engaged in modifying the
model, the testing process should be conducted automatically,
and feedback on the relative performance of the modification
should be supplied automatically.

4.2 Revised Modeling Process

The revised modeling process, Figure 3, begins with an al-
ready defined problem. This problem definition includes an
analysis of requirements and an identification of modeling ob-
jectives. We must make an assumption here that our mod-
eling tools are adaptable to the solution technique chosen as
part of the problem definition. Domain specificity allows us to
make this assumption: the tools were developed specifically to
meet the needs of biological modelers who have a large class
of problems of interest.

From the problem description, modelers begin to develop
model ideas that they believe will satisfy the problem require-
ments. The process of realizing and testing these ideas is ex-
tended from the original modeling process.
design
−−−−→ Starting with a conceptual model for a biological pro-
cess, the modeler must first produce a model that can be un-
derstood by others. In addition to the wiring diagram or reac-
tion equations, a complete model requires rate laws, constants,
and the discrete event model that will control switches in the
differential equation model. Models at this stage can be struc-
turally tested and checked for completeness and consistency
of kinetic information.
translate
−−−−−−→ The model must then be translated from a human-
understandable form to an executable form. For the domain of
biological modeling, we possess a significant amount of infor-
mation about this transformation process. A sufficiently de-
scribed model translates by a mechanical process. The mod-
eler only needs to tweak the control parameters for the eval-
uation process. However, the model must still be verified to
ensure that the model was sufficiently described before trans-
lation, self-consistent, and tolerant of the numerical errors to
which the chosen simulation process is susceptible.
evaluate
−−−−−→ After a model is simulatable, the modeler tests it
against the requirements and objectives in the problem defini-
tion. VV&T activities in the evaluate stage likely account for a
significant portion of the model development time and should
have computer assistance to automate the test process [5]. En-
tering the problem definition only once and automating the
testing process from previous iterative cycles of the modeling
process are important for reducing model development time.
Additionally, there should be provisions for independent ex-
ecution of the evaluate stage to prevent modeler bias in the
testing process.
check
−−−→ A model that meets the requirements and objectives
stated in the problem might still be rejected. In the biologi-
cal domain, two reasons this occurs are that the model is in-
sufficiently based on established biological processes or that
the model is not significantly better than an existing, simpler
model. The check stage addresses these issues. Comparing
the proposed model against accepted models [42] represent-
ing similar processes can test the first. Performing a statistical
analysis between the proposed model and a collection of mod-
els for the same system can test the second. Both techniques
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test the model against other models of biological systems.
accept
−−−−→ and reject

−−−−→ The accept stage is relatively unchanged
from the original modeling process. We formalize the prepa-
rations in the original accept stage as the process of creating
documentation and presentations to show that the model is suf-
ficiently accurate for its intended purpose [4]. Additionally, we
introduce the reject stage for models that pass all of our tests
but are rejected by decision makers.

The testing phases of the modeling process have been con-
siderably augmented from the original process. Models are
tested at every stage that creates or transforms a recorded
model description. Additionally, the results of model testing
more specifically point to causes of errors and direct the mod-
eler to an appropriate stage for correcting the error.
test
−−→ Test stages represent VV&T activities that take place in
real time during model development. Continuous verification
is especially important when the amount or quality of experi-
mental data is limited. A test stage operates concurrently with
tool use and indicates errors found in model information en-
tered in the tool. Errors found and corrected in a test stage do
not propagate to other stages of the modeling process. This
reduces the amount of time to correct the error and reduces
unnecessary switching between tools.
redesign
−−−−−→ and repair

−−−−→ We have condensed the error recovery
stages to redesign and repair, which correspond to activities
that correct errors detected by validation and verification, re-
spectively. When describing the software that implements this
revised modeling process, we will once again enumerate spe-
cific types of error recovery activities.

