
1

Neural Abstractive Text Summarization with

Sequence-to-Sequence Models

TIAN SHI, YASER KENESHLOO, NAREN RAMAKRISHNAN, and CHANDAN K. REDDY,

Virginia Tech

In the past few years, neural abstractive text summarization with sequence-to-sequence (seq2seq) models

have gained a lot of popularity. Many interesting techniques have been proposed to improve seq2seq models,

making them capable of handling different challenges, such as saliency, fluency and human readability, and

generate high-quality summaries. Generally speaking, most of these techniques differ in one of these three

categories: network structure, parameter inference, and decoding/generation. There are also other concerns,

such as efficiency and parallelism for training a model. In this article, we provide a comprehensive litera-

ture survey on different seq2seq models for abstractive text summarization from the viewpoint of network

structures, training strategies, and summary generation algorithms. Several models were first proposed for

language modeling and generation tasks, such as machine translation, and later applied to abstractive text

summarization. Hence, we also provide a brief review of these models. As part of this survey, we also develop

an open source library, namely, Neural Abstractive Text Summarizer (NATS) toolkit, for the abstractive text

summarization. An extensive set of experiments have been conducted on the widely used CNN/Daily Mail

dataset to examine the effectiveness of several different neural network components. Finally, we benchmark

two models implemented in NATS on the two recently released datasets, namely, Newsroom and Bytecup.

CCS Concepts: • Information systems → Summarization; • Computing methodologies → Natural

language processing; Natural language generation; Neural networks; • Theory of computation →

Reinforcement learning;

Additional Key Words and Phrases: Abstractive text summarization, sequence-to-sequence models, attention

model, pointer-generator network, deep reinforcement learning, beam search

ACM Reference format:

Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. 2020. Neural Abstractive Text Sum-

marization with Sequence-to-Sequence Models. ACM/IMS Trans. Data Sci. 2, 1, Article 1 (December 2020), 37

pages.

https://doi.org/10.1145/3419106

1 INTRODUCTION

In the modern era of big data, retrieving useful information from a large number of textual docu-
ments is a challenging task, due to the unprecedented growth in the availability of blogs, news
articles, and reports is explosive. Automatic text summarization provides an effective solution

This work was supported in part by the US National Science Foundation grants IIS-1619028, IIS-1707498, and IIS-1838730.

Authors’ address: T. Shi, Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy, Virginia Tech, 900 N Glebe Road, Arlington, VA

22203; emails: {tshi, yaserkl}@vt.edu, {naren, reddy}@cs.vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2577-3224/2020/12-ART1 $15.00

https://doi.org/10.1145/3419106

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://doi.org/10.1145/3419106
mailto:permissions@acm.org
https://doi.org/10.1145/3419106

1:2 T. Shi et al.

for summarizing these documents. The task of the text summarization is to condense long doc-
uments into short summaries while preserving the important information and meaning of the
documents [1, 111]. Having such short summaries, the text content can be retrieved, processed
and digested effectively and efficiently. Generally speaking, there are two ways to perform text
summarization: Extractive and Abstractive [90]. A method is considered to be extractive if words,
phrases, and sentences in the summaries are selected from the source articles [1, 12, 30, 38, 87,
102, 117, 135]. They are relatively simple and can produce grammatically correct sentences. The
generated summaries usually persist salient information of source articles and have a good per-
formance w.r.t. human-written summaries [119, 135, 144, 158]. On the other hand, abstractive text
summarization has attracted much attention since it is capable of generating novel words using
language generation models conditioned on representation of source documents [98, 116]. Thus,
they have a strong potential of producing high-quality summaries that are verbally innovative and
can also easily incorporate external knowledge. In this category, many deep neural network based
models have achieved better performance in terms of the commonly used evaluation measures
(such as ROUGE [80] score) compared to traditional extractive approaches [15, 109]. In this article,
we primarily focus on the recent advances of recurrent-neural-network (RNN)-based sequence-
to-sequence (seq2seq) models for the task of abstractive text summarization.

1.1 RNN-Based Seq2seq Models and Pointer-Generator Network

Seq2seq models (see Figure 2) [21, 127] have been successfully applied to a variety of natural
language processing (NLP) tasks, such as machine translation [3, 66, 89, 122, 145], headline gen-
eration [22, 116, 123], text summarization [98, 119], and speech recognition [4, 43, 94]. Inspired
by the success of neural machine translation (NMT) [3], Rush et al. [116] first introduced a neural
attention seq2seq model with an attention-based encoder and a Neural Network Language Model
(NNLM) decoder to the abstractive sentence summarization task, which has achieved a signifi-
cant performance improvement over conventional methods. Chopra et al. [22] further extended
this model by replacing the feed-forward NNLM with a recurrent neural network (RNN). The
model is also equipped with a convolutional attention-based encoder and a RNN (Elman [35] or
LSTM [52]) decoder, and outperforms other state-of-the-art models on commonly used benchmark
datasets, i.e., the Gigaword corpus. Nallapati et al. [98] introduced several novel elements to the
RNN encoder-decoder architecture to address critical problems in the abstractive text summariza-
tion, including using the following: (i) feature-rich encoder to capture keywords, (ii) a switching
generator-pointer to model out-of-vocabulary (OOV) words, and (iii) the hierarchical attention to
capture hierarchical document structures. They also established benchmarks for these models on
a CNN/Daily Mail dataset [16, 50], which consists of pairs of news articles and multi-sentence
highlights (summaries). Before this dataset was introduced, many abstractive text summarization
models have concentrated on compressing short documents to single sentence summaries [22,
116]. For the task of summarizing long documents into multi-sentence summaries, these mod-
els have several shortcomings: (1) They cannot accurately reproduce the salient information of
source documents. (2) They cannot efficiently handle OOV words. (3) They tend to suffer from
word- and sentence-level repetitions and generating unnatural summaries. To tackle the first two
challenges, See et al. [119] proposed a pointer-generator network that implicitly combines the
abstraction with the extraction. This pointer-generator architecture can copy words from source
texts via a pointer and generate novel words from a vocabulary via a generator. With the point-
ing/copying mechanism [20, 45, 46, 93, 125, 137, 152], factual information can be reproduced
accurately and OOV words can also be taken care in the summaries. Many subsequent studies
that achieved state-of-the-art performance have also demonstrated the effectiveness of the point-
ing/copying mechanism [15, 41, 59, 109]. The third problem has been addressed by the coverage

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:3

mechanism [119], intra-temporal and intra-decoder attention mechanisms [109], and some other
heuristic approaches, like forcing a decoder to never output the same trigram more than once
during testing [109].

1.2 Training Strategies

There are two other non-trivial issues with the current seq2seq framework, i.e., exposure bias and
inconsistency of training and testing measurements [8, 62, 113, 134]. Based on the neural proba-
bilistic language model [9], seq2seq models are usually trained by maximizing the likelihood of
ground-truth tokens given their previous ground-truth tokens and hidden states (Teacher Forcing
algorithm [8, 143], see Figure 4(b)). However, at testing time (see Figure 4(a)), previous ground-
truth tokens are unknown, and they are replaced with tokens generated by the model itself. Since
the generated tokens have never been exposed to the decoder during training, the decoding error
can accumulate quickly during the sequence generation. This is known as exposure bias [113]. The
other issue is the mismatch of measurements. Performance of seq2seq models is usually estimated
with non-differentiable evaluation metrics, such as ROUGE [80] and BLEU [105] scores, which are
inconsistent with the log-likelihood function (cross-entropy loss) used in the training phase. These
problems are alleviated by the curriculum learning and reinforcement learning (RL) approaches.

1.2.1 Training with Curriculum and Reinforcement Learning Approaches. Bengio et al. [8] pro-
posed a curriculum learning approach, known as scheduled sampling, to slowly change the input
of the decoder from ground-truth tokens to model generated ones. Thus, the proposed meta-
algorithm bridges the gap between training and testing. It is a practical solution for avoid-
ing the exposure bias. Ranzato et al. [113] proposed a sequence level training algorithm, called
MIXER (Mixed Incremental Cross-Entropy Reinforce), which consists of the cross entropy training,
REINFORCE [142] and curriculum learning [8]. REINFORCE can make use of any user-defined task
specific reward (e.g., non-differentiable evaluation metrics), therefore, combining with curriculum
learning, the proposed model is capable of addressing both issues of seq2seq models. However,
REINFORCE suffers from the high variance of gradient estimators and instability during train-
ing [2, 114, 145]. Bahdanau et al. [2] proposed an actor-critic-based RL method which has relatively
lower variance for gradient estimators. In the actor-critic method, an additional critic network is
trained to compute value functions given the policy from the actor network (a seq2seq model),
and the actor network is trained based on the estimated value functions (assumed to be exact)
from the critic network. On the other hand, Rennie et al. [114] introduced a self-critical sequence
training method (SCST) which has a lower variance compared to REINFORCE and does not need
the second critic network.

1.2.2 Applications to Abstractive Text Summarization. RL algorithms for training seq2seq mod-
els have achieved success in a variety of language generation tasks, such as image captioning [114],
machine translation [2], and dialogue generation [77]. Specific to the abstractive text summa-
rization, Ling and Rush [82] introduced a coarse-to-fine attention framework for the purpose of
summarizing long documents. Their model parameters were learned with REINFORCE algorithm.
Zhang and Lapata [155] used REINFORCE algorithm and the curriculum learning strategy for the
sentence simplification task. Paulus et al. [109] first applied the self-critic policy gradient algorithm
to training their seq2seq model with the copying mechanism and obtained the state-of-the-art per-
formance in terms of ROUGE scores [80]. They proposed a mixed objective function that combines
the RL loss with the traditional cross-entropy loss. Thus, their method can both leverage the non-
differentiable evaluation metrics and improve the readability. Celikyilmaz et al. [15] introduced a
novel deep communicating agents method for abstractive summarization, where they also adopted
the RL loss in their objective function. Pasunuru et al. [107] applied the self-critic policy gradient

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:4 T. Shi et al.

algorithm to train the pointer-generator network. They also introduced two novel rewards (i.e.,
saliency and entailment rewards) in addition to ROUGE metric to keep the generated summaries
salient and logically entailed. Li et al. [78] proposed a training framework based on the actor-critic
method, where the actor network is an attention-based seq2seq model, and the critic network
consists of a maximum likelihood estimator and a global summary quality estimator that is used
to distinguish the generated and ground-truth summaries via a neural network binary classifier.
Chen et al. [19] proposed a compression-paraphrase multi-step procedure, for abstractive text sum-
marization, which first extracts salient sentences from documents and then rewrites them. In their
model, they used an advantage actor-critic algorithm to optimize the sentence extractor for a bet-
ter extraction strategy. Keneshloo et al. [62] conducted a comprehensive summary of various RL
methods and their applications in training seq2seq models for different NLP tasks. They also im-
plemented these RL algorithms in an open source library (https://github.com/yaserkl/RLSeq2Seq/)
constructed using the pointer-generator network [119] as the base model.

1.3 Beyond RNN-Based Seq2Seq Models

Most of the prevalent seq2seq models that have attained state-of-the-art performance for sequence
modeling and language generation tasks are RNN, especially long short-term memory (LSTM) [52]
and gated recurrent unit (GRU) [23], based encoder-decoder models [3, 127]. Standard RNN models
are difficult to train due to the vanishing and exploding gradients problems [10]. LSTM is a solution
for vanishing gradients problem, but still does not address the exploding gradients issue. This issue
is recently solved using a gradient norm clipping strategy [106]. Another critical problem of RNN-
based models is the computation constraint for long sequences due to their inherent sequential
dependence nature. In other words, the current hidden state in an RNN is a function of previous
hidden states. Because of such dependence, RNN cannot be parallelized within a sequence along
the time-step dimension (see Figure 2) during training and evaluation, and hence training them
becomes major challenge for long sequences due to the computation time and memory constraints
of GPUs [133].

Recently, it has been found that the convolutional neural network (CNN)-based [69] encoder-
decoder models have the potential to alleviate the aforementioned problem, since they have better
performance in terms of the following three considerations [14, 40, 60]: (1) A model can be par-
allelized during training and evaluation; (2) The computational complexity of the model is linear
with respect to the length of sequences; and (3) The model has short paths between pairs of input
and output tokens, so that it can propagate gradient signals more efficiently [51]. Kalchbrenner
et al. [60] introduced a ByteNet model which adopts the one-dimensional convolutional neural
network of fixed depth to both the encoder and the decoder [132]. The decoder CNN is stacked
on top of the hidden representation of the encoder CNN, which ensures a shorter path between
input and output. The proposed ByteNet model has achieved state-of-the-art performance
on a character-level machine translation task with parallelism and linear-time computational
complexity [60]. Bradbury et al. [14] proposed a quasi-recurrent neural network (QRNN) encoder-
decoder architecture, where both encoder and decoder are composed of convolutional layers and
so-called “dynamic average pooling” layers [7, 14]. The convolutional layers allow computations
to be completely parallel across both mini-batches and sequence time-step dimensions, while
they require less amount of time compared with computation demands for LSTM, despite the
sequential dependence still presents in the pooling layers [14]. This framework has demonstrated
to be effective by outperforming LSTM-based models on a character-level machine translation
task with a significantly higher computational speed. Recently, Gehring et al. [39, 40] attempted to
build CNN-based seq2seq models and apply them to large-scale benchmark datasets for sequence
modeling. In [39], the authors proposed a convolutional encoder model, in which the encoder is

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://github.com/yaserkl/RLSeq2Seq/

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:5

composed of a succession of convolutional layers, and demonstrated its strong performance for
machine translation. They further constructed a convolutional seq2seq architecture by replacing
the LSTM decoder with a CNN decoder and bringing in several novel elements, including gated
linear units [31] and multi-step attention [40]. The model also enables computations of all network
elements parallelized, thus training and decoding can be much faster than the RNN models. It
also achieved competitive performance on several machine translation benchmark datasets. More
rencently, ConvS2S model [37, 40] has been applied to the abstractive document summarization
and outperforms the pointer-generator network [119] on the CNN/Daily Mail dataset.

Vaswani et al. [133] constructed a novel network architecture called Transformer which only
depends on feed-forward networks and a multi-head attention mechanism. It has achieved superior
performance in machine translation task with significantly less training time. Currently, large
Transformers [32, 133, 149], which are pre-trained on a massive text corpus with self-supervised
objectives, have achieved superior results in a variety of downstream NLP tasks such as machine
understanding [32, 84], question-answering [27, 86], and abstractive text summarization [34, 72,
85, 112, 148, 153]. Zhang et al. [153] demonstrated that their pre-trained encoder-decoder model
can outperform previous state-of-the-art results [28, 36, 44, 63, 67, 99, 100, 119, 121] on several
datasets by fine-tuning with limited supervised examples, which shows that pre-trained models
are promising candidates in zero-shot and low-resource summarization tasks.

