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IGH-PERFORMANCE COMPUTING SYSTEMS LAG FAR BEHIND THEIR

workstation and PC cousins in ease of use. In fact, Dianne O’Leary
goes so far as to compare parallel computing today to the “prehistory” of
computing, where computers were used by a select few who understood the
details of the architecture and operating system, where programming was
complex, and debugging required reading hexadecimal dumps.! Computer
time had to be reserved, jobs were submitted in batches,.and crashes were
common. Users were never sure whether an error was due to a bug in their
code or in the system. Most users of HPC find themselves in this situation .
today. If the HPC-based computational paradigm for the scientific process
is to succeed and become ubiquitous, it must provide the simplicity of access
that became popular with the advent of point-and-click capability in PCs.

An important recent advance in this direction is the development of prob-
lem-solving enviromments. A PSE is a computer system that provides the user
with a high-leve] abstraction of the complexity of the underlying computa-
tional facilities. It provides all the computational tools necessary to solve a
target class of problems.? These features include advanced solution methods,
automatic or semiautomatic selection of solution methods, and ways to eas-
ily incorporate new solution methods. Moreover, good PSEs use the ver-
nacular of the target class of problems and provide a “natural” interface, so
people can use them without specialized knowledge of the underlying com-
puter hardware or software. This is important since one cannot expect every
user to be well versed in selecting the appropriate numerical, symbolic, and
parallel systems, along with their associated parameters, that are needed to

solve a problem. Though PSEs are still in an early stage of development,
high-performance computers combined with better algorithms and better -
understanding of computational science have put them within our reach.

A PSE should be able to accept a user’s high-level description of a problem,
and then automatically select the appropriate hardware and software re-
sources needed to solve it. Thus the problem-solving environment must use
“intelligent” techniques incorporating knowledge about the problem domain
and reasoning strategies. Such knowledge is built into Pythiz, an intelligent as-
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sistant we have developed at Purdue University
that will serve as a part of various PSEs. (The
name derives from Greek mythology. People
would put questions to the oracle at Delphi
through a priestess called the Pythia, a name which
perhaps unsurprisingly has now been adopted for
several computer programs, including a Web
browser and a particle physics application com-
pletely unrelated to what we are discussing here.)
The methodologies used in Pythia are general and
could assist in a wide range of scientific comput-
ing applications. Here we will show how Pythia
can help in a specific task: selecting solution tech-
niques for partial differential equations.

Pythia: An intelligent assistant

Pythia attempts to determine an optimal strategy
for solving a given problem within user-specified
requirements for resources and accuracy. By
“strategy” here we mean a solution method and
its parameters; resource requirements refer to
limits on such things as execution time and, indi-
rectly, memory usage. While the techniques
Pythia uses are general, our current specific im-
plementation of it operates in conjunction with
Parallel Ellpack (often written //Ellpack), a system
for solving elliptic partial differential equations.
Other efforts in the works will incorporate Pythia
into the PDELab and SciAgents problem-solving
environments. In the rest of this article, whenever
we refer to a “problem” in the context of imple-
mentation and testing, we mean a PDE problem.

Pythia accepts as input the description of a
problem, and determines the method or methods
appropriate to solve it. (Examples of such methods
are the five-point star and the seven-point star.)
Its strategy is similar to that believed to underlie
human problem-solving skills. A wealth of evi-
dence from psychology suggests that people com-
pare new problems to ones they have seen before,
using some metric of similarity to make that judg-
ment. They use the experience gained in solving
“similar” previous problems to devise a strategy
for solving the present one. This strategy has been
termed case-based reasoning in the Al literature. In
effect, Pythia compares a given problem to ones it
has seen before, and then uses its knowledge
about how certain solution methods performed
on the old problems to choose a method for the
new one and estimate how well it will perform.

Thus, to recommend a strategy to solve a given
PDE problem p, Pythia needs

¢ a database P of previously solved problems
along with data on the effectiveness of various

solution methods on those problems,
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¢ a mechanism to identify the problems from the
database that are similar to p, and

4 comparative data on the effectiveness of vari-
ous methods on the problems in the database.

With this information, Pythia selects the solu-
tion method by using an algorithm of the follow-
ing general form:

(1) Analyze the PDE problem and identify its
characteristics. This involves applying sym-
bolic analysis to extract some characteristics
and asking the user about characteristics that
cannot be determined automatically.

(2) Identify the problem 4 € P whose character-
istics most closely match that of the new
problem p.

(3) Use the performance data for ¢ to predict the
best method to use for p and the values for
appropriate parameters (such as the size of
the grid or mesh in the computation) to
achieve the specified computational and per-
formance objectives.

This strategy is somewhat naive, however. As
the size of the database P increases, comparing the
new problem to all those in P takes more and
more time. An alternate strategy splits the previ-
ously seen problems into classes. Rather than
search all the previous problems to find the most
similar one, we confine the search to the ones that
are in the same class as the new problem. Thus
the strategy becomes

(1) Analyze the PDE problem and identify its
characteristics.

(2) Identify the set C c P, where C is the class of
problems whose characteristics are similar to
those of p.

(3) Identify the problem g € C whose character-
istics most closely match those of p.