The location, scope, and frequency of testing activities are
the most significant difference between the original and re-
vised modeling processes. Modelers get immediate feedback
about errors detected during the process of transforming the
model from one form to another. For errors that cannot be
automatically detected, we attempt to identify more specifi-
cally the source and type of error so that the modeler spends
less time diagnosing the problem. We hope that increasing the
specificity of error reporting leads to a smaller average error
recovery time. Moreover, even though we cannot always au-
tomatically detect where and how an error was introduced, we
can automatically perform modeler-defined diagnostics to de-
termine that there definitely was an error at some point in the
last iteration of the process.

5 JIGCELL

JigCell is a domain-specific MSE for biological pathway mod-
eling, intended ultimately to become a problem solving envi-
ronment (PSE) in the sense of [32] and [39]. JigCell’s user
workflow, Figure 4, corresponds closely with the modeling
process we have identified. Table 2 lists support for our de-
fined modeling goals in this MSE.

We have constructed a tailored environment rather than bas-
ing it on an existing, general-purpose MSE [7, 26]. We intend
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Figure 3: Revised Modeling Process

to support users in biology and related fields who do not have
significant experience in formal modeling (but who are domain
experts). During the development of JigCell, we supplied the
software to biologists and modelers for testing. As well as
finding errors, they gave us feedback about new features and
priorities for development.

We incorporate off-the-shelf components such as numerical
libraries, visualization tools, and communications protocols
where quality implementations exist and technical specifics
about the component can be hidden from the user. This ap-
proach has not been a significant drawback: the majority of de-
velopment work relates to domain-specific support rather than
modeling infrastructure.

Development versions of JigCell are freely available at [1].
Official releases of JigCell are available as part of the
BioSPICE releases [8].

5.1 JigCell Tools

The Model Builder creates a model specification that incor-
porates the wiring diagram, kinetic information, and discrete
event model. A spreadsheet interface organizes the informa-
tion of the wiring diagram and kinetics as a collection of chem-
ical reaction equations. Each row of the Model Builder spread-
sheet (Figure 5) specifies a chemical reaction equation includ-
ing substrates, products, kinetic rate law, and kinetic rate con-
stants. Chemical equations are a natural representation for
many biological processes of interest and are applicable to a
wide variety of fields outside biological modeling.

Restrictions are placed on the class of discrete event models:
events can only be triggered based on algebraic conditions of
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Figure 5: Model Builder Interface with Equations from Wiring Diagram

Table 2: Support for Modeling Goals

general record model artifacts Partial
record model testing procedure Full
record model testing results Full

design verify consistent naming Partial
VV&T model structure
abstract repeated operations Partial
abstract compound operations
identify rate laws and constants Full
standardize notation Full

translate generate differential equations Full
find conservation relations Full
verify execution requirements Full
verify well-formedness Partial

evaluate make VV&T repeatable Full
support independent VV&T Full
identify causes of errors Partial
standardize process Full

check make covalidation repeatable Partial
support independent covalidation
identify causes of errors Partial
standardize process Partial

species values and can only modify parameters, constants, and
species values in the continuous model. However, these dis-
crete models are sufficient for the biological systems we have
studied and are easily and directly created by domain experts
without modeling experience. For example, the discrete model
can easily handle such processes as cell division: mass at time
t + ∆t is set to one-half the mass at time t when a particu-
lar species crosses a threshold value. The Model Builder both
reads and writes its models in the form of SBML, which is

becoming the standard interchange language for this modeling
community.

Species names and kinetic information are checked continu-
ously during model entry with color highlights indicating por-
tions of the model that are not correctly specified. No mecha-
nisms are included for testing overall model structure and lim-
ited support is provided for representing stochastic and spa-
tial models, which represent specific sub-domains within the
broader modeling community that we intend to support in the
future. Division of the modeled cell into multiple topolog-
ical compartments (volumes) is possible, but equations can-
not contain spatial variables. Abstractions are possible in the
sense that rate laws can be defined and reused. However, com-
ponents in the form of black-box submodels are not currently
supported since the community (in terms of the SBML stan-
dardization effort) has not yet defined mechanisms for this.