1.4 Other Studies

So far, we primarily focused on the pointer-generator network, training neural networks with
RL algorithms, CNN based seq2seq architectures, and Transformers. There are many other stud-
ies that aim to improve the performance of RNN seq2seq models for the task of abstractive text
summarization from different perspectives and broaden their applications.

1.4.1 Network Structure and Attention. The first way to boost the performance of seq2seq mod-
els is to design better network structures. Zhou et al. [159] introduced an information filter, namely,
a selective gate network between the encoder and decoder. This model can control the informa-
tion flow from the encoder to the decoder via constructing a second level representation of the
source texts with the gate network. Zeng et al. [152] introduced a read-again mechanism to im-
prove the quality of the representations of the source texts. Tan et al. [130] built a graph-ranking
model upon a hierarchical encoder-decoder framework, which enables the model to capture the
salient information of the source documents and generate accurate, fluent, and non-redundant
summaries. Xia et al. [146] proposed a deliberation network that passes the decoding process mul-
tiple times (deliberation process), to polish the sequences generated by the previous decoding pro-
cess. Li et al. [79] incorporated a sequence of variational auto-encoders [65, 115] into the decoder
to capture the latent structure of the generated summaries.

1.4.2 Extraction + Abstraction. Another way to improve the abstractive text summarization is
to make use of the salient information from the extraction process. Hsu et al. [54] proposed a
unified framework that takes advantage of both extractive and abstractive summarization using
a novel attention mechanism, which is a combination of the sentence-level attention (based on
the extractive summarization [97]) and the word-level attention (based on the pointer-generator
network [119]), inspired by the intuition that words in less attended sentences should have lower
attention scores. Chen and Bansal [19] introduced a multi-step procedure, namely compression-
paraphrase, for abstractive summarization, which first extracts salient sentences from documents
and then rewrites them in order to get final summaries. Li et al. [73] introduced a guiding gener-
ation model, where the keywords in source texts is first retrieved with an extractive model [95].

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:6 T. Shi et al.

Then, a guide network is applied to encode them to obtain the key information representations
that will guide the summary generation process.

1.4.3 Long Documents. Compared to short articles and texts with moderate lengths, there are
many challenges that arise in long documents, such as difficulty in capturing the salient infor-
mation [28]. Nallapati et al. [98] proposed a hierarchical attention model to capture hierarchical
structures of long documents. To make models scale-up to very long sequences, Ling and Rush [82]
introduced a coarse-to-fine attention mechanism, which hierarchically reads and attends long doc-
uments (A document is split into many chunks of texts.). By stochastically selecting chunks of texts
during training, this approach can scale linearly with the number of chunks instead of the number
of tokens. Cohan et al. [28] proposed a discourse-aware attention model which has a similar idea
to that of a hierarchical attention model. Their model was applied to two large-scale datasets of
scientific papers, i.e., arXiv and PubMed datasets. Tan et al. [130] introduced a graph-based at-
tention model which is built upon a hierarchical encoder-decoder framework where the pagerank
algorithm [104] was used to calculate saliency scores of sentences.

1.4.4 Multi-Task Learning. Multi-task learning has become a promising research direction for
this problem since it allows seq2seq models to handle different tasks. Pasunuru et al. [108] intro-
duced a multi-task learning framework, which incorporates knowledge from an entailment genera-
tion task into the abstractive text summarization task by sharing decoder parameters. They further
proposed a novel framework [47] that is composed of two auxiliary tasks, i.e., question generation
and entailment generation, to improve their model for capturing the saliency and entailment for
the abstractive text summarization. In their model, different tasks share several encoder, decoder
and attention layers. McCann et al. [92] introduced a Natural Language Decathlon, a challenge that
spans ten different tasks, including question-answering, machine translation, summarization, and
so on. They also proposed a multitask question answering network that can jointly learn all tasks
without task-specific modules or parameters, since all tasks are mapped to the same framework
of question-answering over a given context.

1.4.5 Beam Search. Beam search algorithms have been commonly used in the decoding of dif-
ferent language generation tasks [119, 145]. However, the generated candidate-sequences are usu-
ally lacking in diversity [42]. In other words, top-K candidates are nearly identical, where K is size
of a beam. Li et al. [74] replaced the log-likelihood objective function in the neural probabilistic lan-
guage model [9] with Maximum Mutual Information (MMI) [5] in their neural conversation models
to remedy the problem. This idea has also been applied to neural machine translation (NMT) [75] to
model the bi-directional dependency of source and target texts. They further proposed a simple yet
fast decoding algorithm that can generate diverse candidates and has shown performance improve-
ment on the abstractive text summarization task [76]. Vijayakumar et al. [136] proposed generating
diverse outputs by optimizing for a diversity-augmented objective function. Their method, referred
to as the Diverse Beam Search (DBS) algorithm, has been applied to image captioning, machine
translation, and visual question-generation tasks. Cibils et al. [26] introduced a meta-algorithm
that first uses DBS to generate summaries, and then, picks candidates according to maximal mar-
ginal relevance [48] under the assumption that the most useful candidates should be close to the
source document and far away from each other. The proposed algorithm has boosted the perfor-
mance of the pointer-generator network on CNN/Daily Mail dataset.

Despite many research papers that are published in the area of neural abstractive text sum-
marization, there are few survey papers [29, 96, 110] that provide a comprehensive study. In this
article, we systematically review current advances of seq2seq models for the abstractive text sum-
marization task from various perspectives, including network structures, training strategies, and

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:7

Fig. 1. An overall taxonomy of topics on seq2seq models for neural abstractive text summarization.

sequence generation. In addition to a literature survey, we also implemented some of these meth-
ods in an open-source library, namely NATS (https://github.com/tshi04/NATS). Extensive set of
experiments have been conducted on various benchmark text summarization datasets in order to
examine the importance of different network components. The main contributions of this article
can be summarized as follows:

• Provide a comprehensive literature survey of current advances of seq2seq models with an
emphasis on the abstractive text summarization.

• Conduct a detailed review of the techniques used to tackle different challenges in RNN
encoder-decoder architectures.

• Review different strategies for training seq2seq models and approaches for generating
summaries.

• Provide an open-source library, which implements some of these models, and systematically
investigate the effects of different network elements on the summarization performance.

The rest of this paper is organized as follows: An overall taxonomy of topics on seq2seq models
for neural abstractive text summarization is shown in Figure 1. A comprehensive list of papers
published till date on the topic of neural abstractive text summarization have been summarized
in Tables 1 and 2. In Section 2, we introduce the basic seq2seq framework along with its exten-
sions, including attention mechanism, pointing/copying mechanism, repetition handling, improv-
ing encoder or decoder, summarizing long documents and combining with extractive models. Sec-
tion 3 summarizes different training strategies, including word-level training methods, such as
cross-entropy training, and sentence-level training with RL algorithms. In Section 4, we discuss
generating summaries using the beam search algorithm and other diverse beam decoding algo-
rithms. In Section 5, we present details of our implementations and discuss our experimental results
on the CNN/Daily Mail, Newsroom [44], and Bytecup (https://www.biendata.com/competition/
bytecup2018/) datasets. We conclude this survey in Section 6.

2 THE RNN ENCODER-DECODER FRAMEWORK

In this section, we review different RNN-based encoder-decoder models for the neural abstractive
text summarization. We will start with the basic seq2seq framework and attention mechanism.
Then, we will describe more advanced network structures that can handle different challenges in

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://github.com/tshi04/NATS
https://www.biendata.com/competition/bytecup2018/
https://www.biendata.com/competition/bytecup2018/

1:8 T. Shi et al.

Fig. 2. The basic seq2seq model. SOS and EOS represent the start and end of a sequence, respectively.

the text summarization, such as repetition and out-of-vocabulary (OOV) words. We will highlight
various existing problems and proposed solutions.

2.1 Seq2seq Framework Basics

A vanilla seq2seq framework for abstractive text summarization is composed of an encoder and
a decoder. The encoder reads a source article, denoted by x = (x1,x2, . . . ,x J), and transforms it
to hidden states he = (he

1 ,h
e
2 , . . . ,h

e
J
); while the decoder takes these hidden states as the context

input and outputs a summary y = (y1,y2, . . . ,yT). Here, xi and yj are one-hot representations of
the tokens in the source article and summary, respectively. We use J andT to represent the number
of tokens (document length) of the original source document and the summary, respectively. A
summarization task is defined as inferring a summary y from a given source article x .

Encoders and decoders can be feed-forward networks, CNN [39, 40] or RNN. RNN architectures,
especially long short-term memory (LSTM) [52] and gated recurrent unit (GRU) [21], have been
most widely adopted for seq2seq models. Figure 2 shows a basic RNN seq2seq model with a bi-
directional LSTM encoder and an LSTM decoder. The bi-directional LSTM is considered since it
usually gives better document representations compared to a forward LSTM. The encoder reads a
sequence of input tokensx and turns them into a sequences of hidden statesh = (h1,h2,h3, . . . ,h J).

For the bi-directional LSTM, the input sequence is encoded as
−→
he and

←−
he , where the right and left

arrows denote the forward and backward temporal dependencies, respectively. Superscript e is
the shortcut notation used to indicate that it is for the encoder. During the decoding, the decoder

takes the encoded representations of the source article (i.e., hidden and cell states
−→
he

J
,
←−
he

1 ,
−→
ce

J
,
←−
ce

1) as

the input and generates the summary y. In a simple encoder-decoder model, encoded vectors are
used to initialize hidden and cell states of the LSTM decoder. For example, we can initialize them
as follows:

hd
0 = tanh

(
We2d

(−→
h e

J ⊕
←−
h e

1

)
+ be2d

)
, cd

0 =
−→
ce

J ⊕
←−
ce

1 (1)

Here, superscript d denotes the decoder and ⊕ is a concatenation operator. At each decoding step,
we first update the hidden state hd

t conditioned on the previous hidden states and input tokens,

i.e., hd
t = LSTM(hd

t−1,Eyt−1). Hereafter, we will not explicitly express the cell states in the input
and output of LSTM, since only hidden states are passed to other parts of the model. Then, the vo-
cabulary distribution can be calculated with Pvocab,t = softmax(Wd2vh

d
t + bd2v), where Pvocab,t is a

vector whose dimension is the size of the vocabularyV and softmax(vt) =
exp(vt)∑
τ exp(vτ) for each ele-

mentvt of a vectorv . Therefore, the probability of generating the target tokenw in the vocabulary
V is denoted as Pvocab,t (w).

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:9

Fig. 3. (a) An attention-based seq2seq model. (b) The pointer-generator network.

This LSTM-based encoder-decoder framework was the foundation of many neural abstractive
text summarization models [98, 109, 119]. However, there are many problems with this model. For
example, the encoder is not well trained via back propagation through time [126, 141], since the
paths from encoder to the output are relatively far apart, which limits the propagation of gradient
signals. The accuracy and human-readability of generated summaries is also very low with a lot
of OOV words1 and repetitions. The rest of this section will discuss different models that were
proposed in the literature to resolve these issues for producing better quality summaries.

2.2 Attention Mechanism

The attention mechanism has achieved great success and is commonly used in seq2seq models
for different natural language processing (NLP) tasks [55], such as machine translation [3, 89],
image captioning [147], and neural abstractive text summarization [98, 109, 119]. In an attention-
based encoder-decoder architecture (shown in Figure 3(a)), the decoder not only takes the encoded
representations (i.e., final hidden and cell states) of the source article as input, but also selectively
focuses on parts of the article at each decoding step. For example, suppose we want to compress
the source input “Kylian Mbappe scored two goals in four second-half minutes to send France into
the World Cup quarter-finals with a thrilling 4-3 win over Argentina on Saturday.” to its short
version “France beat Argentina 4-3 to enter quarter-finals.” When generating the token “beat”, the
decoder may need to attend “a thrilling 4-3 win” than other parts of the text. This attention can
be achieved by an alignment mechanism [3], which first computes the attention distribution of
the source tokens and then lets the decoder know where to attend to produce a target token. In
the encoder-decoder framework depicted in Figures 2 and 3(a), given all the hidden states of the

encoder, i.e., he = (he
1 ,h

e
2 , . . . ,h

e
J
) and he

j =
−→
he

j ⊕
←−
he

j , and the current decoder hidden state hd
t , the

attention distribution αe
t over the source tokens is calculated as follows:

αe
t j =

exp
(
se

t j

)
∑J

k=1
exp
(
se

tk

) , (2)

where the alignment score se
t j = s (he

j ,h
d
t) is obtained by the content-based score function, which

has three alternatives as suggested in [89]:

1In the rest of this article, we will use <unk>, i.e., unknown words, to denote OOV words.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:10 T. Shi et al.

s
(
he

j ,h
d
t

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

(he
j)�hd

t dot

(he
j)�Walignh

d
t general

(valign)� tanh
(
Walign

(
he

j ⊕ hd
t

)
+ balign

)
concat

(3)

It should be noted that the number of additional parameters for “dot”, “general”, and “concat”
approaches are 0, |he

j | × |hd
t | and ((|he

j | + |hd
t |) × |valign | + 2 × |valign |), respectively. Here | · | rep-

resents the dimension of a vector. The “general” and “concat” are commonly used score functions
in the abstractive text summarization [109, 119]. One of the drawbacks of “dot” method is that it
requires he

j and hd
t to have the same dimension. With the attention distribution, we can naturally

define the source side context vector for the target word as

ze
t =

J∑
j=1

αe
t jh

e
j (4)

Together with the current decoder hidden state hd
t , we get the attention hidden state [89]

h̃d
t =Wz

(
ze

t ⊕ hd
t

)
+ bz . (5)

Finally, the vocabulary distribution is calculated by

Pvocab,t = softmax
(
Wd2vh̃

d
t + bd2v

)
(6)

When t > 1, the decoder hidden state hd
t+1 is updated by

hd
t+1 = LSTM

(
hd

t ,Eyt
⊕ h̃d

t

)
(7)

where the input is concatenation of Eyt
and h̃d

t .

2.3 Pointing/Copying Mechanism

The pointing/copying mechanism [137] represents a class of approaches that generate target to-
kens by directly copying them from input sequences based on their attention weights. It can be
naturally applied to the abstractive text summarization since summaries and articles can share the
same vocabulary [119]. More importantly, it is capable of dealing with out-of-vocabulary (OOV)
words [45, 46, 98, 119]. A variety of studies have shown a boost in performance after incorporat-
ing the pointing/copying mechanism into the seq2seq framework [15, 109, 119]. In this section, we
review several alternatives of this mechanism for the abstractive text summarization.