(4) Analyze the performance data for the prob-
lems in the class C and rank the applicable
methods to select the “best” method for solv-
ing the problem within the given computa-
tional and performance objectives. Then use
the performance data available for the spe-
cific problem ¢ to predict the values for ap-
propriate computational parameters to
achieve the specified objectives.

"This revised strategy, further illustrated in Figure 1,
is the one we have implemented in Pythia. The en-
tire process is in place, though improving the way
Pythia actually selects solution methods (Part 4 of
the strategy) is a subject of our ongoing research.
For the rest of this article we will focus on the some-
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User's performance objectives
Error: less than 0.02%
Memory usage: less than 5 Mbytes

NEURO-FUZZY SUPPORT FOR PSEs

what more developed phase of classifying the prob-
lems prior to choosing solution methods. Thisis a
task well-suited to the grouping and clustering abil-
ites of various neural and neuro-fuzzy approaches.

Remember that while we are talking here about
partial differential equations, the overall Pythia
framework is general and could apply to other
mathematical problems. The classification task is
even more general and the methods by obvious
extension could apply to arbitrary objects, includ-
ing nonmathematical ones.

PDE problem features:
operator, domain, boundary
conditions, I/O functions

Execution time: at most 10 minutes
Service charge: less than $10

Classification
module

\

Inference
engine

Knowledge base
of Pythia

el
Pythia's recommendation:
Use 5-point star with a
200 x 200 grid on an nCube/2
using 16 processors.

Figure 1. In the Pythia system, first the classification module uses charac-
teristics of a PDE problem to assign it to one or more classes. Then the
classification results, the user’s performance objectives, and input from
the Pythia knowledge base (about various PDE solvers and their ranges
of applicability) are used to drive an inference engine that recommends

a solution method.
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Grouping problems into classes

with Pythia

When grouping objects into classes, we must
make some decisions about the criteria used for
grouping. We need some idea about what charac-

. teristics to pay attention to, and what classes it

makes sense to have.

Before classifying: Extracting a PDE's significant
characteristics

When grouping problems into classes, what
characteristics of a PDE are really significant?
Thatis, what is Pythia looking for in Step 1 of the
preceding algorithm? A PDE problem has char-
acteristics of two main types: those of the prob-
lem components and those of the solution. We as-
sume that the PDE problem is defined in terms
of the following components: the PDE operator

and right-hand side, the initial and boundary con-
ditions, and the spatial and time domains of defi-
nition. The PDE characteristics include some
yes-or-no classification information (such as
whether the operator is homogeneous or not) and
some quantitative information about the behav-
ior—for example, smoothness and local varia-
tion—of the PDE functions (that is, coefficients
of the operators, right-hand side of the operators,
boundary and initial conditions, and the solution).

Characteristics we have selected to character-
ize a PDE problem and its solution in the Pythia
system include ‘

¢ Operator: Poisson, Laplace, Helmholtz; self-
adjoint, homogeneous

¢ Boundary conditions: Dirichlet, Neumann,
mixed, homogeneous - .

¢ PDE functions: smooth, oscillatory, wave front,
singular, peak

¢ Solution: singular, analytic, oscillatory

Each characteristic is also associated with a
value 2, where with one exception 0 <2 < 1; that
is, # is in the interval [0, 1]. Pure absence of a par--
ticular property is indicated by # = 0, and pure
presence by 4 = 1. For logical characteristics (for
example, whether the boundary conditions are -
Dirichlet or not), we use the values 0 and 1 for
false and true, respectively. The set of character-
istics of a PDE problem is represented as a char-
acteristic vector V, which Pythia uses to identify a,
similar PDE problem or a class of related PDE
problems from P. The PDE operator is described
by 16 characteristics, which are derived from the
bulleted list above; exactly how is not important
to this discussion. To describe the whole problem
a 32-vector is required. The 16-vector

(2,0,0,0,1,0,0,0,0,1,0,1,0,0,0.0,0.0)

represents the various type characteristics of the
PDE operator of the problem specified in Figure
2, which is from a population of problems defined
elsewhere.* The first entry in the vector represents
the dimension of the problem, and is the excep-
tion to the [0;1] range. The last two characteristics
are continuous, rather than binary, values and so
are represented decimally. In this study, we have
assurned only linear PDE problems and solvers.

Currently, the Pythia user specifies the charac-
teristics of a PDE problem manually through a
graphical interface. In a system whose purpose‘is -
to simplify and automate problem solving this is
less than ideal; automatic extraction of most char-
acteristics is part of our ongoing research.

The whole business of extracting characteris-
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tics raises another question: how do we know
which things are important? That is, once we con-
struct the vectors, will they be useful for group-
ing problems into classes that facilitate the choice
of proper solution methods? The provisional an-
swer Is yes, but the only evidence here'is empiri-
cal; characterizing PDE problems is notoriously
hard. Even within our team, the Al experts believe
they are working with the right characteristics
mainly because the numerical analysts tell them
s0, based on experience. This issue touches on the
very general and difficult subject of representation
and extraction of knowledge, a whole field in itself.
As part of our ongoing work, we are investigating
the efficacy of various PDE characteristics.

Before classifying: Defining classes

The classes into which P should be grouped can
be determined in two ways. First, we could apply
one of several clustering mechanisms to distin-
guish clusters in the database, based on some ar-
bitrary metric of similarity or difference in the
problems’ characteristic vectors, and call each
cluster a class.