The Run Manager translates a model specification into an
executable form. Each row in the Run Manager spreadsheet
(Figure 6) specifies how to simulate a certain experiment in-
cluding the model to use, parameter and initial condition sets,
and the appropriate simulator settings. Parameter sets can con-
tain a value for every parameter in the model or contain only
the values changed in relation to another parameter set. For ex-
ample, suppose we wish to describe a series of simulations for
yeast cell mutants. On the first line, we describe how to simu-
late the wild-type yeast cell using a basal parameter set. On the
second line, we describe a knockout mutant by using a param-
eter set that copies from the basal parameter set but changes
the rate of synthesis of the knocked-out protein to zero. On the
third line, we describe a mutant with a double copy of a gene
by using a parameter set that copies from the basal parameter
set and multiplies the synthesis rate associated with the gene
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Figure 6: Run Manager Interface for Model in Model Builder

by two. If the modeler then develops a better estimate for the
rate constants, she only needs to change the basal parameter
set. Modelers can more easily explore the parameter space
because the Run Manager does the bookkeeping to adjust the
simulation specification.

Differential equations and code to handle the discrete event
model are automatically generated from the specification.
Modelers select the dependent variables of conservation re-
lations, but the relations are automatically detected and gen-
erated. Automatic model translation insulates modelers from
changes in simulation techniques and the runtime environ-
ment. New simulators are added by providing additional trans-
lators. This automation step represents a major improvement
for our immediate modeling community, who previously con-
verted reactions by hand in an error-prone and laborious pro-
cess. This should also reduce the amount of model conversion
work required of modelers to perform stochastic or spatial sim-
ulations in the future.

The Comparator and Compare2 are tools for model testing
and evaluation. Tests in the Comparator are assertions about
a model or comparisons between model performance and ex-
perimental data. A test evaluates either operational accuracy
or the accuracy in transforming the model. Performance on
each test is scored according to a user-defined objective func-
tion that represents the goodness-of-fit between the expected
result and the model result. We prefer objective functions
that associate model performance with a degree of accuracy
rather than a binary result. If the modeler is only told whether
the result was acceptable, it is difficult to determine how ro-
bust the model is to parameter changes. Moreover, we pre-
fer continuous objective functions, such as distance functions,
as these are more amenable to automated optimization. The

modeler chooses criteria for the objective functions based on
the requirements and purpose of the model. Integrated editors
support defining assertions, experimental data, procedures for
transforming model results, and objective functions. Since we
cannot predict all of the objective functions the modeler might
wish to use, we allow the modeler (possibly with the assistance
of a computer programmer) to add new functions. The mod-
eler can automatically rerun a defined testing procedure in the
Comparator.

The Comparator interface is a tabbed series of screens (Fig-
ure 7) that describe the testing procedure. First, the modeler
enters the experimental, or expected, results that the model
should reproduce. Then, the modeler associates each exper-
imental result with a procedure for generating an equivalent
result from the model. The Run Manager typically executes
the model. Finally, the modeler describes how to compute an
objective function and specifies what constitutes an acceptable
function value. Unacceptable fits are highlighted in the display
so that the modeler can quickly see where the model is having
problems.

Tests in Compare2 compare performance between the cur-
rently proposed model and a collection of other models. Mod-
els come from past revisions of the current model, independent
models of the same system, and models with subsystems in
common with the current model. Compare2 performs ranking
and selection among these models based on the same criteria
defined in the Comparator. For each objective function de-
fined in the Comparator, models are scored and ranked. We
use rankings rather than absolute results as we have found that
many objective functions were not designed to finely distin-
guish results on an absolute scale. Selection of the best model
is made by a function combining the objective functions, such
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Figure 7: Comparator Interface for Model in Model Builder

as a sum of rankings. Development work on Compare2 is still
ongoing. A drawback of this tool is that obtaining meaning-
ful results requires building a significant collection of models.
This is also a limiting factor on development since, without
test models, it is unclear what tasks are most critical to auto-
mate. We hope to incorporate other automated model analyses
that could reduce the startup costs of this tool.