2.3.1 Pointer Softmax [46]. The basic architecture of pointer softmax is described as follows.
It consists of three fundamental components: short-list softmax, location softmax, and switching
network. At decoding step t , a short-list softmax Pvocab,t calculated by Equation (6) is used to
predict target tokens in the vocabulary. The location softmax gives locations of tokens that will
be copied from the source article x to the target yt based on attention weights αe

t . With these two
components, a switching network is designed to determine whether to predict a token from the
vocabulary or copy one from the source article if it is an OOV token. The switching network is a
multilayer perceptron (MLP) with a sigmoid activation function, which estimates the probability
pgen,t of generating tokens from the vocabulary based on the context vector ze

t and hidden state

hd
t with

pgen,t = σ
(
Ws,zz

e
t +Ws,hh

d
t + bs

)
, (8)

where pgen,t is a scalar and σ (a) = 1
1+exp (−a) is a sigmoid activation function. The final probability

of producing the target token yt is given by the concatenation of vectors pgen,tPvocab,t and (1 −
pgen,t)αe

t .

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:11

2.3.2 Switching Generator-Pointer [98]. Similar to the switching network in pointer softmax
[46], the switching generator-pointer is also equipped with a “switch”, which determines whether
to generate a token from the vocabulary or point to one in the source article at each decoding step.
The switch is explicitly modeled by

pgen,t = σ
(
Ws,zz

e
t +Ws,hh

d
t +Ws,EEyt−1 + bs

)
. (9)

If the switch is turned on, the decoder produces a word from the vocabulary with the distribu-
tion Pvocab,t (see Equation (6)). Otherwise, the decoder generates a pointer based on the attention
distribution αe

t (see Equation (2)), i.e., pj = arg maxj ∈{1,2, ..., J } α
e
t j , where pj is the position of the

token in the source article. When a pointer is activated, embedding of the pointed token Ex j
will

be used as an input for the next decoding step.

2.3.3 CopyNet [45]. CopyNet has a differentiable network architecture and can be easily
trained in an end-to-end manner. In this framework, the probability of generating a target token is
a combination of the probabilities of two modes, i.e., generate-mode and copy-mode. First, Copy-
Net represents unique tokens in the vocabulary and source sequence byV andX, respectively, and
builds an extended vocabularyVext = V ∪X ∪ <unk>. Then, the vocabulary distribution over the
extended vocabulary is calculated by

PVext (yt) = Pд (yt) + Pc (yt), (10)

where Pд and Pc are also defined onVext, i.e.,

Pд (yt) =

{
1
Z

expψд (yt) yt ∈ V ∪ <unk>
0 otherwise

, Pc (yt) =

{
1
Z

∑
j :x j=yt

expψc (x j) yt ∈ X
0 otherwise

(11)

Here, Z is a normalization factor shared by both of the above equations.ψд (yt) is calculated with

ψд (yt) =Wd2vh̃
d
t + bd2v andψc (x j) is an alignment score which can be calculated by Equation (3).

2.3.4 Pointer-Generator Network [119]. Pointer-generator network also has a differentiable net-
work architecture (see Figure 3(b)). Similar to CopyNet [45], the vocabulary distribution over an
extended vocabularyVext is calculated by

PVext (yt) = pgen,tPд (yt) + (1 − pgen,t)Pc (yt), (12)

where pgen,t is obtained by Equation (9). Vocabulary distribution Pд (yt) and attention distribution
Pc (yt) are defined as follows:

Pд (yt) =

{
Pvocab,t (yt) yt ∈ V ∪ <unk>
0 otherwise

, Pc (yt) =

{∑
j :x j=yt

αe
t j yt ∈ X

0 otherwise
(13)

The pointer-generator network has been used as the base model for many abstractive text sum-
marization models (see Tables 1 and 2). Finally, it should be noted that pgen,t ∈ (0, 1) in CopyNet
and pointer-generator network can be viewed as a “soft-switch” to choose between generation and
copying, which is different from “hard-switch” (i.e., pgen,t = 0, 1) in pointer softmax and switching
generator-pointer [46, 98, 109].

2.4 Repetition Handling

One of the critical challenges for attention based seq2seq models is that the generated sequences
have repetitions, since the attention mechanism tends to ignore the past alignment information
[118, 131]. For summarization and headline generation tasks, model generated summaries suffer
from both word-level and sentence-level repetitions. The latter is specific to summaries which con-
sist of several sentences [98, 109, 119], such as those in CNN/Daily Mail dataset [98] and Newsroom

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:12 T. Shi et al.

Table 1. An Overview of Different seq2seq Models for the Neural Abstractive

Text Summarization (2015-2017)

Year Reference Highlights Framework Training Optimizer Datasets Metrics

Rush et al. [116] Attention Based Summarization
(ABS)

Bag-of-words, Convolution,
Attention→ Neural Network
Language Model (NNLM)

XENT SGD DUC,
Gigaword

ROUGE

2015 Lopyrev [88] Simple Attention LSTM→ LSTM XENT RMSProp Gigaword BLEU

Ranzato et al.
[113]

Sequence-level Training Elman, LSTM→ Elman, LSTM XENT, DAD,
E2E, MIXER

SGD Gigaword ROUGE,
BLEU

Chopra et al.
[22]

Recurrent Attentive Summarizer Convolution Encoder,
Attentive Encoder→ Elman,
LSTM

XENT SGD DUC,
Gigaword

ROUGE

Nallapati et al.
[98]

Switch Generator-Pointer,
Temporal-Attention,
Hierarchical-Attention

RNN, Feature-rich Encoder→
RNN

XENT Adadelta DUC,
Gigaword,
CNN/DM

ROUGE

Miao
and Blunsom
[93]

Auto-encoding Sentence
Compression, Forced-Attention
Sentence Compression, Pointer
Network

Encoder→ Compressor→
Decoder

XENT+RL Adam Gigaword ROUGE

2016 Chen et al. [17] Distraction GRU→ GRU XENT Adadelta CNN, LCSTS ROUGE

Gulcehre et al.
[46]

Pointer softmax GRU→ GRU XENT Adadelta Gigaword ROUGE

Gu et al. [45] CopyNet GRU→ GRU XENT SGD LCSTS ROUGE

Zeng et al. [152] Read-again, Copy Mechanism LSTM/GRU/Hierarchical
read-again encoder→ LSTM

XENT SGD DUC,
Gigaword

ROUGE

Takase et al.
[129]

Abstract Meaning Representation
(AMR) based on ABS.

Attention-based AMR encoder
→ NNLM

XENT SGD DUC,
Gigaword

ROUGE

See et al. [119] Pointer-Generator Network,
Coverage

LSTM→ LSTM XENT Adadelta CNN/DM ROUGE,
METER

Paulus et al.
[109]

A Deep Reinforced Model,
Intra-temporal and Intra-decoder
Attention, Weight Sharing

LSTM→ LSTM XENT + RL Adam CNN/DM ROUGE,
Human

Zhou et al. [159] Selective Encoding, Abstractive
Sentence Summarization

GRU→ GRU XENT SGD DUC,
Gigaword,
MSR-ATC

ROUGE

Xia et al. [146] Deliberation Networks LSTM→ LSTM XENT Adadelta Gigaword ROUGE

Nema et al.
[101]

Query-based, Diversity based
Attention

GRU query encoder, document
encoder→ GRU

XENT Adam Debatepedia ROUGE

Tan et al. [130] Graph-based Attention Hierarchical Encoder→ LSTM XENT Adam CNN/DM,
CNN,
DailyMail

ROUGE

Ling et al. [82] Coarse-to-fine Attention LSTM→ LSTM RL SGD CNN/DM ROUGE,
PPL

2017 Zhang et al.
[155]

Sentence Simplification,
Reinforcement Learning

LSTM→ LSTM RL Adam Newsela,
WikiSmall,
WikiLarge

BLEU,
FKGL,
SARI

Li and Rush [79] Deep Recurrent Generative
Decoder (DRGD)

GRU→ GRU, VAE XENT, VAE Adadelta DUC, LCSTS ROUGE

Liu et al. [83] Adversarial Training Pointer-Generator Network GAN Adadelta CNN/DM ROUGE,
Human

Pasunuru et al.
[108]

Multi-Task with Entailment
Generation

LSTM document encoder and
premise Encoder→ LSTM
Summary and Entailment
Decoder

Hybrid-
Objective

Adam DUC,
Gigaword,
SNLI

ROUGE,
METEOR,
BLEU,
CIDEr-D

Gehring et al.
[40]

Convolutional Seq2seq, Position
Embeddings, Gated Linear Unit,
Multi-step Attention

CNN→ CNN XENT Adam DUC,
Gigaword

ROUGE

Fan et al. [36] Convolutional Seq2seq,
Controllable

CNN→ CNN XENT Adam DUC, CNNDM ROUGE,
Human

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:13

Table 2. An Overview of Different seq2seq Models for the Neural Abstractive

Text Summarization (2018)

Year Reference Highlights Framework Training Optimizer Datasets Metrics

Celikyilmaz et al.
[15]

Deep Communicating Agents,
Semantic Cohesion Loss

LSTM→ LSTM Hybrid-
Objective

Adam CNN/DM,NYT ROUGE,
Human

Chen and Bansal
[19]

Reinforce-Selected Sentence
Rewriting

LSTM Encoder→ Extractor→
Abstractor

XENT + RL SGD DUC,
CNN/DM

ROUGE,
Human

Hsu et al. [54] Abstraction + Extraction,
Inconsistency Loss

Extractor: GRU. Abstractor:
Pointer-generator Network

Hybrid-
Objective +
RL

Adadelta CNN/DM ROUGE,
Human

Li et al. [78] Actor-Critic GRU→ GRU RL Adadelta DUC,
CNN/DM,
LCSTS

ROUGE

Li et al. [73] Abstraction + Extraction, Key
Information Guide Network (KIGN)

KIGN: LSTM. Framework:
Pointer-Generator Network

XENT Adadelta CNN/DM ROUGE

Lin et al. [81] Global Encoding, Convolutional
Gated Unit

LSTM→ LSTM XENT Adam Gigaword,
LCSTS

ROUGE

Pasunuru and
Bansal [107]

Multi-Reward Optimization for RL:
ROUGE, Saliency and Entailment.

LSTM→ LSTM RL Adam DUC,
CNN/DM,
SNLI,
MultiNLI,
SQuAD

ROUGE,
Human

Song et al. [125] Structured-Infused Copy
Mechanisms

Pointer-Generator Network Hybrid-
Objective

Adam Gigaword ROUGE,
Human

2018 Cohan et al. [28] Discourse Aware Attention Hierarchical RNN LSTM
Encoder→ LSTM

XENT Adagrad PubMed, arXiv ROUGE

Guo et al. [47] Multi-Task Summarization with
Entailment and Question
Generation

Multi-Task Encoder-Decoder
Framework

Hybrid-
Objective

Adam DUC,
Gigaword,
SQuAD, SNLI

ROUGE,
METEOR

Cibils et al. [26] Diverse Beam Search, Plagiarism
and Extraction Scores

Pointer-Generator Network XENT Adagrad CNN/DM ROUGE

Wang et al. [138] Topic Aware Attention CNN→ CNN RL - Gigaword,
CNN/DM,
LCSTS

ROUGE

Kryściński et al.
[71]

Improve Abstraction LSTM Encoder→ Decoder:
Contextual Model and
Language Model

XENT + RL Asynchronous
Gradient
Descent
Optimizer

CNN/DM ROUGE,
Novel
n-gram
Test,
Human

Gehrmann et al.
[41]

Bottom-up Attention, Abstraction +
Extraction

Pointer-Generator Network Hybrid-
Objective

Adagrad CNN/DM, NYT ROUGE,
%Novel

Zhang et al. [157] Learning to Summarize Radiology
Findings

Pointer-Generator Network +
Background Encoder

XENT Adam Radiology
Reports

ROUGE

Jiang and Bansal
[59]

Closed-book Training Pointer-Generator Network +
Closed-book Decoder

Hybrid-
Objective +
RL

Adam DUC,
CNN/DM

ROUGE,
METEOR

Chung et al. [25] Main Pointer Generator Pointer-Generator Network +
Document Encoder

XENT Adadelta CNN/DM ROUGE

Chen et al. [18] Iterative Text Summarization GRU encoder, GRU decoder,
iterative unit

Hybrid-
Objective

Adam DUC,
CNN/DM

ROUGE

dataset [44]. In this section, we review several approaches that have been proposed to overcome
the repetition problem.

2.4.1 Temporal Attention [98, 109]. Temporal attention method was originally proposed to deal
with the attention deficiency problem in neural machine translation (NMT) [118]. Nallapati et al.
[98] have found that it can also overcome the problem of repetition when generating multi-
sentence summaries, since it prevents the model from attending the same parts of a source article
by tracking the past attention weights. More formally, given the attention score se

t j in Equation (3),

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:14 T. Shi et al.

we can first define a temporal attention score as [109]:

s
temp
t j =

⎧⎪⎪⎨
⎪⎪
⎩

exp (se
t j) if t = 1

exp (se
t j)∑t−1

k=1
exp (se

k j
)

otherwise
(14)

Then, the attention distribution and context vector (see Equation (4)) are calculated with

α
temp
t j =

s
temp
t j∑J

k=1
s

temp

tk

, ze
t =

J∑
j=1

α
temp
t j he

j . (15)

It can be seen from Equation (14) that, at each decoding step, the input tokens which have been
highly attended will have a lower attention score via the normalization in time dimension. As a
result, the decoder will not repeatedly attend the same part of the source article.

2.4.2 Intra-Decoder Attention [109]. Intra-decoder attention is another technique to handle the
repetition problem for long-sequence generations. Compared to the regular attention based mod-
els, it allows a decoder to not only attend tokens in a source article but also keep track of the
previously decoded tokens in a summary, so that the decoder will not repeatedly produce the
same information.

For t > 1, intra-decoder attention scores, denoted by sd
tτ , can be calculated in the same manner

as the attention score se
t j .

2 Then, the attention weight for each token is expressed as

αd
tτ =

exp
(
sd

tτ

)
∑t−1

k=1 exp
(
sd

tk

) (16)

With attention distribution, we can calculate the decoder-side context vector by taking linear com-
bination of the decoder hidden states, i.e., hd

<t , as zd
t =
∑t−1

τ=1 α
d
tτh

d
τ . The decoder-side and encoder-

side context vector will be both used to calculate the vocabulary distribution.