Second, domain experts can define some classes
a priori based on the characteristics of the type of
problem at hand—in our case, PDEs. This is the
method we used. For some simplistic examples,
one can precisely define a mapping of character-
istics of the problem into a class. For most classes,
however, such mappings cannot be defined in a
simple analytic manner. Human experts who have
worked with PDE problems for years can develop
a feel for the problem types and, given the time,
can map them into classes using a combination of
factors—objective and subjective, exact and fuzzy.
Given examples of the mapping, an artificial
neural network (or any other function approxi-
mator) can “learn” the mapping function. This is
the appeal of using ANNs in Pythia.

The success of our approach relies heavily on
having available a reasonably large population of
PDE problems whose characteristics span most
of the space of all characteristic vectors. In the
present implementation, we use as our training
data a collection of 167 linear second-order ellip-
tic PDEs defined elsewhere.? The database cre-
ated using this problem population contains in-
formation about the properties of the problems
plus performance data obtained by solving each
equation with several different solution methods.
Several different values of several computational
parameters are used with each solution method
on each problem. The database thus contains in-
formation on about 15,000 problem solutions.

1o establish a mapping, human experts grouped
the population of 167 problems into five classes
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Figure 2. A problem from the PDE population, showing some of the sig-
nificant characteristics used to group equations into classes so that
proper solution methods can be chosen.

manually. These are not necessarily the only rea-
sonable classes, they are just the ones we chose for
testing Pythia. We defined the following nonex-
clusive classes, with the number of problems be-
longing to each class given in brackets:

(1) Solution-singular: problems whose solutions
have at least one singularity [6]

(2) Solution-analytic: problems whose solutions
are analytic [35]

(3) Solution-oscillatory: problems whose solutions
oscillate [34]

(4) Solution-boundary-layer: problems with a
boundary layer in their solutions [32]

(5) Boundary-conditions-mixed: problems that have
mixed boundary conditions [74]

Classifying PDEs: Methods

‘We have used several different methods, neural and
non-neural, to identify the class or classes to which
a new problem belongs. In describing the methods
here we will omit details in the cause of brevity.
Later, in a separate section, we describe experi-
mental results of how well each method works.

In performing our experiments, we used one set
of PDE data for training the neural networks (that
is, in the modeling stage) and another to test how
well the networks had learned—that is, whether
they could correctly classify “new” PDEs. The
entire Pythia data set consists of 167 ordered pairs
{4, dj}, where Ay = (ay1, ap, ..., ay37) € I*% is the
input pattern (the 32-vector encoding each of the
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167 PDE problems) and 4, € {1, 2, ..., 5} is the
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index of one of the five classes. The overall data
set is split into two parts. The first contains 111
exemplars, approximately two-thirds of the total.
The second part has 56 exemplars, representing
the other third of the PDE population. Each
neural network paradigm that we describe in this
section was trained using each part; we refer to
them as the larger and smaller training sets. After
training, the learning of the paradigm was tested
by applying it to the entire Pythia data set. The
“training” problems in this set thus tested recall,
and the “new” ones tested generalization.

Traditional method

We originally used a naive, non-neural heuris-
tic to implement Pythia. This method represented
a problem class as the centroid of all known exem-
plars of the class. The characteristic vector for a
problem class was the average, computed element-
by-element, of the characteristic vectors of all the
members. That is, the jth element of the charac-
teristic vector V of a class C was computed as

VO = oy V()
‘ ¢ '.peC
where | Cl denotes the number of PDE problems
in class C (which is a subset of the existing prob-
lems p in the whole database P). The distance
from some new problem p to a defined class Cis de-
fined as the norm of the difference of the two
characteristic vectors:

d(p,C)=|V(p)-V(O)]

The norm can be chosen as any reasonable dis-
tance measure. Then, we say that p belongs to
class Cif d(p, C) < o, where o is some neighbor-
hood area around C that can be adjusted depend-
ing on the reliability of the characteristic vectors.

Feedforward neural nets:
Gradient-descent algorithms

To perform more sophisticated mappings of
new problems into the defined classes, we exper-
imented with artificial neural networks. Each ar-
tificial “neuron” in an AINN is essentially a small
computational processing element. The neuron
models a function that computes the weighted
sum of its inputs and “squashes” or compresses it
by a nonlinearity, often a sigmoid function. Com-
bining this neuron with other neurons creates a
layer of nodes, which can be connected with other
layers. The multilayer perceptron is a three-layer
(or more) structure of artificial neurons: an input
layer, an output layer, and one or more “hidden”

layers. The neurons in the hidden layer are pre-
sumed to form internal representations of the in-
put domain patterns.