By automating the comparison process, we make an addi-
tional task possible: parameter estimation. Some rate con-
stants used in the continuous model are not experimentally
determined or have a significant range of possible values.
Without automated fitting, the modelers must calibrate the
model parameters by manually searching for valid and opti-
mal regions of the parameter space. An expert in the biology
and mathematics of the model must repeatedly try parameter
guesses, using experience to determine acceptability and to se-
lect the next guess. This activity has consumed a major part
of the model development time in the past. Humans should
not perform it at all. A significant obstacle is that inputting
the domain expert’s intuitive understanding of the model into
a computer system is difficult. Additionally, when the model
calibration procedure involves more than simple curve fitting,
there are few general-purpose techniques. We seek to over-
come these obstacles by customizing the domain-specific por-
tions of our software to modelers, and by selecting mathemat-
ical software that has been tested on common problems in the
domain. Experienced modelers can extend or replace the inter-
face and computation engines when they encounter limitations
with what we have preconstructed.

Although the stages involving parameter estimation in-
cluded in Figure 4 are a subset of the evaluate and repair
stages, we separate them because of their impact on the model

development process.
score
−−−→ and report

−−−−→ The score stage defines an algorithm that
determines whether one set of parameters produces a more ac-
ceptable model than another set. The algorithm requires ex-
perimental data, an executable model, the range of parameters
for the executable model, and a user-defined objective func-
tion. The report stage injects the fitted parameters back into
the modeling process for study and testing.

The Parameter Estimator finds unknown rate constants by
fitting the model to experimental data. The data are typically
not a solution to a differential equation, but rather a compli-
cated, nonlinear functional of the differential equation solu-
tion. Furthermore, both the dependent and independent vari-
ables involved in these functionals are subject to experimental
error. The Parameter Estimator performs both global and local
searches during optimization.

The global optimizer, named DIRECT [14], is a variant
of Lipschitzian methods for constrained global optimization.
We want to find the minimum value of our objective func-
tion, minx∈D f(x), where D = {x ∈ En| ` ≤ x ≤ µ} is de-
fined by bound constraints only and the objective function
is Lipschitz continuous on D, satisfying |f(x1) − f(x2)| ≤
L‖x1 − x2‖ for all x1, x2 ∈ D. The Lipschitz optimization
method has had many practical applications in science and en-
gineering. Unlike some other methods, the Lipschitz method
requires only a few parameters and does not rely on derivatives
or other more analytical information about a system. How-
ever, the Lipschitz constant of a particular function is often
unknown and difficult to estimate. The DIRECT method is
guaranteed to converge to the global optimum without knowl-
edge of the Lipschitz constant [22].

The algorithm takes its name from one of its key steps:
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Figure 4: JigCell User Workflow

dividing rectangles (these rectangles are more commonly re-
ferred to as boxes). DIRECT is a pattern search method, which
takes moves based on objective function values at a pattern of
points. The points are the centers of the boxes. Center sam-
pling is generally advantageous to corner sampling when the
number of dimensions is expected to be large, as in the prob-
lems we are attempting to solve. A box is potentially optimal
if there exists a value of the Lipschitz constant for which that
box is the most likely to contain the global minimum. Each
iteration subdivides all of the potentially optimal boxes. DI-
RECT can operate in an exploratory mode, which emphasizes
searching untested boxes, or in an exploitation mode, which
emphasizes searching boxes with better objective function val-
ues.