2.4.3 Coverage [119]. The coverage model was first proposed for the NMT task [131] to ad-
dress the problems of the standard attention mechanism which tends to ignore the past alignment
information. Recently, See et al. [119] introduced the coverage mechanism to the abstractive text
summarization task. In their model, they first defined a coverage vector ue

t as the sum of attention

distributions of the previous decoding steps, i.e., ue
t =
∑t−1

j αe
t j . Thus, it contains the accumulated

attention information on each token in the source article during the previous decoding steps. The
coverage vector will then be used as an additional input to calculate the attention score

se
t j = (valign)� tanh

(
Walign

(
he

j ⊕ hd
t ⊕ ue

t

)
+ balign

)
(17)

As a result, the attention at current decoding time-step is aware of the attention during the previous
decoding steps. Moreover, they defined a novel coverage loss to ensure that the decoder does
not repeatedly attend the same locations when generating multi-sentence summaries. Here, the
coverage loss is defined as

covlosst =
∑

j

min
(
αe

t j ,u
e
t j

)
, (18)

which is upper bounded by 1.

2We have to replace he
j with hd

τ in Equation (3), where τ ∈ {1, . . . , t − 1}.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:15

2.4.4 Distraction [17]. The coverage mechanism has also been used in [17] (known as distrac-

tion) for the document summarization task. In addition to the distraction mechanism over the
attention, they also proposed a distraction mechanism over the encoder context vectors. Both
mechanisms are used to prevent the model from attending certain regions of the source arti-
cle repeatedly. Formally, given the context vector at current decoding step ze

t and all historical

context vectors (ze
1 , z

e
2 , . . . , z

e
t−1) (see Equation (4)), the distracted context vector ze,dist

t is defined

by ze,dist
t = tanh(Wdist,zz

e
t −Whist,z

∑t−1
j ze

j), where bothWdist,z andWhist,z are diagonal parameter

matrices.

2.5 Improving Encoded Representations

Although LSTM and bi-directional LSTM encoders3 have been commonly used in the seq2seq
models for the abstractive text summarization [98, 109, 119], representations of the source articles
are still believed to be sub-optimal. In this section, we review some approaches that aim to improve
the encoding process.

2.5.1 Selective Encoding [159]. The selective encoding model was proposed for the abstractive
sentence summarization task [159]. Built upon an attention based encoder-decoder framework,
it introduces a selective gate network into the encoder for the purpose of distilling salient infor-
mation from source articles. A second layer representation, namely, distilled representation, of a
source article is constructed over the representation of the first LSTM layer (a bi-directional GRU
encoder in this work.). Formally, the distilled representation of each token in the source article is
defined as

he
sel, j = gatesel, j × he

j (19)

where gatesel, j denotes the selective gate for token x j and is calculated as follows:

gatesel, j = σ
(
Wsel,hh

e
j +Wsel,senh

e
sen + bsel

)
(20)

where he
sen =

−→
he

J
⊕
←−
he

1 . The distilled representations are then used for the decoding. Such a gate

network can control information flow from an encoder to a decoder and can also select salient
information, therefore, it boosts the performance of the sentence summarization task [159].

2.5.2 Read-Again Encoding [152]. Intuitively, read-again mechanism is motivated by human
readers who read an article several times before writing a summary. To simulate this cognitive
process, a read-again encoder reads a source article twice and outputs two-level representations.

In the first read, an LSTM encodes tokens and the article as (he,1
1 ,h

e,1
2 , . . . ,h

e,1
J

) and he,1
sen = h

e,1
J

,

respectively. In the second read, we use another LSTM to encode the source text based on the

outputs of the first read. Formally, the encoder hidden state of the second read he,2
j is updated by

he,2
j = LSTM

(
he,2

j−1,Ex j
⊕ he,1

j ⊕ h
e,1
sen

)
(21)

The hidden states (he,2
1 ,h

e,2
2 , . . . ,h

e,2
J

) of the second read will be passed into decoders for summary

generation.

2.6 Improving Decoder

2.6.1 Embedding Weight Sharing [109]. Sharing the embedding weights with the decoder is a
practical approach that can boost the performance since it allows us to reuse the semantic and
syntactic information in an embedding matrix during summary generation [57, 109]. Suppose the

3GRU and bi-directional GRU are also often seen in abstractive summarization papers.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:16 T. Shi et al.

embedding matrix is represented by Wemb, we can formulate the matrix used in the summary
generation (see Equation (6)) asWd2v = tanh(W �

emb
·Wproj). By sharing model weights, the number

of parameters is significantly less than a standard model since the number of parameters forWproj

is |he
j | × |hd

t |, while that forWd2v is |hd
t | × |V |, where |h | represents the dimension of vector h and

|V | denotes size of the vocabulary.

2.6.2 Deep Recurrent Generative Decoder (DRGD) [79]. Conventional encoder-decoder models
calculate hidden states and attention weights in an entirely deterministic fashion, which limits
the capability of representations and results in low-quality summaries. Incorporating variational
auto-encoders (VAEs) [65, 115] into the encoder-decoder framework provides a practical solution
for this problem. Inspired by the variational RNN proposed in [24] to model the highly structured
sequential data, Li et al. [79] introduced a seq2seq model with DRGD that aims to capture latent
structure information of summaries and improve the summarization quality. This model employs
GRU as the basic recurrent model for both encoder and decoder. However, to be consistent with
this survey paper, we will explain their ideas using LSTM instead.

There are two LSTM layers to calculate the decoder hidden state hd
t . At the decoding step t , the

first layer hidden state hd,1
t is updated by hd,1

t = LSTM1 (hd,1
t−1,Eyt−1). Then, the attention weights

αe
t j and the context vector zd,1

t are calculated with the encoder hidden state he and the first layer

decoder hidden state hd,1
t using Equations (2), (3), and (4). For the second layer, the hidden state

hd,2
t is updated with hd,2

t = LSTM2 (hd,2
t−1,Eyt−1 ⊕ z

d,1
t). Finally, the decoder hidden state is obtained

by hd
t = h

d,1
t ⊕ hd,2

t , where hd is also referred to as the deterministic hidden state.
VAE is incorporated into the decoder to capture latent structure information of summaries

which is represented by a multivariate Gaussian distribution. By using a reparameterization trick
[33, 115], latent variables can be first expressed as ξt = μt + ηt ⊗ ϵ , where the noise variable
ϵ ∼ N (0, I), and Gaussian parameters μt and ηt in the network are calculated by

μt =Wvae,μh
enc
t + bvae,μ , log

(
η2

t

)
=Wvae,ηh

enc
t + bvae,η (22)

where henc
t is a hidden vector of the encoding process of the VAE and defined as

henc
t = σ

(
Wenc,ξ ξt−1 +Wenc,yEyt−1 +Wenc,hh

d
t−1 + benc

)
. (23)

With the latent structure variables ξt , the output hidden states hdec
t can be formulated as

hdec
t = tanh

(
Wdec,ξ ξt +Wdec,hh

d,2
t + bdec

)
. (24)

Finally, the vocabulary distribution is calculated by Pvocab,t = softmax(Wd2vh
dec
t + bd2v).

We primarily focused on the network structure of DRGD in this section. The details of VAE
and its derivations can be found in [33], [65], [79], [115]. In DRGD, VAE is incorporated into the
decoder of a seq2seq model, more recent works have also used VAE in the attention layer [6] and
for the sentence compression task [93].

2.7 Summarizing Long Document

Compared to sentence summarization, the abstractive summarization for very long documents has
been relatively less investigated. Recently, attention based seq2seq models with pointing/copying
mechanism have shown their power in summarizing long documents with 400 and 800 to-
kens [109, 119]. However, performance improvement primarily attributes to copying and repeti-
tion/redundancy avoiding techniques [98, 109, 119]. For very long documents, we need to consider
several important factors to generate high-quality summaries, such as saliency (i.e., significance),
fluency, coherence and novelty [130]. Usually, seq2seq models combined with the beam search

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:17

decoding algorithm can generate fluent and human-readable sentences. In this section, we review
models that aim to improve the performance of long document summarization from the perspec-
tive of saliency.

Seq2seq models for long document summarization usually consists of an encoder with a hier-
archical architecture which is used to capture the hierarchical structure of the source documents.
The top-level salient information includes the important sentences [98, 130], chunks of texts [82],
sections [28], and paragraphs [15], while the lower-level salient information represents keywords.
Hereafter, we will use the term “chunk” to represent the top-level information. The hierarchical
encoder first encodes tokens in a chunk for the chunk representation, and then, encodes differ-
ent chunks in a document for the document representation. In this article, we only consider the
single-layer forward LSTM4 for both word and chunk encoders.

Suppose, the hidden states of chunk i and word j in this chunk are represented by hchk
i and hwd

i j .

At decoding step t , we can calculate word-level attention weight αwd,t
i j for the current decoder

hidden state hd
t with αwd,t

i j =
exp(swd,t

i j)∑
k,l exp(swd,t

kl
)

At the same time, we can also calculate chunk-level

attention weight α chk,t
i by α chk,t

i =
exp(schk,t

i)∑
k exp(schk,t

k
)
, where both alignment scores swd,t

i j = swd (hwd
i j ,h

d
t)

and schk,t
i = schk (hchk

i ,h
d
t) can be calculated using Equation (3). In this section, we will review four

different models that are based on the hierarchical encoder for the task of long document text
summarization.

2.7.1 Hierarchical Attention [98]. The intuition behind a hierarchical attention is that words in
less important chunks should be less attended. Therefore, with chunk-level attention distribution
α chk,t and word-level attention distribution αwd,t , we first calculate re-scaled word-level attention
distribution by

α scale,t
i j =

α chk,t
i αwd,t

i j∑
k,l α

chk,t
k

αwd,t
kl

(25)

This re-scaled attention will then be used to calculate the context vector using Equation (4), i.e.,

ze
t =
∑

i, j α
scale,t
i j hwd

i j . It should be noted that such hierarchical attention framework is different from

the hierarchical attention network proposed in [150], where the chunk representation is obtained

using zwd,t
i =

∑
j α

wd,t
i j hwd

i j instead of the last hidden state of the word-encoder.

2.7.2 Discourse-Aware Attention [28]. The idea of the discourse-aware attention is similar to
that of the hierarchical attention-giving Equation (25). The main difference between these two
attention models is that the re-scaled attention distribution in the discourse-aware attention is
calculated by

α scale,t
i j =

exp
(
α chk,t

i swd,t
i j

)
∑

k,l exp
(
α chk,t

k
swd,t

kl

) , (26)

where swd,t
i j is an alignment score instead of an attention weight.

2.7.3 Coarse-to-Fine Attention [82]. The coarse-to-fine (C2F) attention was proposed for com-
putational efficiency. Similar to the hierarchical attention [98], the proposed model also has both
chunk-level attention and word-level attention. However, instead of using word-level hidden
states in all chunks for calculating the context vector, the C2F attention method first samples a

4The deep communicating agents model [15], which requires multiple layers of bi-directional LSTM, falls out of the scope

of this survey.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:18 T. Shi et al.

chunk i from the chunk-level attention distribution, and then calculates the context vector using

ze
t =
∑

j α
scale,t
i j hwd

i j . At the test time, the stochastic sampling of the chunks will be replaced by a

greedy search.

2.7.4 Graph-Based Attention [130]. The aforementioned hierarchical attention mechanism im-
plicitly captures the chunk-level salient information, where the importance of a chunk is de-
termined solely by its attention weight. In contrast, the graph-based attention framework al-
lows us to calculate the saliency scores explicitly using the pagerank algorithm [49, 104] on
a graph whose vertices and edges are chunks of texts and their similarities, respectively. For-
mally, at the decoding time-step t , saliency scores for all input chunks are obtained by f t =

(1 − λ) (I − λW adj (t)D−1
adj

(t))−1χT , where adjacent matrixW adj (similarity of chunks) is calculated

byW
adj

i j = h
chk
i Wparh

chk
j . Dadj is a diagonal matrix with its (i, i)-element equal to the sum of the ith

column ofW adj. λ is a damping factor. The vector χT is defined as χT ,i =
{

1
|T | i ∈ T
0 otherwise

, where T
is a topic (see [49] and [130] for more details). Finally, the graph-based attention distribution over
a chunk can be obtained by

α chk,t
i =

max
(
f t
i − f t−1

i , 0
)

∑
k

(
max
(
f t
k
− f t−1

k
, 0
)) (27)

where f 0
i is initialized with 0. It can be seen that the graph-based attention mechanism will focus

on chunks that rank higher than the previous decoding step, i.e., f t
i > f t−1

i . Therefore, it provides
an efficient way to select salient information from source documents.

2.8 Extraction + Abstraction

Extractive summarization approaches usually show a better performance comparing to the ab-
stractive approaches [98, 119, 158] especially with respect to ROUGE measures. One of the ad-
vantages of the extractive approaches is that they can summarize source articles by extracting
salient snippets and sentences directly from these documents [97], while abstractive approaches
rely on word-level attention mechanism to determine the most relevant words to the target words
at each decoding step. In this section, we review several studies that have attempted to improve
the performance of the abstractive summarization by combining them with extractive models.

2.8.1 Extractor + Pointer-Generator Network [54]. This model proposes a unified framework
that tries to leverage the sentence-level salient information from an extractive model and in-
corporate them into an abstractive model (a pointer-generator network). More formally, inspired
by the hierarchical attention mechanism [98], they replaced the attention distribution αe

t in the

abstractive model with a scaled version α scale
t , where the attention weights are expressed by

α scale
t j =

α extra
t j α wd

t j∑
k α extra

tk
α wd

tk

. Here, α extra
t j is the sentence-level salient score of the sentence at word position

j and decoding step t . Different from [98], the salient scores (sentence-level attention weights) are
obtained from another deep neural network known as extractor [54].

During training, in addition to cross-entropy and coverage loss used in the pointer-generator
network, this paper also proposed two other losses, i.e., extractor loss and inconsistency loss. The
extractor loss is used to train the extractor and is defined by Lext = − 1

N

∑N
n=1 дn log βn + (1 −

дn) log(1 − βn), whereдn is the ground truth label for the nth sentence and N is the total number of
sentences. The inconsistency loss is expressed as Linc = − 1

T

∑T
t=1 log(1

|K |
∑

j ∈K αe
t jα

extra
t j), whereK

is the set of the top-k attended words andT is the total number of words in a summary. Intuitively,
the inconsistency loss is used to ensure that the sentence-level attentions in the extractive model

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:19

and word-level attentions in the abstractive model are consistent with each other. In other words,
when word-level attention weights are high, the corresponding sentence-level attention weights
should also be high.

2.8.2 Key-Information Guide Network (KIGN) [73]. This approach uses a guiding generation
mechanism that leverages the key (salient) information, i.e., keywords, to guide decoding pro-
cess. This is a two-step procedure. First, keywords are extracted from source articles using the
TextRank algorithm [95]. Second, a KIGN encodes the key information and incorporates them
into the decoder to guide the generation of summaries. Technically speaking, we can use a bi-
directional LSTM to encode the key information and the output vector is the concatenation of hid-

den states, i.e., hkey =
−−→
h

key
N
⊕
←−−
h

key
1 , where N is the length of the key information sequence. Then,

the alignment mechanism is modified as se
t j = (valign)� tanh(W e

align
he

j +W
d
align

hd
t +W

key

align
hkey). Sim-

ilarly, the soft-switch in the pointer-generator network is calculated using pgen,t = σ (Ws,zz
e
t +

Ws,hh
d
t +Ws,keyh

key + bs).