To apply ANNSs to Pythia’s task, let us view the
PDE classification problem as a mapping prob-
lem and suppose that we represent the 7 classes
by a vector of size # (in our current example 7z =
5). Suppose a 1 in-the 7th position of the vector
indicates membership in the 7th class. Our prob-
lem now becomes one of mapping the character-
istic vector of size z (in our case, the 32-vector)
into the classification vector of size 72.°

We can use a feedforward neural nétwork trained
using backpropagation to determine the mapping
of n into m (see the sidebar). This nétwork is a
multilayer perceptron with supervised learning—
we tell it when it is getting the right answers, or’
correct it when it isn’t. Each neuron has a state s;
which is the weighted sum of all its inputs from
other neurons it is connected to. The connection
between the ith and jth neurons has a weight w;.
(By convention neuron  is in the layer preceding
neuron i—for instance, j might be in the input
layer and 7 in the first hidden layer.) Some squash-
ing function f—a function that maps a large input
space into a small output space—is applied to the
neuron’s state to give its output o,. Mathematically,

1

i :Zwijf’jé 0;=f(s5)= 1)
j

Using the backpropagation algorithm, the weights
are then changed so as to reduce the difference be-
tween the desired and actual outputs of the net-
work. The weight changes Aw;; are given by

Awy; =n6;0;

where the weight-dependent error measure §; in
the neuron’s state, which we are trying to reduce
by varying the weights, is defined by

fj(met ;)¢ ; ~ 0;)  ifunitjisan
B output heuron -
T fimet N(Z, 8w ) if unit is a

hidden neuron

In the above, # is the teaching iﬁput of unitj and
net; is the net input to unit 7, f”denotes the deriva-
tive of f; and 77 is the “learning rate.” This is essen-
tially using gradient descent on the error surface
with respect to the weight values. For more details,
see the classic text by Rumelhart and McClelland.
Since the numbers of neurons in the input and out-
put layers of the network, 32 and 5, are fixed by the
problem, the only layer whose size has to be deter-
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mined is the hidden layer. In our experiments we
chose this to have 10 elements. Also, since we had
no a priori information on how the various input
characteristics affect the classification, we chose not
to impose any structure on the connection patterns
in the network. Our network was thus fully con-
nected, that is, each element in one layer was con-
nected to each element in the next layer. Thus
there are only 32 x 10 + 10 x 5 = 370 connections in
the network, a relatively small number.

The second algorithm we consider for training
a feedforward neural net modifies backpropaga-
tion by adding a fraction (the momentum para-
meter ¢) of the previous weight change during the
computation of the new weight change.” This
simple artifice helps moderate changes in the
search direction, reducing the notorious oscilla-
tion problems common with gradient descent. To
take care of “plateaus,” a “flat-spot elimination
constant” A is added to the derivative of f. Typi-
cal values of the momentum parameter are in the
range [0, 1]; the flat-spot elimination constant 1
takes values from 0 to 0.25. The net effect of these
enhancements is (1) flat spots of the error surface
are traversed relatively fast with few big steps, (2)
the step size decreases as the surface gets rougher,
and (3) the search direction changes more slowly.
"This increases learning speed significantly.

A third training algorithm, Quickpropagation,®
uses information about the curvature (via the sec-
ond derivative) of the error surface to compute the
weight change. QuickProp assumes the error sur-
face to be locally quadratic and attempts to jump in
one step from the current position directly into
the minimum of the quadratic. This helps take
care of “ridges” in the error surface. The impor-
tant parameters here are the maximum growth pa-
rameter (4, which is the maximum amount of the
weight change that is added to the current change,
and the weight decay term v, a factor to shrink the
weights. We add v to the slope S computed for
each weight. This keeps the weights within an ac-
ceptable range and prevents problems like float-
ing-point overflow errors during computations.
Values of u are usually between 1.75 and 2.25, and
v typically assumes low values like 0.0001 because
QuickProp is very sensitive to it.

The final gradient-descent algorithm that we
consider for training our feedforward ANN is
called “resilient backpropagation” (RProp)’ be-
cause it uses the local topology of the error sur-
face to make a more appropriate weight change.
In other words, we introduce a “personal update
value” for each weight, which evolves during the
learning process according to its local view of the
error function. Thus we have two sets of learning
equations, one for the weights and one for the up-
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date values themselves. RProp is very powerful
and efficient because the size of the weight step
taken is no longer influenced by the size of the
partial derivative. Itis uniquely determined by the
sequence of the signs of the derivatives, which
provides a reliable hint about the topology of the
local error function. At the beginning of the train-
ing, all the update values are set to an initial value,
say Ag. The choice of A is not critical, because it
is adapted as learning proceeds. However, we set
an upper bound A, on the update values, so that
learning avoids any unreasonably high values of
weight steps. In our experiments we set a default
value of 0.1 to Ay, and varied Ap,, in the range

[0.1, 25].
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Learning vector quantization

Another type of neural network method, com-
pletely different from the backpropagation-
trained, feedforward multilayer perceptrons dis-
cussed above, is learning vector qguantization. LVQ
borrows ideas from classical clustering and vector
quantization techniques for signal processing,
such as the k-nearest-neighbor algorithm. Signal
values are approximated by quantized references
or “codebook” vectors #z; which are “representa-
tive” members of a class. Several codebook vec-
tors are assigned to each class in the domain, and
anew pattern x is said to belong to the same class
to which the nearest 7; belongs. LVQ determines
effective values for the codebook vectors so that
they define the optimal decision boundaries be-
tween classes, in the sense of Bayesian decision
theory. The accuracy and time needed for learn-
ing depend on an appropriately chosen set of
codebook vectors and the exact algorithm that
modifies the codebook vectors. We used four dif-
ferent implementations of the LVQ algorithm:
LVQ1, OLVQ1, LVQ2, and LVQ3. We used
LVQ_PAK," an TVQ program training package,
in our simulations.