DIRECT is robust to noise in objective function values [14];
convergence to the minimum is limited by the amount of noise
in the objective function. This makes DIRECT well suited for
stochastic models, which intentionally introduce noise into the
model evaluation. Current implementations of DIRECT can-
not handle integer variables or constraints other than simple
bound constraints. Also, DIRECT is relatively inefficient for
finding an accurate value of the minimum. Rather, we would
expect to run it in the exploration mode and use the local op-
timizer to find the minimum from a collection of candidate
starting points.

The local optimizer uses ODRPACK [9, 10, 11] as the un-
derlying mathematical software. ODRPACK does not assume

that the measurement errors are all in the dependent vari-
ables [12]. Rather, it seeks to minimize the weighted sum
of orthogonal distances between the model and the data. The
weighting factors scale the residuals and express the modeler’s
confidence in the reliability of particular observations. The
output of ODRPACK gives a locally optimal parameter vec-
tor and a measure of the goodness-of-fit of the parameter vec-
tor. We can then compare the locally optimal solutions for the
starting points picked by the global optimizer.

ODRPACK uses a trust region Levenberg-Marquardt
method. The Levenberg-Marquardt method starts with the
steepest descent method and smoothly changes to Newton’s
method when approaching the solution. The trust region im-
plementation determines the step size based on the confidence
in a local model of the objective function. At each step, the
optimizer compares the expected improvement for taking the
step with the actual improvement. This can cause slow con-
vergence if the objective function is not differentiable near the
optimum solution, since ODRPACK’s expected improvement
is based on estimated derivatives. Step functions in objectives
can appear when matching categorical observations, such as
whether a mutant is viable. However, we believe it is unlikely
that optimum solutions will be located near such discontinu-
ities in real biological systems. If that were the case, the or-
ganism would be sensitive to minute environmental changes,
which is unfavorable for survival.

5.2 Evaluating JigCell

Several levels of evaluation are possible for MSEs. Micro-
level studies employ formal usability testing [17, 34], which
benchmarks performance for completing a task. Requirements
of the modelers, frequency of use within the domain, and crit-
icality of need determine the chosen tasks. An example of a
critical task in the Model Builder is entering the kinetic in-
formation for a chemical reaction. The Model Builder could
not function without supporting this task. Success or failure
is determined by comparing results against a benchmark per-
formance for the task. In formal usability testing, [31] shows
that studying three to five people finds eighty percent of the
usability problems.

A micro-level study [38] determined JigCell’s effect on er-
ror rates converting the wiring diagram to a set of differential
equations. For a collection of models, participants either con-
structed differential equations manually or using the software.
The number of errors in the generated sets of differential equa-
tions was then measured. The results indicate a six-fold reduc-
tion in errors over the manual method of creating differential
equations. Individual tools in JigCell as well as interactions
between tools can be studied similarly.

Macro-level studies incorporate benchmarking and assess
how well the MSE meets the specified needs of users. MSEs
such as JigCell attempt to make knowledgeable users more
productive and help them produce creative products. [37] sug-
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gests a methodology for evaluating MSEs using flow. Flow is
an automatic, effortless, and focused state of consciousness.
Creativity is more likely to result from flow states [13]. Detec-
tion of flow would indicate support for creativity.

We can evaluate flow in JigCell in the following manner.
By specifying assistance for each workflow of [37], we clas-
sify support for problem solving and flow in JigCell. Users
receive an instrumented version of JigCell; this version also
sporadically prompts users to fill out a questionnaire targeting
the characteristics of flow [41]. The collected data determines
where flow is occurring in the user’s work. If JigCell demon-
strates flow in all workflows and meets the formative evalua-
tion requirements, then JigCell indicates support for creativity.

5.3 Other Cell Cycle MSEs

We have reviewed several biochemical pathway MSEs and
classify them as wizards, graphical editors, or textual editors.
JigCell has primarily text-based editors. Table 3 lists support
for our defined modeling goals in these MSEs. Modeling goals
met by none of the MSEs are omitted; the evaluate and check
stages are omitted entirely as none of the reviewed MSEs di-
rectly supports these processes.