2.8.3 Reinforce-Selected Sentence Rewriting [19]. Most models introduced in this survey are
built upon the encoder-decoder framework [98, 109, 119], in which the encoder reads source ar-
ticles and turns them into vector representations, and the decoder takes the encoded vectors as
input and generates summaries. Unlike these models, the reinforce-selected sentence rewriting
model [19] consists of two seq2seq models. The first one is an extractive model (extractor) which is
designed to extract salient sentences from a source article, while the second is an abstractive model
(abstractor) which paraphrases and compresses the extracted sentences into a short summary. The
abstractor network is a standard attention-based seq2seq model with the copying mechanism for
handling OOV words. For the extractor network, an encoder first uses a CNN to encode tokens and
obtains representations of sentences, and then it uses an LSTM to encode the sentences and repre-
sent a source document. With the sentence-level representations, the decoder (another LSTM) is
designed to recurrently extract salient sentences from the document using the pointing mechanism
[137]. This model has achieved the state-of-the-art performance on CNN/Daily Mail dataset and
was demonstrated to be computationally more efficient than the pointer-generator network [119].

3 TRAINING STRATEGIES

In this section, we review different strategies to train the seq2seq models for abstractive text sum-
marization. As discussed in [113], there are two categories of training methodologies, i.e., word-
level and sequence-level training. The commonly used teacher forcing algorithm [8, 143] and cross-
entropy training [9, 11] belong to the first category, while different RL-based algorithms [2, 113,
114] fall into the second. We now discuss the basic ideas of different training algorithms and their
applications to seq2seq models for the text summarization. A comprehensive survey of deep RL
for seq2seq models can be found in [62].

3.1 Word-Level Training

The word-level training for language models represents methodologies that try to optimize pre-
dictions of the next token [113]. For example, in the abstractive text summarization, given a source
article x , a seq2seq model generates a summary y with the probability Pθ (y |x), where θ represents
model parameters (e.g., weightsW and bias b). In a neural language model [9], this probability can
be expanded to

Pθ (y |x) =
T∏

t=1

Pθ (yt |y<t ,x), (28)

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:20 T. Shi et al.

Fig. 4. (a) Generation process with a greedy search. (b) Training with the teacher-forcing algorithm.

(c) Illustration of the scheduled sampling.

where each multiplier Pθ (yt |y<t ,x), known as likelihood, is a conditional probability of the next
token yt given all previous ones denoted by y<t = (y1,y2, . . . ,yt−1). Intuitively, the text genera-
tion process can be described as follows: Starting with a special token “ SOS” (start of sequence),
the model generates a token yt at a time t with the probability Pθ (yt |y<t ,x) = Pvocab,t (yt). This
token can be obtained by a sampling method or a greedy search, i.e., yt = arg maxyt

Pvocab,t (see
Figure 4(a)). The generated token will then be fed into the next decoding step. The generation
is stopped when the model outputs “ EOS” (end of sequence) token or when the length reaches
a user-defined maximum threshold. In this section, we review different approaches for learning
model parameters, i.e., θ . We will start with the commonly used end-to-end training approach, i.e.,
cross-entropy training, and then move on to two different methods for avoiding the problem of
exposure bias.

3.1.1 Cross-Entropy Training (XENT) [113]. To learn model parameters θ , XENT maximizes the
log-likelihood of observed sequences (ground-truth) ŷt = (ŷ1, ŷ2, . . . , ŷT), i.e.,

log Pθ (ŷ |x) =
T∑

t=1

log Pθ (ŷt |ŷ<t ,x) (29)

which is equivalent to minimizing the cross entropy (XENT) loss, lossXENT = − log Pθ (ŷ |x). We
show this training strategy in Figure 4(b). The algorithm is also known as the teacher-forcing
algorithm [8, 143]. During training, it uses observed tokens (ground-truth) as input and aims to
improve the probability of the next observed token at each decoding step. However, during testing,
it relies on predicted tokens from the previous decoding step. This is the major difference between
training and testing (see Figures 4(a) and (b)). Since the predicted tokens may not be the observed
ones, this discrepancy will be accumulated over time and thus yields summaries that are very
different from ground-truth summaries. This problem is known as exposure bias [8, 113, 134].

3.1.2 Scheduled Sampling [8, 113, 134]. Scheduled sampling algorithm, also known as Data As
Demonstrator (DAD) [113, 134], has been proposed to solve the exposure bias problem. As shown
in Figure 4(c), during training, the input at each decoding step comes from a sampler which can
decide whether it is a model generated token yt from the last step or an observed token ŷt from
training data. The sampling is based on a Bernoulli distribution

Pdad (y) = p
I (y=ŷt)
dad

· (1 − pdad)I (y=yt) (30)

where pdad is the probability of using a token from training data and I (y = yt) is a binary indica-
tor function. In the scheduled sampling algorithm, pdad is an annealing/scheduling function and

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:21

decreases with training time from 1 to 0. As suggested by Bengio et al. [8], a scheduling function
can take different forms, e.g.,

pdad =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

1 − αk linear decay

αk exponential decay
α

α+exp(k/α) inverse sigmoid decay
(31)

where k is a training step and α is a parameter that guarantees pdad ∈ [0, 1]. This strategy is often
referred to as a curriculum-learning algorithm [8, 113, 155].

The main intuition behind this algorithm is that, at the beginning stage, a model with random pa-
rameters cannot generate relevant/correct tokens, therefore, a decoder takes ground-truth tokens
from training data as input. As the training proceeds, the model gradually reduces the probabil-
ity of using ground-truth tokens. By the end of the training, the model assumes that it has been
well trained and can generate reasonable tokens; thus, the decoder can completely rely on its own
predictions [8].

3.1.3 End-To-End Backprop (E2E) [113]. This algorithm is another method that exposes a model
to its own predictions during training. At each decoding step, it still uses XENT to train the model
parameters. However, the input is neither a ground truth token nor a model-generated token.
Instead, it is a fusion of top-k tokens from the last decoding step, where k is a hyper-parameter.
More specifically, the model first samples the top-k tokens, denoted as (y

samp1

t ,y
samp2

t , . . . ,y
sampk

t),
from the vocabulary distribution Pvocab,t . Then, it can re-scale their probabilities as follows:

Psamp,t

(
y

sampi

t

)
=

Pvocab,t

(
y

sampi

t

)
∑

j Pvocab,t

(
y

sampj

t

) (32)

and obtain a vector in the embedding space by Esamp,t =
∑k

i=1 Psamp,t (y
sampi

t)Ey
sampi
t

. This fused

vector will be served as the input for the next decoding step. It should be noted that E2E also
makes use of DAD in practice [113], where a sampler is used to determine whether to take fused
vectors or embeddings of ground-truth tokens as input.

3.2 Sequence-Level Training

The sequence-level training with deep RL algorithms has recently received a lot of popularity in
the area of neural abstractive text summarization [61, 62, 78, 107, 109, 113, 155] due to its ability to
incorporate any user-defined metrics, including non-differentiable ROUGE scores, to train neural
networks. In this section, we review several different policy-gradient algorithms that have been
used to train abstractive text summarization models. For actor-critic algorithms and related work,
the readers are encouraged to go through these publications [19, 62, 78].

In the RL setting, generating a sequence of tokens in a summary can be considered as a se-
quential decision-making process, where an encoder-decoder model is viewed as an agent, which
first reads a source article x and initializes its internal state (hidden and cell states for LSTM). At
the decoding step t , it updates the state and takes an action yπ

t ∈ V (i.e., picking a token from
the vocabulary) according to a policy π = Pθ (yt |y<t ,x). Here, the vocabulary is viewed as an ac-
tion space. By the end of the decoding, it will produce a sequence of actions (yπ

1 ,y
π
2 , . . . ,y

π
T

) and
observe a reward R (yπ

1 ,y
π
2 , . . . ,y

π
T

), which is usually ROUGE scores [80] in the context of text
summarization. Then, RL algorithms will be used to update the agent by comparing the action
sequence based on current policy with the optimal action sequence (i.e., the ground-truth sum-
mary). In this section, we will start with the commonly used REINFORCE for training seq2seq mod-
els. Then, we will introduce the MIXER algorithm (which can improve the convergence rate and

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:22 T. Shi et al.

stability of the training) and the self-critic sequence training approach (which shows low variance
for the gradient estimator).

3.2.1 REINFORCE [82, 113, 142, 155]. The goal of REINFORCE is to find parameters that maxi-
mize the expected rewards. Therefore, the loss function is defined as a negative expected reward,
i.e., Lθ = −E(yπ

<T+1)∼πθ
R (yπ

<T+1), where yπ
<T+1 represents yπ

1 ,y
π
2 , . . . ,y

π
T

. The above equation can

also be rewritten as

Lθ = −
∑

yπ
<T+1∈Y

πθ

(
yπ
<T+1

)
R
(
yπ
<T+1

)
(33)

where Y represents a set that contains all possible sequences. To optimize policy with respect to
model parameters, we take the derivative of the loss function and obtain

∇θLθ = −
∑

yπ
<T+1∈Y

∇θπθ

(
yπ
<T+1

)
R
(
yπ
<T+1

)
= −

∑
yπ
<T+1∈Y

πθ

(
yπ
<T+1

)
∇θ logπθ

(
yπ
<T+1

)
R
(
yπ
<T+1

)

(34)
In the abstractive text summarization task, the policy is expressed as πθ = Pθ (yπ

<T+1 |x) and ac-
cording to Equation (28), the above equation can be expressed as follows:

∇θLθ = −
∑

yπ
<T+1∈Y

Pθ

(
yπ
<T+1

���x
)
·
⎡⎢⎢⎢⎢⎣

T∑
t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)⎤⎥⎥⎥⎥⎦ · R

(
yπ
<T+1

)

= −Eyπ
1 ∼Pθ (yπ

1 |x)Eyπ
2 ∼Pθ (yπ

2 |y
π
1 ,x) · · ·Eyπ

T
∼Pθ (yπ

T
|yπ

<T
,x)

⎡⎢⎢⎢⎢⎣

T∑
t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)⎤⎥⎥⎥⎥⎦ · R

(
yπ
<T+1

)

= −Eyπ
<T+1∼Pθ (yπ

<T+1 |x)

⎡⎢⎢⎢⎢⎣

T∑
t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)⎤⎥⎥⎥⎥⎦ · R

(
yπ
<T+1

)
(35)

The reward R (yπ
<T+1) will be back-propagated to every node of the computational graph via the

above gradient estimator. With the gradient, the model parameters are updated by

θ ← θ + α∇θLθ (36)

where α is the learning rate.
As it can be seen from Equation (35), the computing gradient requires us to sample all se-

quences, which is not practical due to the presence of |V |T possible number of sequences. Instead,
REINFORCE approximates the expectation with a single sample, thus, the gradient is expressed as
follows:

∇θLθ ≈ −
T∑

t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)
· R
(
yπ
<T+1

)
(37)

One of the problems associated with this method is high variance of gradient estimator, because
it makes use of only one sample to train the model. A practical solution to alleviate this problem
is introducing a baseline reward [114, 139, 147] denoted by b to the gradient, i.e.,

∇θLθ = −Eyπ
<T+1∼Pθ (yπ

<T+1 |x)

⎡⎢⎢⎢⎢⎣

T∑
t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)⎤⎥⎥⎥⎥⎦ ·
(
R
(
yπ
<T+1

)
− b
))

(38)

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:23

The baseline b is arbitrary function but should not depend on yπ
<T+1 [114, 128]. In this way, it will

not change the expectation of the gradient since Eyπ
<T+1∼Pθ (yπ

<T+1 |x)[
∑T

t=1 ∇θ log Pθ (yπ
t |yπ

<t ,x)] ·
b = 0. The complete derivations of the above equation can be found in [114]. In practice, the gra-
dient with the baseline is approximated with

∇θLθ ≈ −
(
R
(
yπ
<T+1

)
− b
) T∑

t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)

(39)

Better ways of sampling a sequence and different approaches to calculate the baseline can be found
in [62], [113], [147], and [151].

3.2.2 MIXER [113]. Training seq2seq models using REINFORCE may suffer from slow conver-
gence and can also fail due to the large action space and poor initialization (which refers to ran-
domly initialize parameters and start with random policy). To alleviate this problem, Ranzato et al.
[113] modified REINFORCE by incorporating the idea of curriculum learning strategy and pro-
posed a MIXER algorithm. In this algorithm, they first trained a seq2seq model for N -epochs to
ensure RL starts with a better policy. Afterwards, in each batch and for each sequence, they used
the cross entropy loss for the first T − Δ steps and REINFORCE for the remaining Δ steps, where
Δ is an integer number. Training was continued for another N -epochs, where N is also an in-
teger number. Then, they increased REINFORCE steps to 2Δ and continued training for another
N -epochs. This process will repeat until the whole sequence is trained by REINFORCE. This algo-
rithm has shown a better performance for greedy generation compared to XENT, DAD, and E2E
in the task of abstractive text summarization.

3.2.3 Self-Critic Sequence Training (SCST) [15, 107, 109, 114]. The main idea of SCST is to use
testing time inference algorithm as the baseline function in REINFORCE. Suppose the greedy
search (see Figure 4(a)) is used to sample actions during testing. Then, at each training iteration,

the model generates two action sequences, in which the first one y
π ,greedy
<T+1 is from greedy search

while the second one yπ
<T+1 is sampled from a distribution Pθ (yπ

<T+1 |x). According to SCST, base-

line b is defined as reward R (y
π ,greedy
<T+1) to the first sequence. Therefore, the gradient of the loss

function in SCST is expressed as

∇θLθ ≈ −
(
R
(
yπ
<T+1

)
− R
(
y

π ,greedy
<T+1

)) T∑
t=1

∇θ log Pθ

(
yπ

t
���y

π
<t ,x
)
, (40)

according to Equation (39). The SCST has shown low variance and can be effectively optimized
with mini-batch SGD compared to REINFORCE [114]. It has also been demonstrated to be effective
in improving the performance of seq2seq models for the task of abstractive text summarization
[109]. In this work, the authors used the following RL loss to train their model:

LRL ≈ −
(
R
(
yπ
<T+1

)
− R
(
y

π ,greedy
<T+1

)) T∑
t=1

log Pθ

(
yπ

t
���y

π
<t ,x
)

(41)

Although the model performs better than those trained with XENT in terms of ROUGE scores,
human-readability of generated summaries is low. To alleviate this problem, the authors also de-
fined a mixed loss function of RL and XENT, i.e., LMIXED = γLRL + (1 − γ)LXENT, where γ ∈ (0, 1)
is a hyper-parameter. The model trained with the mixed loss can achieve better human-readability
and ROUGE scores are still better than those obtained with XENT. They also used scheduled sam-
pling to reducing exposure bias, in which the scheduling function is a constant (pdad = 0.75).