Let x be the input to the LVQ program and let
m, denote the codebook vector closest to x. Then
the codebook vectors are updated according to the
following simple rules, where ¢ is an iteration step:

m(t)+ odt)[x — 2, (2)] -

if x and 7, are in the same class

m (1) = o) [x —m, ()]

if x and ms, are in different classes

m(t+1)=

For all other codebook vectors, #2;(z + 1) = mfz).
"The control parameter «is not constant but varies
with time. (This ¢ is not to be confused with the
momentum parameter « in the backpropagation
training of a feedforward network). Normally, a lin-
ear decrease in time from a value of| say, 0.1 is used.
OLVQ1 (optimized LVQ1) is a modification of
LVQI1 in which each codebook vector #; has its
own learning rate o;. It has been shown that the
optimal value of ¢ can be recursively defined as

a,(1)
1+, ()
()
1-o ()

when x is classified correctly
o+ =
when it is not

In practice, o(z) is allowed to increase steadily, but
not above 1. Also, in LVQ_PAK, ¢(z) is never al-
lowed to rise above its initial value.

The classification procedure in LVQ?2 is simi-,
lar to TVQI, except that two codebook vectors 2

and 7 that are the nearest neighbors to x are now -
updated simultaneously. One of them is chosen to

belong to the correct class and the other to a

“wrong” class. Also, these two vectors are selected

so that x falls into a “window” of values defined

around the midplane of 7; and ;. Thus LVQ?2

differentially shifts the decision borders towards'
the Bayes limits. Then the-equations for updat-

ing the codebook vectors become

m(t +1) = m,(t) — () [ — 2, ()] and -
mj(t+1) =m(t) —o(t)fac—m ;(1)]

where #7; and 7z, are the two closest codebook vec-
tors, x and 7; belong to the same class, and 7, and
x belong to different classes.
One could argue that IVQ2 might update the
“wrong” class vectors 7z; too much so that the ;-
vectors do not perform a good job of approximat-
ing the class distributions. IVQ3 introduces cor-
rections that take care of this problem. In addi-
tion to the conditions mentioned for LVQ?2, «

should fall into the window defined by the vectors

my(£) + e0(t)[w —my (£)] and

my(t) + £0u(t) [ — ()]

where 72, 7; and x belong to the same class. Typ-
ical values of the correction parameter &, which
controls the rate at which changes occur, are from
0.1 to 0.5. The optimal value of € s found to de-
crease as the window size increases.

Neuro-fuzzy system

Neural networks and systems based on fuzzy
logic have both been the subject of much investi-
gation. Over the past few years, however, re-
searchers have attempted to use synergies between
these methods to create hybrid‘neuro fuzzy sys-
tems. Examples include using neural networks to
learn fuzzy membership functions, and using fuzzy
logic to adapt the weights of neural networks. The
system we describe next is essentially a fuzzy learn-
ing system, which can be elegantly represented as
a three-layer feedforward neural network. :

We have developed a new neuro-fuzzy classifi-
cation scheme suited for our problem, or for any
such problem in which the classes are not mutu-
ally exclusive, based on an algorithm proposed by
Simpson.'! Simpson’s method uses fuzzy sets to
describe pattern classes. Fach class is defined by
a fuzzy set, which is the fuzzy union of several n-
dimensional hyperboxes. Each pattern within one
of the hyperboxes in a set is a full member of the
class defined by that set. (A hyperbox can be
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thought of as an #-dimensional generalization of a
box or rectangle. We explain the concept in more
detail elsewhere.!?) The hyperbox is completely
defined by its min-point and max-point. It has as-
sociated with it a fuzzy membership function and
an index denoting the class it corresponds to in
pattern space. This function helps to view the hy-
perbox as a fuzzy set and such “hyperbox fuzzy
sets” can be aggregated to form a single fuzzy-set
class. Without any loss of generality, the pattern
space is considered to be the #-dimensional unit
hypercube I” and the membership values are
taken to be in the range [0, 1].

Learning in the fuzzy min-max network pro-
ceeds by placing and adjusting the hyperboxes in
pattern space. The fuzzy set that describes a pat-
tern class is then represented by an aggregate (the
fuzzy union) of several fuzzy sets. Learning causes
expansion or contraction of the hyperboxes. The
learning algorithm operates by selecting an input
pattern from the training set and finding a hyper-
box for this pattern’s class to include it. To control
the formation of hyperboxes, the only parameter
that must be tuned is the maximum hyperbox size 6
beyond which it cannot expand. When this value
is set to zero, the algorithm described above reverts
to the k-nearest-neighbor classifier algorithm. Re-
call in the network consists of calculating the fuzzy
union of the membership function values produced
from each of the fuzzy-set hyperboxes.

Simpson’s method assumes that the pattern
classes underlying the domain are mutually exclu-
sive and that each pattern belongs to exactly one
class. But the pattern classes that characterize prob-
lems in many real-world domains are frequently not
mutually exclusive. For example, some PDEs might
have an analytic solution, some might have mixed
boundary conditions, but some PDEs can both be
analytic and have mixed boundary conditions.

The pseudocode for our algorithm!? is shown
in Figure 3.