Virtual Cell [24] is a graphical editor that directly mimics
the wiring diagram. Virtual Cell also supports entering models
directly as differential equations. The Virtual Cell simulator
supports volume and spatial models. A server-side database
records models and associated simulation results with the op-
tion to download data to the user’s system. Bio Sketch Pad
(BSP) [40] is also a graphical editor. The simulator for BSP
supports volume models and cellular automata. Gepasi [27]
uses a wizard interface. A series of dialog boxes lead the
user through creating a reaction network. The simulator sup-
ports volume models and can perform parameter estimation.
Jarnac [33] uses a textual interface. The textual editor is a
programming environment for scripting simulations and other
modeling tasks. Jarnac integrates with a graphical editor, JDe-
signer, to view wiring diagrams. The simulator supports vol-
ume models.

6 TOOL INTEROPERABILITY

Tools for doing biochemical pathway modeling have been
around for many years, but until recently there has been little
interoperability between them. We describe two projects that
have taken as their goal support for interoperability between
various biochemical pathway modeling groups. The first is
SBML, and the second is DARPA’s BioSPICE project (which
funds the JigCell project team).

SBML [18] is an XML-based language for describing bio-
chemical pathway models. SBML does not use a formal stan-
dards process (though the SBML community is beginning to
investigate affiliating with a standards organization). The Soft-
ware Platforms for Systems Biology Forum, which has been

meeting semiannually since April 2000, guides development.
The SBML project began with the Forum’s first meeting, and
the definition for SBML Level 1 was published in 2001 [20].
That version supported a relatively small number of biochem-
ical pathway modeling tools. An updated version, SBML
Level 2, was published in 2003 [19]. Another language ef-
fort similar to SBML is CellML [15]. CellML is also an
XML-based markup language for describing biological sys-
tems. CellML’s scope is broader than SBML. While it is some-
what more mature than SBML, it has not achieved much ac-
ceptance within the biochemical pathway modeling commu-
nity in the way that SBML has, probably due to its broader
focus.

Before SBML, there was virtually no interchange of mod-
els between working groups. Tools were primarily built for
a particular research group with little intention that the mod-
els developed within a tool would be directly transferable to
other groups with other tools. Models were exchanged only
through publication. With the adoption of SBML, and the be-
ginning stages of support for that language by many tools, the
true exchange of models became possible. However, early tool
builders primarily supported SBML through export capabili-
ties, and were not able to import SBML models produced by
other research groups. SBML initially suffered from an in-
ability to express a number of existing models, leading tool
builders to adopt naming and formatting conventions to han-
dle their special cases (see for example [28]). Since these
conventions were unique to each tool, few tools supported ac-
tual exchange of models. The SBML community (and by ex-
tension, the BioSPICE community) now actively promotes a
model testbed and the exchange of models between working
groups with the goal of more rigorous testing of both model-
ing tools and their SBML language support.

An important standards-setting decision for BioSPICE was
determining the model definition language to support inter-
change of models within the community. After examination
of the potential for defining a language for BioSPICE, the de-
cision was made to adopt SBML. The critical mass achieved
by the BioSPICE community joining with the already existing
SBML community has had a profound impact on the SBML
development process. Initially, SBML could be characterized
as defining a language that was the intersection of a small
group of similar tools. Most users of SBML converted their
models to systems of ODEs, perhaps with discrete events. Cur-
rent efforts are moving in the direction of defining a language
that is the union of a larger group of more disparate tools.
This means support for a broader class of models, including
stochastic simulations and spatial models. Structural model
analyses such as flux balance analysis and bifurcation analysis
are also anticipated. SBML is already at the stage where no
single simulation tool will support the full range of features
that SBML models can have. Some balance must be struck
between the different types of modeling needs, the difficul-
ties encountered by tool builders, and the risk of the language
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Table 3: Support for Modeling Goals in Other MSEs

Virtual Cell BSP Gepasi Jarnac
general record model artifacts Partial Partial Partial Partial
design verify consistent naming Partial Partial Partial Partial

abstract repeated operations Full
abstract compound operations Full
identify rate laws and constants Full Full Full Full
standardize notation Full Partial Full Full

translate generate differential equations Full Partial Partial Partial
find conservation relations Full Partial Full Full
verify execution requirements Full Full Full Full
verify well-formedness Partial Partial Partial Partial

becoming so large that it is no longer truly a mechanism for
common exchange.