We have reviewed different RNN encoder-decoder architectures and training strategies in the
last two sections. Now, we are at the position to generate summaries for given source articles.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:24 T. Shi et al.

4 SUMMARY GENERATION

Generally speaking, the goal of summary generation is to find an optimal sequence y∗<T+1 such
that

y∗<T+1 = arg max
y<T+1∈Y

log Pθ (y<T+1 |x) = arg max
y<T+1∈Y

T∑
t=1

log Pθ (yt |y<t ,x) (42)

where Y represents a set that contains all possible sequences (summaries). However, since it has
|V |T elements, the exact inference is intractable in practice [116]. Here,V represents the output
vocabulary. In this section, we review the beam search algorithm and its extensions for approxi-
mating the exact inference.

4.1 Greedy and Beam Search

As shown in Figure 4(a), we can generate a sub-optimal sequence with greedy search, i.e.,

y∗t = arg max
yt ∈V

log Pθ (yt |y<t ,x) (43)

at each decoding step t . Although greedy search is computationally efficient, human-readability
of generated summaries is low.

Beam search algorithm is a compromise between greedy search and exact inference and has been
commonly employed in different language generation tasks [89, 116, 119]. Beam search is a graph-
search algorithm that generates sequences from left to right by retaining only B top scoring (top-
B) sequence-fragments at each decoding step. More formally, we denote decoded top-B sequence
fragments, also known as hypotheses [116], at time-step t − 1 as y<t,1,y<t,2, . . . ,y<t,B and their

scores as Sbm
<t,1, S

bm
<t,2, . . . , S

bm
<t,B . For each fragmenty<t,b , we first calculate Pθ (ycand

t,b
|y<t,b ,x), which

determinesB most probable wordsycand
t,b,1
,ycand

t,b,2
, . . . ,ycand

t,b,B
to expand it. The score for each expanded

fragment, i.e., new hypotheses, ycand
<t+1,b,b′

can then be updated with either

Scand
t,b,b′ = Sbm

<t,b × Pθ

(
ycand

t,b,b′
���y<t,b ,x

)
(44)

where Sbm
<t,b

is initialized with 1, or Scand
t,b,b′

= Sbm
<t,b
+ log Pθ (ycand

t,b,b′
|y<t,b ,x), where Sbm

<t,b
is initial-

ized with 0. Here, b and b ′ are labels of a current hypothesis and a word candidate, respectively.
This yields B × B expanded fragments, i.e., new hypotheses, in which only the top-B of them along
with their scores are retained for the next decoding step. This procedure will be repeated until”
“EOS” token is generated. In Algorithm 1, we show pseudo-codes of a beam search algorithm for
generating summaries with Seq2Seq models given the beam size of B and batch size of 1.

4.2 Diversity-Promoting Algorithms

Despite widespread applications, beam search algorithm suffered from lacking of diversity within
a beam [42, 68, 76, 136]. In other words, the top-B hypotheses may differ by just a couple tokens
at the end of sequences, which not only limits applications of summarization systems but also
wastes computational resources [74, 136]. Therefore, it is important to promote the diversity of
generated sequences. Ippolito et al. [58] performed an extensive analysis of different post-training
decoding algorithms that aim to increase the diversity during decoding. They have also shown the
power of oversampling (i.e., first sampling additional candidates, and then, filtering them to the
desired number) in improving the diversity without sacrificing performance. In this section, we
briefly introduce some studies that aim to increase the diversity of the beam search algorithm for
abstractive summarization models.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:25

ALGORITHM 1: Beam search algorithm for decoding seq2seq models.

Input: Source article x , beam size B, summary length T , model parameters θ ;

Output: B-best summaries;

1 Initialize :

2 Output sequences Qseq = [SOS]B×T ;

3 Accumulated probabilities Qprob = [1.0]B×1;

4 The last decoded tokens Qword = [SOS]B×1;

5 States (hidden and cell states for LSTM) Qstates = [0.0]B×|hd
t |

;

6 Context vectors Qctx = [0.0]B×|ze
t | ;

7 Compute (he
1 ,h

e
2 , . . . ,h

e
J
) with encoder;

8 Update Qstates with encoder states;

9 for t=1, T do

10 Initialize candidates Qcand,seq, Qcand,prob, Qcand,word, Qcand,states, Qcand,ctx by repeating Qseq,

Qprob, Qword, Qstates and Qctx B times, respectively;

11 for b=1, B do

12 Compute Pθ (ycand
t,b
|y<t,b ,x) using decoder LSTM cell with input (he

1 ,h
e
2 , . . . ,h

e
J
), Qword

b
,

Qstates
b

and Qctx
b

;

13 Select the top-B candidate words ycand
t,b,b′

, where b ′ = 1, 2, . . . ,B;

14 Select corresponding probability Pθ (ycand
t,b,b′

|y<t,b ,x), hidden states hd
t,b,b′

, cell states cd
t,b,b′

and context vector ze
t,b,b′

;

15 Update elements of Q
cand,seq
b′,b,t

, Qcand,word
b′,b

with ycand
t,b,b′

;

16 Update elements of Qcand,states
b′,b

with hd
t,b,b′

and cd
t,b,b′

;

17 Update elements of Qcand,ctx
b′,b

with ze
t,b,b′

;

18 Update Q
cand,prob
b′,b

with Equation (44);

19 end

20 Flatten Qcand,prob and choose B best hypotheses;

21 Update Q
seq
t , Qprob, Qword, Qstates, Qctx with corresponding candidates.

22 end

4.2.1 Maximum Mutual Information (MMI) [74–76]. The MMI-based methods were originally
proposed for neural conversation models and then applied to other tasks, such as machine trans-
lation and summarization [75, 76]. The basic intuition here is that a desired model should not only
take into account the dependency of a target on a source, but also should consider the likelihood
of the source for a given target, which is achieved by replacing the log-likelihood of the target,
i.e., log Pθ (y |x) in Equation (42), with pairwise mutual information of the source and target, de-

fined by log
Pθ (y,x)

Pθ (x)Pθ (y) . During the training, model parameters are learned by maximizing mutual

information. When generating sequences, the objective is expressed as follows:

y∗ = arg max
y∈Y

log
Pθ (y,x)

Pθ (x)Pθ (y)
= arg max

y∈Y
(log Pθ (y |x) − log Pθ (y)) (45)

However, it is obvious that calculating Pθ (y) is intractable. Thus, several approximation methods
have been proposed in the literature to alleviate this problem [74, 75]. These approximation method
can be summarized by the following three steps:

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:26 T. Shi et al.

• Train two seq2seq models, one for Pθ1
(y |x) and the other for Pθ2

(x |y), where θ1 and θ2 are
the model parameters.

• Generate a diverse N -best list of sequences based on Pθ1
(y |x). To achieve this goal, the

method for calculating the scores for beam search algorithm has been modified as

Sbeam
k,k ′ = b<t,k + log Pθ (yt,k ′ |y<t,k ,x) − γk ′. (46)

By adding the last term γk ′, the model explicitly encourages hypotheses from different
parents, i.e., different k , which results in more diverse results. Therefore, parameter γ is
also known as the diversity rate which indicates the degree of diversity integrated into
beam search algorithm [76].

• Re-rank N -best list by linearly combining Pθ1
(y |x) and Pθ2

(x |y). The ranking score for each
candidate in the N -best list is defined as follows:

Srank (y) = log Pθ1
(y |x) + λ log Pθ2

(x |y) + βΩ(y), (47)

where Ω(y) is a task-specific auxiliary term. λ and β are parameters that can be learned
using minimum error rate training [103] on the development dataset.

4.2.2 Diverse Beam Search (DBS) [26, 136]. DBS is another approach that aims to increase the
diversity of standard beam search algorithm. It first partitions the hypotheses intoG groups. Then,
at each decoding step, it sequentially performs a beam search on each group based on a dissimi-
larity augmented scoring function

Scand
t,b,b′ = Scand

<t,b + log Pθ

(
y

cand,д

t,b,b′
���y

д

<t,b
,x
)
+ λдΔ

(
y

cand,д

<t+1,b,b′
;y1

<t+1, . . . ,y
g−1
<t+1

)
, (48)

where λд ≥ 0 is a parameter. Δ(y
cand,д

<t+1,b,b′
;y1

<t+1, . . . ,y
g−1
<t+1) represents a diversity function, which

measures the dissimilarity or distance between candidate y
cand,д

<t+1,b,b′
in group д and sequences in

groups from 1 to д − 1. Standard beam search is applied to group 1. Intuitively, the generated
sequences in different groups are very different from each other due to the penalty of diversity
functions. In [26], DBS has been combined with pointer-generator network [119] to improve the
diversity of the model produced summaries.

5 IMPLEMENTATIONS AND EXPERIMENTS

Apart from a comprehensive literature survey and a detailed review of different techniques for net-
work structures, training strategies and summary generations, we have also developed an open-
source library, namely, NATS (https://github.com/tshi04/NATS), based on RNN seq2seq framework
for abstractive text summarization [124]. In this section, we first introduce the details of our im-
plementations and then systematically experiment with different network elements and hyper-
parameters on three public available datasets, i.e., CNN/Daily Mail, Newsroom, and Bytecup.

5.1 Implementations

The NATS is equipped with following important features:

• Attention-based seq2seq framework. We implemented the attention-based seq2seq
model shown in Figure 3(a). The encoder and decoder can be chosen to be either LSTM
or GRU. The attention scores can be calculated with one of three alignment methods given
in Equation (3).

• Pointer-generator network. Based on the attention-based seq2seq framework, we imple-
mented pointer-generator network discussed in Section 2.3.4.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://github.com/tshi04/NATS

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:27

Table 3. Basic Statistics of the CNN/Daily Mail Dataset

CNN/Daily Mail Newsroom Bytecup

Train Dev Test Train Dev Test Train Dev Test

pairs 287,227 13,368 11,490 992,985 108,612 108,655 892,734 111,592 111,592

Article Length 751 769 778 773 766 765 640 640 639

Headline Length - - - 10 10 10 12 12 12

Summary Length 55 61 58 31 31 31 - - -

• Intra-temporal attention mechanism. The temporal attention can work with all three
alignment methods.

• Intra-decoder attention mechanism. The alignment method for intra-decoder attention
is the same as that for the attention mechanism.

• Coverage mechanism. To handle the repetition problem, we implemented the coverage
mechanism discussed in Section 2.4.3. If coverage is switched off, coverage loss will be set
to 0.

• Weight-sharing mechanism. As discussed in Section 2.6.1, weight-sharing mechanism
can boost the performance using significantly fewer parameters.

• Beam-search algorithm. We implemented an efficient beam-search algorithm that can
also handle the case when the batch size > 1.

• Unknown words replacement. Similar to [17], we implemented a heuristic unknown
words replacement technique to boost the performance. Theoretically, a pointer-generator
network may generate OOV words even with the copying mechanism, because <unk>
is still in the extended vocabulary. Thus, after the decoding is completed, we manually
check <unk> in summaries and replace them with words in source articles using attention
weights. This meta-algorithm can be used for any attention-based seq2seq model.

5.2 Datasets

5.2.1 CNN/Daily Mail Dataset. CNN/Daily Mail dataset (https://github.com/abisee/cnn-
dailymail) consists of more than 300K news articles and each of them is paired with several
highlights, known as multi-sentence summaries [98, 119]. We have summarized the basic sta-
tistics of the dataset in Table 3. There are primarily two versions of this dataset. The first ver-
sion anonymizes name entities [98], while the second one keeps the original texts [119]. In this
article, we used the second version and obtained processed data from See et al. [119] (https:
//github.com/JafferWilson/Process-Data-of-CNN-DailyMail).

5.2.2 Newsroom Dataset. The Cornell Newsroom dataset (https://summari.es/) [44] was re-
cently released and consists of 1.3 million article-summary pairs, out of which 1.2 million of them
are publicly available for training and evaluating summarization systems. We first used newsroom
library (https://github.com/clic-lab/newsroom) to scrape and extract the raw data. Then, texts were
tokenized with SpaCy package. We developed a data processing tool to tokenize texts and prepare
input for NATS. In this survey, we created two datasets for text summarization and headline gen-
eration, respectively. Their basic statistics are shown in Table 3.

5.2.3 Bytecup Dataset. Byte Cup 2018 International Machine Learning Contest (https://www.
biendata.com/competition/bytecup2018/) released a new dataset, which will be referred to as Byte-
cup dataset in this survey, for the headline-generation task. It consists of 1.3 million pieces of ar-
ticles, out of which 1.1 million are released for training. In our experiments, we create training,

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://github.com/abisee/cnn-dailymail
https://github.com/abisee/cnn-dailymail
https://github.com/JafferWilson/Process-Data-of-CNN-DailyMail
https://github.com/JafferWilson/Process-Data-of-CNN-DailyMail
https://summari.es/
https://github.com/clic-lab/newsroom
https://www.biendata.com/competition/bytecup2018/
https://www.biendata.com/competition/bytecup2018/

1:28 T. Shi et al.

development, and testing sets (0.8/0.1/0.1) based on this training dataset. Texts are tokenized using
Stanford CoreNLP package and prepared with our data processing tool. The basic statistics of the
dataset are shown in Table 3.

5.3 Parameter Settings

In all our experiments, we set the dimension of word embeddings and hidden states (for both en-
coder and decoder) as 128 and 256, respectively. During training, the embeddings are learned from
scratch. Adam [64] with hyper-parameter β1 = 0.9, β2 = 0.999, and ϵ = 10−8 is used for stochastic
optimization. Learning rate is fixed to 0.0001 and mini-batches of size 16 are used. Gradient clip-
ping is also used with a maximum gradient norm of 2.0. For all datasets, the vocabulary consists of
50K words and is shared between source and target. For the CNN/Daily Mail dataset, we truncate
source articles to 400 tokens and limit the length of summaries to 100 tokens. For the Newsroom
dataset, source articles, summaries, and headlines are truncated to 400, 50, and 20, respectively. For
the Bytecup dataset, lengths of source articles and headlines are also limited to 400 and 20 tokens,
respectively. During training, we run 35 epochs for the CNN/Daily Mail dataset and 20 epochs for
the Newsroom and Bytecup datasets. During testing, we set the size of a beam to 5.