Consider the kth ordered pair {4, 4;} from the
training set. Let the desired output for the kth
pattern be [1, 1, 0, 0, ..., 0]. Our algorithm con-
siders this as two ordered pairs containing the
same pattern A, but with two pattern classes as
training outputs: dyy = [1, 0,0, 0, ..., 0] and dj; =
[0,1,0,0, ..., 0] respectively. In other words, the
pattern is associated with both Class 1 and Class 2.
"This will cause hyperboxes of both Classes 1 and
2 to completely contain the pattern 4 and thus
overlap. We argue, unlike Simpson, that overlap
between hyperboxes of different classes should
not be eliminated when the problem domain de-
mands it. However, if overlap was due to learning
of different patterns of different classes, we elim-
inate the overlap.!?
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Since each pattern can belong to more than one
class, we need to define a new way to interpret the
output of the fuzzy min-max neural network. We
introduce a parameter din the defuzzification step
and set to 1 not only the node with the highest
output but also the nodes whose outputs fall
within 6 of the highest output value. This results
in more than one output node getting included
and consequently, aids in the determination of
nonexclusive classes. It also allows us to include
“nearby” classes in our decision. Consider the sce-
nario when a pattern gets associated with the
wrong class, say Class 1, merely because of its
proximity to members of Class 1 that were in the
training samples rather than to members of its
characteristic class (Class 2). Such a situation can
be caused by a larger incidence of the Class 1 pat-
terns in the training set, or due to a nonuniform
sampling, since we make no prior assumption on
the sampling distribution. In such a case, the 6 pa-
rameter gives us the ability to make a soft deci-
sion by which we can associate a pattern with
more than one class.

Figure 3. Pseudocode for hyperbox algorithm.

Classifying PDEs: Results

We ran classification experiments on the Pythia
problem domain using the several techniques we
have just described. Each method was run nu-
merous times, using a wide range of the parame-
ters that control its operation. We report the re-
sults from only the “best” set of parameters.

For each of the techniques, the number of pat-
terns from the test set (that is, all 167 PDEs) that
the method classified correctly after its training
period was determined as follows. We fixed a
threshold for the L, error norm (€) and inferred
that patterns leading to error vectors with norms
above the threshold were incorrectly classified.
(The error vector is defined as the component-
by-component difference between the desired
output and the actual output.) We have carried
out experiments using threshold values of 0.2, 0.1,
0.05, and 0.005 for each of the techniques.

Remember that the classes defined in Pythia are
not mutually exclusive. Of the methods discussed
earlier, only feedforward neural networks, and
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Figure 4. Perfor-
mance of the tra-
ditional (non-
neural) method in
classifying 167
PDE problems, us-
ing norms Ly, L,
and L, as a func-
tion of the
“neighborhood
value” o. Solid
lines indicate per-
formance after
training on the .
larger training
set, dashed lines
the smaller.
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Norm infinity

Simpson’s algorithm as modified by us, inherently
cater to mutually nonexclusive classes. The other
paradigms require the user to associate a single
class with the problem characteristic vector at the
tme of training. Hence, in these paradigms, we
transform the inputs as described earlier for our
neuro-fuzzy method.

Traditional method

‘We showed before that the traditional method
relies on the definition of an appropriate distance
measure to quantify the distance of a problem p
from a class C. We have used three different
norms: ||-[|, namely the norms |5, [z, and ||/l
Fach of these norms was used in conjunction with

both the larger and smaller training sets. The
neighborhood value o was varied within an ap-
propriate range since each norm has a different
interpretation of the distance, and a single range
of o was not suitable for representing different
metrics. For the norm |/[|;, the range was [0.01,
0.2]. For the norms |||}, and |||, the range was
[0.5, 2]. Figure 4 displays the number of patterns
classified correctly as a function of ¢ for each of
the above three norms. Contrary to expectations,
we observed that varying the L, threshold (¢) did
not lead to a perceptible improvement or decline
in the performance of the paradigm.

Of the three norms, |-, provides the best per-
formance, though it seldom provides an absolute
accuracy above 50 percent. Also, surprisingly, in
some cases training with the smaller set leads to
slightly better performance than the larger. A pos-
sible explanation is that the smaller set was more-
representative of the data in terms of the struc-
ture that the traditional method imposes on the
distribution of the patterns. The larger trammg

‘set, on the other hand, may have offered more in-

consistencies.

Feedforward neural networks

The feedforward neural network was trained
using all the aforementioned algorithms, with five
choices of the control parameters. The choice
leading to the best performance was considered
for performance evaluation. All the simulations
were performed usmg the Stuttgart Neural Net-
work Simulator.”

The only “free” parameter in the simple back-
propagation paradigm was the learning rate 7,
which was varied in the range [0.1, 0.9]. The best -
performance, in terms of classification accuracy,
was achieved at 17 = 0.9. Increasing 7 also led to a
decrease in convergence time.