The BioSPICE community charged itself with designing
and building a toolset that could both support current mod-
eling efforts and serve as a base for future modeling efforts.
Since it is unlikely that any single tool, or small collection of
tools, will satisfy the wide variety of modelers and modeling
efforts, any specific task has numerous tools available. Thus,
the BioSPICE community is engaged in two types of standard-
ization efforts for tools: data formats and programmatic inter-
faces.

The exchange of formatted data within the BioSPICE com-
munity is difficult because a large number of data types are
of interest to at least some part of the community. Popu-
lar data types, such as models and time series, were quickly
identified and standardized by the community as high-priority
items. However, there is also interest in exchanging data
for gene expression, molecular interactions, imaging, protein
mass-spectroscopy, kinetics, flow cytometrics, and flux bal-
ance. The standards creation process is driven by the com-
munity, and mostly distributed. There is a clearinghouse for
archiving agreed-upon standards, but there is no corresponding
authority for creating standards. Tools must have some inter-
nal format for representing data. Initially, this is their standard
for that data format. If no one else is interested in using this
type of data, there is no need to promulgate the standard. How-
ever, another group interested in using the same type of data
will have their own internal format. At some point, there is a
desire to interchange data between the tools. The groups then
meet, and decide on a commonly acceptable interchange for-
mat. When a format achieves a plurality within its domain, it
is recommended to the community as a standard for adoption.

Although data formats solve the problem of static interac-
tions between tools, they cannot coordinate computations be-
tween tools. The number of possible tool-tool interactions is
too great to define individual standards. Instead, standards are
defined for the most commonly performed interactions, and
a formal tool description language is proposed for describing
tool capabilities not captured by one of the standards. Com-
mon interactions include tasks such as performing a simulation

and parameter estimation. The tool description language is re-
ferred to as a meta-interface: it is intended that any particular
tool be describable in terms of operations provided by the lan-
guage. The operations are functions applied to the data types
standardized by the community. However, this tool description
language only specifies the syntax for tools, not the semantics.
It is possible to connect tools that have compatible data types
but a nonsensical meaning to their combined computation.

7 CONCLUSIONS

We have described our experiences documenting and improv-
ing the modeling process of a group of theoretical biologists.
The revised modeling process is based on the observed pro-
cess and incorporates a disciplined methodological approach
along with proven techniques for reducing the cost of errors,
reducing development time, and making iterations of the mod-
eling process more consistent. The primary improvements
come from introducing multiple forms of testing throughout
the modeling lifecycle, and by making modelers explicitly ad-
dress previously undocumented modeling tasks. The model-
ing support environment we have built for this revised process
meets many of our defined modeling goals and is testable for
its effects on the modeling process. Further case studies of
modelers using this process will give clear guidance for future
improvements, along with the unfulfilled modeling goals.

Further progress in pathway modeling desperately needs
new tools and a better modeling process as described here. The
BioSPICE community estimates that the size and complexity
of existing models (which are about as large as the model-
ing process prior to BioSPICE could handle) must grow by
two orders of magnitude to capture the control mechanisms of
important processes in mammalian cells. Currently, manual
parameter estimation and manual error diagnosis consume a
significant portion of the model development time. We hope
that by automating these tasks, tools such as JigCell and oth-
ers developed as part of BioSPICE can supply one of the two
needed orders of magnitude. Supporting the additional com-
plexity required is an open question.
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