5.4 ROUGE Evaluations

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scores were first introduced in [80]
and have become standard metrics for evaluating abstractive text summarization models. They de-
termine the quality of summarization by counting the number of overlapping units (i.e., n-grams,
word sequences, and word pairs) between machine-generated and golden-standard (human-
written) summaries [80]. Within all different ROUGE measures, ROUGE-1 (unigram), ROUGE-2
(bigram), and ROUGE-L (longest common subsequence) have been most widely used for single-
document abstractive summarization [119]. In this article, different models are evaluated using
the pyrouge (https://pypi.python.org/pypi/pyrouge/0.1.0) package, which provides precision, re-
call, and F-score for these measures.

5.5 Experiments on CNN/Daily Mail Dataset

In the past few years, the CNN/Daily Mail dataset has become a standard benchmark dataset
used for evaluating the performance of different summarization models that can generate multi-
sentence summaries for relatively longer documents [97, 98, 109, 119, 156]. In our experiments,
we systematically investigated the effects of six network components in the seq2seq framework
on summarization performance, including (i) alignment methods in the attention mechanism,
(ii) pointing mechanism, (iii) intra-temporal attention, (iv) intra-decoder attention, (v) weight shar-
ing, and (vi) coverage mechanism.

Our experimental results are shown in Table 4. To effectively represent different models, ID of
each model consists of a letter followed by five binary-indicators, corresponding to the six im-
portant components. The letters “G”, “D”, and “C” denote alignment methods “general”, “dot”, and
“concat”, respectively. 1 and 0 indicates if a component is switched on or off, respectively. At first,
it can be clearly seen that the performance of three basic attention-based models (i.e., G00000,
D00000, C00000) are close to each other. In these tests, we still keep the OOV tokens in generated
summaries when performing the ROUGE evaluations, which results in relatively lower ROUGE
precision scores. Therefore, ROUGE F-scores may be lower than those reported in the literature
[98, 119]. Comparing G10000 with G00000, and C10000 with C00000, we find that pointing mech-
anism significantly improves the performance of attention-based seq2seq models. By analyzing
summaries, we observed that most of the tokens are copied from source articles, which results in

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

https://pypi.python.org/pypi/pyrouge/0.1.0

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:29

Table 4. ROUGE Scores on the CNN/Daily Mail Dataset in Our Experiments

Model ID Attention
Pointer-
generator

Intra-
temporal

Intra-
decoder

Weight
sharing

Coverage R-1 R-2 R-L

G00000 general - - - - - 27.62 10.15 25.81

G10000 general � - - - - 33.85 14.08 31.33

G11000 general � � - - - 36.78 15.82 34.05

G11010 general � � - � - 37.07 15.93 34.22

G11100 general � � � - - 36.74 15.78 33.98

G11110 general � � � � - 37.60 16.27 34.77

D00000 dot - - - - - 27.60 10.19 25.81

D11100 dot � � � - - 37.00 15.87 34.24

D11110 dot � � � � - 37.65 16.25 34.85

C00000 concat - - - - - 27.61 10.16 25.78

C10000 concat � - - - - 35.55 15.18 32.84

C10001 concat � - - - � 38.64 16.70 35.63

C10100 concat � - � - - 36.51 15.75 33.70

C10101 concat � - � - � 39.23 17.28 36.02

C10110 concat � - � � - 36.46 15.68 33.69

C10111 concat � - � � � 39.14 17.13 36.04

summaries that are similar to the ones generated by the extractive models.5 As discussed in Sec-
tion 2.3.4, another advantage of pointing mechanism is that it can effectively handle OOV tokens.

The remaining four components are tested upon the pointer-generator network. By comparing
G11000 and G10000, we see that the intra-temporal attention increases almost 3 ROUGE points.
This might be because of its capability of reducing repetitions. However, most of our models that
combine intra-temporal attention with “concat” failed during training after a few epochs. Thus,
we did not report these results. As to intra-decoder attention, we observe from G11000, G11010,
G11100, and G11110 that it does not boost the performance of the model before adding weight-
sharing mechanism. However, in the case of “concat”, the models with intra-decoder attention
have a better performance. Weight sharing mechanism does not always boost the performance
of the models (according to the comparison of C10100 and C10110). However, as aforementioned,
models that adopt weight sharing mechanism have much fewer parameters. Finally, we find the
coverage mechanism can significantly boost performance by at least 2 ROUGE points, which is
consistent with the results presented in [119]. It should be noted that the coverage mechanism can
only work with the “concat” attention mechanism according to Section 2.4.3.

5.6 Experiments on Newsroom and Bytecup Datasets

We also tested NATS toolkit on the Newsroom dataset, which was released recently. In our experi-
ments, we tokenized the raw data with three different packages and generated three versions of the
dataset for the task of text summarization and three versions for the task of headline generation.
Experimental results obtained with the models G11110 and C10110 on the released testing set [44]
are shown in Table 5. It can be observed that G11110 performs better than C10110 on CNN/Daily
Mail data from Table 4, however, C10110 achieves better ROUGE scores in both text summariza-
tion and headline generation tasks on Newsroom dataset. Finally, we summarize our results for

5The extractive models attempt to extract sentences from the source articles.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:30 T. Shi et al.

Table 5. ROUGE Scores on Newsroom and Bytecup Datasets

Newsroom-Summary Newsroom-Title Bytecup

Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

G11110 39.11 27.54 35.99 25.23 11.46 23.72 39.04 22.72 35.90

C10110 39.36 27.86 36.35 26.56 12.31 25.04 39.13 22.98 36.14

the Bytecup headline generation dataset in Table 5. C10110 achieves slightly better scores than
G11110.

6 CONCLUSION AND FUTURE DIRECTIONS

Being one of the most successful applications of seq2seq models, neural abstractive text summa-
rization has become a prominent research topic that has gained a lot of attention from both in-
dustry and academia. In this article, we provided a comprehensive survey on the recent advances
of seq2seq models for the task of abstractive text summarization. This work primarily focuses on
the challenges associated with neural network architectures, model parameter inference mecha-
nisms and summary generation procedures, and the solutions of different models and algorithms.
We also provided a taxonomy of these topics and an overview of different seq2seq models for
the abstractive text summarization. As part of this survey, we developed an open source toolkit,
namely, NATS, which is equipped with several important features, including attention, pointing
mechanism, repetition handling, and beam search. In our experiments, we first summarized the
experimental results of different seq2seq models in the literature on the widely used CNN/Daily
Mail dataset. We also conducted extensive experiments on this dataset using NATS to examine the
effectiveness of different neural network components. Finally, we established benchmarks for two
recently released datasets, i.e., Newsroom and Bytecup.

Despite advances of Seq2Seq models in the abstractive text summarization task, there are still
many research challenges that are worth pursing in the future.

(1) Large Transformers. These large-scale models are first pre-trained on massive text corpora
with self-supervised objectives and then fine-tuned on downstream tasks. They have achieved
state-of-the-art performance on a variety of summarization benchmark datasets [34, 72, 85, 112,
148, 153]. In [153], the pre-trained encoder-decoder model can outperform previous state-of-the-
art results on several datasets by fine-tuning with limited supervised examples, which shows that
pre-trained models are promising candidates for zero-shot and low-resource summarization.

(2) Reinforcement Learning (RL). RL-based training strategies can incorporate any user-defined
metrics, including non-differentiable ones, as rewards to train summarization models [56, 62, 107,
109]. These metrics can be ROUGE [80], BERTScore [154], or saliency and entailment rewards
[107] inferred from the Natural Language Inference task [13]. Therefore, we may improve current
models with RL by leveraging external resources and characteristics of different datasets.

(3) Summary Generation. Most Seq2Seq-based summarization models rely on beam-search al-
gorithm to generate summaries. Recently, sampling-based approaches have achieved success in
open-ended language generation [53] since they can increase the diversity of the generated texts.
It is a promising research direction that can potentially increase the novelty of the generated sum-
maries without sacrificing their quality.

(4) Datasets. Seq2Seq-based summarization models are widely trained and evaluated on News
corpora [44, 50, 98, 100]. However, the journalistic writing style promotes the leading paragraphs
of most news articles as summaries [67], which causes the models to favor extraction rather than
abstraction [41, 44]. To alleviate this problem, researchers have introduced several datasets from

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:31

other domains [28, 63, 67, 121]. In the future, many new datasets will likely be released to build
better abstractive summarization systems.

(5) Evaluation. Most automatic evaluation protocols, e.g., ROUGE and BERTScore [154], are not
sufficient to evaluate the overall quality of generated summaries [70, 91]. We still have to access
some critical features, like factual correctness [70], fluency, and relevance [19], of generated sum-
maries by human experts. Thus, a future research direction along this line is building better evalu-
ation systems that go beyond current metrics to capture the most important features which agree
with humans. For example, some attempts have been made for generic text generation [120, 140].

REFERENCES

[1] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, and Krys

Kochut. 2017. Text summarization techniques: A brief survey. arXiv preprint arXiv:1707.02268 (2017).

[2] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and

Yoshua Bengio. 2016. An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086 (2016).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473 (2014).

[4] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio. 2016. End-to-end

attention-based large vocabulary speech recognition. In Proceedings of the 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4945–4949.

[5] Lalit Bahl, Peter Brown, Peter De Souza, and Robert Mercer. 1986. Maximum mutual information estimation of

hidden Markov model parameters for speech recognition. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP’86), Vol. 11. IEEE, 49–52.

[6] Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart. 2018. Variational Attention for Sequence-to-

Sequence Models. In COLING.

[7] David Balduzzi and Muhammad Ghifary. 2016. Strongly-typed recurrent neural networks. In Proceedings of the 33rd

International Conference on International Conference on Machine Learning-Volume 48. JMLR. org, 1292–1300.

[8] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled sampling for sequence prediction

with recurrent neural networks. In Advances in Neural Information Processing Systems. 1171–1179.

[9] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model.

Journal of Machine Learning Research 3, Feb (2003), 1137–1155.

[10] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent

is difficult. IEEE Transactions on Neural Networks 5, 2 (1994), 157–166.

[11] Adam L, Berger, Vincent J, Della Pietra, and Stephen A, Della Pietra. 1996. A maximum entropy approach to natural

language processing. Computational Linguistics 22, 1 (1996), 39–71.

[12] Neelima Bhatia and Arunima Jaiswal. 2016. Automatic text summarization and it’s methods-a review. In Proceedings

of the 2016 6th International Conference on Cloud System and Big Data Engineering (Confluence). IEEE, 65–72.

[13] Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for

learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing. 632–642.

[14] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2016. Quasi-recurrent neural networks. arXiv

preprint arXiv:1611.01576 (2016).

[15] Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. 2018. Deep communicating agents for abstractive

summarization. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), Vol. 1. 1662–1675.

[16] Danqi Chen, Jason Bolton, and Christopher D. Manning. 2016. A thorough examination of the CNN/daily mail read-

ing comprehension task. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), Vol. 1. 2358–2367.

[17] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. 2016. Distraction-based neural networks for model-

ing documents. In Proceedings of the 25th International Joint Conference on Artificial Intelligence. AAAI Press, 2754–

2760.

[18] Xiuying Chen, Shen Gao, Chongyang Tao, Yan Song, Dongyan Zhao, and Rui Yan. 2018. Iterative document repre-

sentation learning towards summarization with polishing. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing. 4088–4097.

[19] Yen-Chun Chen and Mohit Bansal. 2018. Fast abstractive summarization with reinforce-selected sentence rewriting.

In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Association for Computational Linguistics, 675–686.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:32 T. Shi et al.

[20] Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting sentences and words. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 484–494.

[21] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine transla-

tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1724–1734.

[22] Sumit Chopra, Michael Auli, and Alexander M. Rush. 2016. Abstractive sentence summarization with attentive re-

current neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies. 93–98.

[23] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recur-

rent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning, December 2014.

[24] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua Bengio. 2015. A re-

current latent variable model for sequential data. In Advances in Neural Information Processing Systems. 2980–2988.

[25] Tong Lee Chung, Bin Xu, Yongbin Liu, and Chunping Ouyang. 2018. Main point generator: Summarizing with a

focus. In Proceedings of the International Conference on Database Systems for Advanced Applications. Springer, 924–

932.

[26] André Cibils, Claudiu Musat, Andreea Hossman, and Michael Baeriswyl. 2018. Diverse beam search for increased

novelty in abstractive summarization. arXiv preprint arXiv:1802.01457 (2018).

[27] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2019. ELECTRA: Pre-training text en-

coders as discriminators rather than generators. In International Conference on Learning Representations.

[28] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian.

2018. A discourse-aware attention model for abstractive summarization of long documents. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 2 (Short Papers), Vol. 2. 615–621.

[29] Vipul Dalal and Latesh G. Malik. 2013. A survey of extractive and abstractive text summarization techniques. In

Proceedings of the 2013 6th International Conference on Emerging Trends in Engineering and Technology (ICETET).

IEEE, 109–110.

[30] Dipanjan Das and André F. T. Martins. 2007. A survey on automatic text summarization. Literature Survey for the

Language and Statistics II course at CMU 4 (2007), 192–195.

[31] Yann N, Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language modeling with gated convolutional

networks. In Proceedings of the International Conference on Machine Learning. 933–941.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 4171–

4186.

[33] Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016).

[34] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen

Hon. 2019. Unified language model pre-training for natural language understanding and generation. In Advances in

Neural Information Processing Systems. 13042–13054.

[35] Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179–211.

[36] Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. 2019. Multi-news: A large-scale multi-

document summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics. 1074–1084.

[37] Angela Fan, David Grangier, and Michael Auli. 2018. Controllable abstractive summarization. In Proceedings of the

2nd Workshop on Neural Machine Translation and Generation. 45–54.

[38] Mahak Gambhir and Vishal Gupta. 2017. Recent automatic text summarization techniques: A survey. Artificial In-

telligence Review 47, 1 (2017), 1–66.

[39] Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. 2017. A convolutional encoder model for neu-

ral machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), Vol. 1. 123–135.

[40] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. 2017. Convolutional sequence to

sequence learning. In Proceedings of the International Conference on Machine Learning. 1243–1252.

[41] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. 2018. Bottom-up abstractive summarization. In Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language Processing. 4098–4109.

[42] Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory Shakhnarovich. 2013. A systematic exploration of diversity

in machine translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.

1100–1111.

[43] Alex Graves and Navdeep Jaitly. 2014. Towards end-to-end speech recognition with recurrent neural networks. In

Proceedings of the International Conference on Machine Learning. 1764–1772.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:33

[44] Max Grusky, Mor Naaman, and Yoav Artzi. 2018. Newsroom: A dataset of 1.3 million summaries with diverse ex-

tractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Vol. 1. 708–719.

[45] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating copying mechanism in sequence-to-

sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), Vol. 1. 1631–1640.

[46] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016. Pointing the unknown

words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), Vol. 1. 140–149.