In the enhanced variant of backpropagation with
momentum, the important parameters are the
learning rate 77, the momentum coefficient ¢, and
the flat-spot elimination constant A. The value of 7
was kept low (0.2), because of the overpowering
effect of the high momentum term which was
found to be optimal at the values 0.7, 0.8, 0.9. The
ideal value of the flat-spot elimination constant
was found to be 0.05. The best performance was
achieved at (n, o, 1) = (0.2, 0.8, 0.05). '

QuickProp also assumed a low learning rate 7.
Also, the maximum growth parameter (£ and the
weight decay term v strongly influence the per-
formance of QuickProp. The ideal value of i was
in the range [1.75, 2] and that for v'was either
0.0001 or 0.0002. QuickProp had a very fast con-
vergence rate; even though it got into lots of local
minima problems, it was always able to come out
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of them. Also, the maximum
weight changes took place in the
first 100 to 200 iterations and
the subsequent iterations only
served to fine-tune the error at-
tained in these initial iterations.
The best performance was
achieved at values of 0.2 for 7,
1.75 for u, and 0.0001 for v.

Of all the supervised para-
digms for feedforward neural
networks studied in this article,
RProp provided the best perfor-
mance for the same number of
training iterations. We chose a
fixed value of Ay because the al-
gorithm refines it iteratively and
we set an upper bound 25 on the
weight changes A, Even
though some local minima
problems were observed at high
values of A,,, an extremely fast
convergence rate served to
make the network settle to a
comfortable error level in about
100 iterations. The best perfor-
mance was achieved at (Ag, A.y)
=(0.1,25).

Figure 5 describes the behav-
ior of the four methods for spe-
cific values of the L, error norm
threshold. Observe that as the
threshold value is decreased, the
performance of backpropaga-
tion, enhanced backpropaga-
tion, and QuickProp methods
decline while that of RProp is
consistently high. RProp man-
ages to correctly classify 160 of the 167 patterns.
The accuracy of backpropagation, enhanced back-
propagation, QuickProp, and RProp respectively
for different values of the L, error threshold gare:

(1) £=0.005: (47.3, 72.45, 74.25, and 95.83 %)
2) £=0.05:(90.41, 93.41,94.61, and 95.83 %)
(3) £=0.1:(92.81, 94.01, 94.61, and 95.83 %)
@) £=0.2:(92.81,94.01, 94.61, and 95.83 %)

Learning vector quantization

Since the LVQ algorithms and the fuzzy min-
max neural network work for labeled data of the
form {4, d,}, thereis an implicit assumption that
each pattern should belong to at least one class.
However, in the problem domain, we may come
across instances of PDEs that do not belong to
any of the above defined classes. 1o circumvent
this difficulty, we define a sixth class as follows:
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R

(6) Special: problems whose solutions do not fall
into any of the above-defined Classes 1
through 5. This artifice is employed in both
the LVQ algorithms and the fuzzy min-max
neural network. :

The LVQ algorithms were trained as follows.
Fifty codebook vectors were chosen so that their
numbers in the respective classes were propor-
tional to their a priori probabilities. Then the al-
gorithms were trained for 2,000 iterations using
both the larger and the smaller training sets. This
number of iterations is adequate for convergence
for both sets. We present here only the results
with the larger training set.

The important free parameter in LVQ1 was the
learning rate. This was varied from 0.1 to 1 in
steps of 0.01. The accuracy achieved is plotted
against the learning rate in Figure 6a.

i

%
:
|
|
|

Figure 5. The performance of the feedforward neural network for various training schemes
and four threshold values. Each network was trained for 2,000 iterations and then its
“learning” was evaluated by testing to see how well it classified the 167 PDE problems. For
each threshold value, results are shown for the larger training set (left four bars) and
smaller training set (right four bars).
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Figure 6. (a) Per-
formance of the
LVQ1 algorithm.

(b) Clustering of -

the PDE problem
classes. Each sym-
bol represents a
class of PDE
problems.
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The highest accuracy (77.06 percent) was at-
tained at a learning rate of 0.05 (this was for an L,
threshold of 0.005). LVQI is used to provide an
“initial” solution and other LVQ) algorithms can
be used to improve the learning done by LVQ1.
We adopted this strategy for our experiment.

OLVQ1 was subsequently trained for 200 itera-
tions and the accaracy obtained was 80 percent (L,
threshold value = 0.005). Thus OLVQ1 substan-
tially fine-tunes the initial solution provided by
IVQ1. In Figure 6b, we map the 32-dimensional
data space of the codebook vectors onto the two-
dimensional plane using Sammon’s mapping. This
two-dimensional mapping approximates to the
Euclidean distances of the data space and thus vi-
sualizes the clustering of data. The LVQ2 algo-
rithm depends on the window width parameter,
that is, the relative width of the window into which
the training data must fall. We varied the window
width parameter from 0.1 to 0.5 and also the learn-
ing rate as mentioned in the LVQI experiment.
The optimal performance was achieved at a win-
dow width of 0.3 and a learning rate of 0.2. How-
ever the accuracy for this implementation (for an
L, error threshold of 0.005) was only 79.79 per-
cent, a bit lower than that achieved by the OLVQ
algorithm.

The LVQ3 algorithm can be used for an addi-
tional fine-tuning stage in learning. The relative
learning rate parameter € is used (multiplied by
the parameter ), when both the nearest code-
book vectors belong to the same class. Again, as
in the IVQ2 experiment, the relative window
width parameter determines the “box” into which
the training data must fall. Again, a window size of
0.3 was used and the relative learning rate para-
meter £ was set at 0.1. We observed that though
LVQ3 improves the initial codebook, it does not
give results better than the OLVQ algorithm. For
example, the maximum accuracy attained by
TVQ3 was 79.26 percent (for an L, error thresh-
old value of 0.005).

Fuzzy min-max neural networks ‘

For the neuro-fuzzy method, we conducted ex-
periments on the effect of the maximum hyper-
box size 0, the effect of the parameter 6 used in
the defuzzification step, and on-line adaptation.
Again, we present the results only with the larger
training set.

Effect of mazimum hyperbox size. In this set of ex-
periments, the maximum hyperbox size was varied
continuously and its effect on other variables was
studied. In particular, we observed that when 6
was increased, fewer hyperboxes needed to be
formed, that is, when 6 tends to 1, the number of
hyperboxes formed is six, the number of classes in -
the domain. Also performance on the training set
and the test set steadily improved as 6 was de-
creased (Figure 7a). Performance on the training
set was, as expected, better than that on the test
set. Optimal error was achieved when 8 equaled
0.00125. When 8was more than 0.00125, the er-
ror increased on both the sets and when @ was less
than 0.00125, the nietwork overfiz the training data
so that its performance on the test set started to
decline. The number of hyperboxes formed for -
this optimal value of O was 62, approximately dou-
ble the dimension of the pattern space.

Effect of 0. In this experiment, we set 8= 0.00125
(the optimal value) and we varied & by assigning
to it the values 0.01, 0.02, 0.05, and 0.09. When & .
was increased, more output nodes tended to get
included in the “reading-off” stage so that the
overall error increased. Figure 7b shows a scatter

plot of the results for §=0.01.

On-line adaptation. The last series of experi-
ments was conducted to test the fuzzy min-max
neural network for its on-line adaptation. That is,
each pattern was incrementally presented to the
network and the error on both sets was recorded
at each stage. The number of hyperboxes formed
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slowly increased from 1 to the optimal number 62

(as seen from the experiment on the effect of 6).

Also, performance on both sets steadily improved
to the values obtained in that experiment.

The accuracy obtained by the fuzzy min-max
neural network was 95.21 percent. Varying the L,
error threshold value € did not alter the accuracy.

Discussion

The best mean and median values for errors
from all the paradigms discussed in this article are
summarized in Table 1. In each row of Table 1, the
best possible method and the optimal combination
of the parameters was used for the comparison.

"The naive technique, which represents classes
by the centroid of the known samples, performed
very poorly (with an accuracy of 47.9 percent).

Feedforward neural networks, in general, per-
formed quite well, with more complicated train-
ing schemes such as enhanced backpropagation,
Quick Propagation, and Resilient Propagation
clearly winning out over plain error backpropa-
gation. For higher L, error threshold values (say
0.2), all these learning techniques gave values
close to each other (92.81, 94.01, 94.61, and 95.83
percent respectively). However, when the L, er-
ror threshold levels were lowered (to 0.005),
RProp was clearly better than all the other meth-
ods (with an accuracy of 95.83 percent over 47.3,
72.45, and 74.25 percent for plain backpropaga-
tion, enhanced backpropagation and Quick Prop-
agation). The same observations can be made by
looking at the mean and median of the error val-
ues in the table. While the mean for RProp
(0.0446) is slightly lower than that of others, the
median is significantly lower (0.000001). This
means that RProp classifies most patterns cor-
rectly with almost zero error, but has a few out-
liers. The other methods have the errors spread
more “evenly,” which leads to a degradation in
their performance as compared to RProp.

The variants of the LVQ method (LVQI,

SPRING 1996

OLVQIl, 1LVQ2, and LVQ3) that we tried per-
formed about average. While they were better
than the naive classifier (with an accuracy of 80
percent for OLVQ1), their performance was only
in the 75- to 80-percent range (for an L, error
threshold value of 0.005). Increasing the L, error
threshold did not improve accuracy.

Finally, our neuro-fuzzy method, which is a
variant of that proposed by Simpson,!! performed
quite well. In fact, it performed almost as well as
RProp both in terms of percentage accuracy
(95.20 percent), mean error (0.05534), and me-
dian error (0.000001). As with RProp, increasing
the L, error threshold did not significantly alter
the performance. Considering that unlike RProp,
our method allows on-line adaptation (that is, new
data do not require retraining on the old data), it
is clearly superior in this context. This is because
in the Pythia environment, we expect the system
to constantly update its database with the new
problems it has seen.

‘HE PYTHIA INTELLIGENT ASSISTANT, OR

systems like it, is an important component of
the problem-solving environments being developed
to help computational sciendsts and engineers do
their research. Further work on several neural as-
pects of Pythia is in progress. We are developing a
method to directly map the original problem—
actually selecting a solution method for a PDE
given the user’s time, grid, and error criteria—to a

Figure 7.

(a) Effect of maxi-
mum hyperbox
size 0 on perfor-
mance of the
fuzzy min-max
neural network.
The solid line in-
dicates the error
on the training
set while the
dashed line indi-
cates the error on
the test set.

(b) Scatter plot of
results for
optimum 68 and
§=0.01.

Table 1. Comparison of the four methods in classifying the 167 PDE
problems (error statistics).
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neural network. Also, we are investigating exten-
sions to predict when the problem would require a
parallel machine, which machine, and what its con-
figuration should be. Work is also in progress on
improving our neuro-fuzzy scheme to use noniso-
thetic hyperboxes, and on exploiting the SIMD par-
allelism inherent in the neural network. 4
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