[47] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2018. Soft layer-specific multi-task summarization with en-

tailment and question generation. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 687–697.

[48] Shengbo Guo and Scott Sanner. 2010. Probabilistic latent maximal marginal relevance. In Proceedings of the 33rd

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 833–834.

[49] Taher H. Haveliwala. 2002. Topic-sensitive pagerank. In Proceedings of the 11th International Conference on World

Wide Web. ACM, 517–526.

[50] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil

Blunsom. 2015. Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems.

1693–1701.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Volume 1, Number 2.

[52] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–

1780.

[53] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text degeneration.

arXiv preprint arXiv:1904.09751 (2019).

[54] Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang, and Min Sun. 2018. A unified model for extrac-

tive and abstractive summarization using inconsistency loss. arXiv preprint arXiv:1805.06266 (2018).

[55] Dichao Hu. 2018. An introductory survey on attention mechanisms in NLP problems. arXiv preprint arXiv:1811.05544

(2018).

[56] Luyang Huang, Lingfei Wu, and Lu Wang. 2020. Knowledge graph-augmented abstractive summarization with

semantic-driven cloze reward. arXiv preprint arXiv:2005.01159 (2020).

[57] Hakan Inan, Khashayar Khosravi, and Richard Socher. 2016. Tying word vectors and word classifiers: A loss frame-

work for language modeling. arXiv preprint arXiv:1611.01462 (2016).

[58] Daphne Ippolito, Reno Kriz, Joao Sedoc, Maria Kustikova, and Chris Callison-Burch. 2019. Comparison of diverse

decoding methods from conditional language models. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics. 3752–3762.

[59] Yichen Jiang and Mohit Bansal. 2018. Closed-book training to improve summarization encoder memory. In Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language Processing. 4067–4077.

[60] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray Kavukcuoglu.

2016. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099 (2016).

[61] Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. 2019. Deep transfer reinforcement learning for text

summarization. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM, 675–683.

[62] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K. Reddy. 2018. Deep reinforcement learning on

sequence to sequence models. arXiv preprint arXiv: (2018).

[63] Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. 2019. Abstractive summarization of reddit posts with multi-

level memory networks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2519–2531.

[64] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[65] Diederik P. Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).

[66] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. 2017. OpenNMT: Open-source

toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations (2017), 67–72.

[67] Mahnaz Koupaee and William Yang Wang. 2018. Wikihow: A large scale text summarization dataset. arXiv preprint

arXiv:1810.09305 (2018).

[68] Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for generating de-

scriptive image paragraphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 317–

325.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:34 T. Shi et al.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems. 1097–1105.

[70] Wojciech Kryscinski, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Neural text

summarization: A critical evaluation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 540–551.

[71] Wojciech Kryściński, Romain Paulus, Caiming Xiong, and Richard Socher. 2018. Improving abstraction in text sum-

marization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 1808–1817.

[72] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov,

and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation,

translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[73] Chenliang Li, Weiran Xu, Si Li, and Sheng Gao. 2018. Guiding generation for abstractive text summarization based on

key information guide network. In Proceedings of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), Vol. 2. 55–60.

[74] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective function

for neural conversation models. In Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. 110–119.

[75] Jiwei Li and Dan Jurafsky. 2016. Mutual information and diverse decoding improve neural machine translation.

arXiv preprint arXiv:1601.00372 (2016).

[76] Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A simple, fast diverse decoding algorithm for neural generation.

arXiv preprint arXiv:1611.08562 (2016).

[77] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. 2016. Deep reinforcement learning

for dialogue generation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.

1192–1202.

[78] Piji Li, Lidong Bing, and Wai Lam. 2018. Actor-critic based training framework for abstractive summarization. arXiv

preprint arXiv:1803.11070 (2018).

[79] Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017. Deep recurrent generative decoder for abstractive text sum-

marization. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2091–2100.

[80] Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. Text Summarization Branches Out

(2004).

[81] Junyang Lin, Xu Sun, Shuming Ma, and Qi Su. 2018. Global encoding for abstractive summarization. In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for

Computational Linguistics, 163–169.

[82] Jeffrey Ling and Alexander Rush. 2017. Coarse-to-fine attention models for document summarization. In Proceedings

of the Workshop on New Frontiers in Summarization. 33–42.

[83] Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, and Hongyan Li. 2017. Generative adversarial network for ab-

stractive text summarization. arXiv preprint arXiv:1711.09357 (2017).

[84] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural networks for natural

language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

4487–4496.

[85] Yang Liu and Mirella Lapata. 2019. Text summarization with pretrained encoders. In Proceedings of the 2019 Con-

ference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP). 3721–3731.

[86] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke

Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692 (2019).

[87] Elena Lloret and Manuel Palomar. 2012. Text summarisation in progress: A literature review. Artificial Intelligence

Review 37, 1 (2012), 1–41.

[88] Konstantin Lopyrev. 2015. Generating news headlines with recurrent neural networks. arXiv preprint

arXiv:1512.01712 (2015).

[89] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural ma-

chine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 1412–

1421.

[90] Inderjeet Mani and Mark T. Maybury. 1999. Advances in Automatic Text Summarization. MIT press.

[91] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On faithfulness and factuality in ab-

stractive summarization. arXiv preprint arXiv:2005.00661 (2020).

[92] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The natural language Decathlon:

Multitask learning as question answering. arXiv preprint arXiv:1806.08730 (2018).

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:35

[93] Yishu Miao and Phil Blunsom. 2016. Language as a latent variable: Discrete generative models for sentence com-

pression. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 319–328.

[94] Yajie Miao, Mohammad Gowayyed, and Florian Metze. 2015. EESEN: End-to-end speech recognition using deep

RNN models and WFST-based decoding. In Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition

and Understanding (ASRU). IEEE, 167–174.

[95] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on

Empirical Methods in Natural Language Processing.

[96] N. Moratanch and S. Chitrakala. 2016. A survey on abstractive text summarization. In Proceedings of the 2016 Inter-

national Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 1–7.

[97] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A recurrent neural network based sequence

model for extractive summarization of documents. In Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence. 3075–3081.

[98] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Ça glar Gulçehre, and Bing Xiang. 2016. Abstractive text sum-

marization using sequence-to-sequence RNNs and beyond. CoNLL 2016 (2016), 280.

[99] Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. 2012. Annotated gigaword. In Proceedings of the

Joint Workshop on Automatic Knowledge Base Construction and Web-Scale Knowledge Extraction. Association for

Computational Linguistics, 95–100.

[100] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t give me the details, just the summary! Topic-

aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing. 1797–1807.

[101] Preksha Nema, Mitesh M. Khapra, Anirban Laha, and Balaraman Ravindran. 2017. Diversity driven attention model

for query-based abstractive summarization. In Proceedings of the 55th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), Vol. 1. 1063–1072.

[102] Ani Nenkova and Kathleen McKeown. 2011. Automatic Summarization. Now Publishers Inc.

[103] Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proceedings of the 41st

Annual Meeting on Association for Computational Linguistics-Volume 1. Association for Computational Linguistics,

160–167.

[104] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking: Bringing

Order to the Web. Technical Report. Stanford InfoLab.

[105] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Associ-

ation for Computational Linguistics, 311–318.

[106] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks.

In Proceedings of the International Conference on Machine Learning. 1310–1318.

[107] Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-reward reinforced summarization with saliency and entailment.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 2 (Short Papers), Vol. 2. 646–653.

[108] Ramakanth Pasunuru, Han Guo, and Mohit Bansal. 2017. Towards improving abstractive summarization via entail-

ment generation. In Proceedings of the Workshop on New Frontiers in Summarization. 27–32.

[109] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for abstractive summarization.

arXiv preprint arXiv:1705.04304 (2017).

[110] Pavan Kartheek Rachabathuni. 2017. A survey on abstractive summarization techniques. In Proceedings of the Inter-

national Conference on Inventive Computing and Informatics (ICICI). IEEE, 762–765.

[111] Dragomir R. Radev, Eduard Hovy, and Kathleen McKeown. 2002. Introduction to the special issue on summarization.

Computational Linguistics 28, 4 (2002), 399–408.

[112] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,

and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint

arXiv:1910.10683 (2019).

[113] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2015. Sequence level training with re-

current neural networks. arXiv preprint arXiv:1511.06732 (2015).

[114] Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. 2017. Self-critical sequence

training for image captioning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 1179–1195.

[115] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate

inference in deep generative models. In Proceedings of the International Conference on Machine Learning. 1278–1286.

[116] Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence sum-

marization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 379–389.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

1:36 T. Shi et al.

[117] Horacio Saggion and Thierry Poibeau. 2013. Automatic text summarization: Past, present and future. In Multi-source,

Multilingual Information Extraction and Summarization. Springer, 3–21.

[118] Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and Abe Ittycheriah. 2016. Temporal attention model for neural

machine translation. CoRR abs/1608.02927 (2016).

[119] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator

networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, 1073–1083.

[120] Thibault Sellam, Dipanjan Das, and Ankur P. Parikh. 2020. BLEURT: Learning robust metrics for text generation.

arXiv preprint arXiv:2004.04696 (2020).

[121] Eva Sharma, Chen Li, and Lu Wang. 2019. BIGPATENT: A large-scale dataset for abstractive and coherent summa-

rization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2204–2213.

[122] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2016. Minimum risk train-

ing for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), Vol. 1. 1683–1692.

[123] Shi-Qi Shen, Yan-Kai Lin, Cun-Chao Tu, Yu Zhao, Zhi-Yuan Liu, and Mao-Song Sun. 2017. Recent advances on neural

headline generation. Journal of Computer Science and Technology 32, 4 (2017), 768–784.

[124] Tian Shi, Ping Wang, and Chandan K. Reddy. 2019. LeafNATS: An open-source toolkit and live demo system for

neural abstractive text summarization. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics (Demonstrations). 66–71.

[125] Kaiqiang Song, Lin Zhao, and Fei Liu. 2018. Structure-infused copy mechanisms for abstractive summarization. In

Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Lin-

guistics, 1717–1729.

[126] Ilya Sutskever. 2013. Training Recurrent Neural Networks. University of Toronto Toronto, Ontario, Canada.

[127] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence-to-sequence learning with neural networks. In Ad-

vances in Neural Information Processing Systems. 3104–3112.

[128] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. MIT press.

[129] Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao, and Masaaki Nagata. 2016. Neural headline generation on

abstract meaning representation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing. 1054–1059.

[130] Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017. Abstractive document summarization with a graph-based atten-

tional neural model. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers), Vol. 1. 1171–1181.

[131] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling coverage for neural machine

translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), Vol. 1. 76–85.

[132] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew Senior, and Koray Kavukcuoglu. [n.d.]. WaveNet: A generative model for raw audio. In Proceedings of the

9th ISCA Speech Synthesis Workshop. 125–125.

[133] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 6000–6010.

[134] Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. 2015. Improving multi-step prediction of learned time

series models. In Proceedings of the 29th AAAI Conference on Artificial Intelligence.

[135] Rakesh M. Verma and Daniel Lee. 2017. Extractive summarization: Limits, compression, generalized model and

heuristics. Computación y Sistemas 21 (2017).

[136] Ashwin K. Vijayakumar, Michael Cogswell, Ramprasath R. Selvaraju, Qing Sun, Stefan Lee, David Crandall, and

Dhruv Batra. 2016. Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint

arXiv:1610.02424 (2016).

[137] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Advances in Neural Information Pro-

cessing Systems. 2692–2700.

[138] Li Wang, Junlin Yao, Yunzhe Tao, Li Zhong, Wei Liu, and Qiang Du. 2018. A reinforced topic-aware convolutional

sequence-to-sequence model for abstractive text summarization. In Proceedings of the 27th International Joint Con-

ference on Artificial Intelligence. AAAI Press, 4453–4460.

[139] Lex Weaver and Nigel Tao. 2001. The optimal reward baseline for gradient-based reinforcement learning. In Pro-

ceedings of the 17th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 538–545.

[140] Fei Liu, Yang Gao, Christian M. Meyer, Steffen Eger, Wei Zhao, and Maxime Peyrard. 2019. MoverScore: Text gener-

ation evaluating with contextualized embeddings and earth mover distance. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Hong Kong, China.

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

Neural Abstractive Text Summarization with Sequence-to-Sequence Models 1:37

[141] Paul J. Werbos. 1990. Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 10 (1990), 1550–

1560.

[142] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.

In Reinforcement Learning. Springer, 5–32.

[143] Ronald J. Williams and David Zipser. 1989. A learning algorithm for continually running fully recurrent neural

networks. Neural Computation 1, 2 (1989), 270–280.

[144] Yuxiang Wu and Baotian Hu. 2018. Learning to extract coherent summary via deep reinforcement learning. In 32nd

AAAI Conference on Artificial Intelligence (AAAI’18). 5602.

[145] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,

Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,

Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei

Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and

Jeffrey Dean. 2016. Google’s neural machine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144 (2016).

[146] Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, and Tie-Yan Liu. 2017. Deliberation networks:

Sequence generation beyond one-pass decoding. In Advances in Neural Information Processing Systems. 1782–1792.

[147] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the

International Conference on Machine Learning. 2048–2057.

[148] Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. 2020.

ProphetNet: Predicting future N-gram for sequence-to-sequence pre-training. arXiv preprint arXiv:2001.04063 (2020).

[149] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Gener-

alized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems.

5754–5764.

[150] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention

networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. 1480–1489.

[151] Wojciech Zaremba and Ilya Sutskever. 2015. Reinforcement learning neural turing machines-revised. arXiv preprint

arXiv:1505.00521 (2015).

[152] Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel Urtasun. 2016. Efficient summarization with read-again and

copy mechanism. arXiv preprint arXiv:1611.03382 (2016).

[153] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. 2019. PEGASUS: Pre-training with extracted gap-

sentences for abstractive summarization. arXiv preprint arXiv:1912.08777 (2019).

[154] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text

generation with Bert. arXiv preprint arXiv:1904.09675 (2019).

[155] Xingxing Zhang and Mirella Lapata. 2017. Sentence simplification with deep reinforcement learning. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing. 584–594.

[156] Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming Zhou. 2018. Neural latent extractive document summarization.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 779–784.

[157] Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christopher D. Manning, and Curtis P. Langlotz. 2018. Learning to

summarize radiology findings. In Proceedings of EMNLP 2018 (2018), 204.

[158] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun Zhao. 2018. Neural document summa-

rization by jointly learning to score and select sentences. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 654–663.

[159] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2017. Selective encoding for abstractive sentence summarization.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

Vol. 1. 1095–1104.

Received June 2019; revised June 2020; accepted August 2020

ACM/IMS Transactions on Data Science, Vol. 2, No. 1, Article 1. Publication date: December 2020.

