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Abstract. Discovering frequent patterns over event sequences is an important data
mining problem. Existing methods typically require multiple passes over the data, ren-
dering them unsuitable for streaming contexts. We present the first streaming algorithm
for mining frequent patterns over a window of recent events in the stream. We derive
approximation guarantees for our algorithm in terms of: (i) the separation of frequent
patterns from infrequent ones, and (ii) the rate of change of stream characteristics. Our
parameterization of the problem provides a new sweet spot in the tradeoff between mak-
ing distributional assumptions over the stream and algorithmic efficiencies of mining.
We illustrate how this yields significant benefits when mining practical streams from
neuroscience and telecommunications logs.
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1. Introduction

Application contexts (Patnaik, Marwah, Sharma and Ramakrishnan, 2009; Ra-
makrishnan, Patnaik and Sreedharan, 2009) in telecommunications, neuroscience,
sustainability, and intelligence analysis feature massive data streams (Muthukrishnan,
2005) with ‘firehose’-like rates of arrival. In many cases, we need to analyze
such streams at speeds comparable to their generation rate. In neuroscience,
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one goal is to track spike trains from multi-electrode arrays (Patnaik, Laxman
and Ramakrishnan, 2009) with a view to identify cascading circuits of neuronal
firing patterns. In telecommunications, network traffic and call logs must be an-
alyzed on a continual basis to detect attacks or other malicious activity. The
common theme in all these scenarios is the need to mine patterns (i.e., a succes-
sion of events occurring frequently, but not necessarily consecutively (Mannila
et al., 1997)) from dynamic and evolving streams.

Algorithms for pattern mining over streams have become increasingly popular
over the recent past (Manku and Motwani, 2002; Wong and Fu, 2006; Calders
et al., 2007; Cheng et al., 2008). Manku and Motwani (Manku and Motwani,
2002) introduced a lossy counting algorithm for approximate frequency counting
over streams, with no assumptions on the stream. Their focus on a worst-case
setting often leads to stringent threshold requirements. At the other extreme,
algorithms such as (Wong and Fu, 2006) provide significant efficiencies in mining
but make strong assumptions such as i.i.d distribution of symbols in a stream.

In the course of analyzing some real-world datasets, we were motivated to
develop new methods as existing methods are unable to process streams at the
rate and quality guarantees desired (see Sec. 6 for some examples). Furthermore,
established stream mining algorithms are almost entirely focused on itemset
mining (and, modulo a few isolated exceptions, just the counting phase of it)
whereas we are interested in mining general patterns.

Our specific contributions are as follows:

– We present the first general algorithm for mining patterns in a stream. Un-
like prior streaming algorithms that focus almost exclusively on counting, we
provide solutions for both candidate generation and counting over a stream.

– Although our work is geared towards pattern mining, we adopt a black-box
model of a pattern mining algorithm. In other words, our approach can en-
capsulate and wrap around any pattern discovery algorithm to enable it to
accommodate streaming data. This significantly generalizes the scope and ap-
plicability of our approach as a general methodology to streamify existing pat-
tern discovery algorithms. We illustrate here this generality of our approach
by focusing on two pattern classes—itemsets and episodes—prevalent in data
mining research.

– Devoid of any statistical assumptions on the stream (e.g., independence of
event symbols or otherwise), we develop a novel error characterization for
streaming patterns by identifying and tracking two key properties of the
stream, viz. maximum rate of change and top-k separation. We demonstrate
how the use of these two properties enables novel algorithmic optimizations,
such as the idea of borders to amortize work as the stream is tracked.

– We demonstrate successful applications in neuroscience and telecommunica-
tions log analysis, and illustrate significant benefits in runtime, memory usage,
and the scales of data that can be mined. We compare against pattern-mining
adaptations of two typical algorithms (Wong and Fu, 2006) from the streaming
itemsets literature.

2. Preliminaries

We consider the data mining task of discovering frequent patterns over a time-
stamped sequence of data records (Laxman and Sastry, 2006). The data se-
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quence is denoted as 〈(e1, τ1), (e2, τ2), . . . , (en, τn)〉, where each data record ei,
may represent different kinds of data depending on the class of patterns be-
ing considered. For example, ei denotes a transaction in the frequent itemsets
setting (Agrawal and Srikant, 1994), an event in the frequent episodes setting
(Mannila et al., 1997), a graph in the frequent subgraph mining setting (Yan
and Han, 2003), etc. The techniques developed in this paper are relevant in all
of these settings. In our experimental work, we focus on two concrete classes
of patterns; frequent episodes and frequent itemsets; we briefly summarize the
associated formalisms for these in the paragraphs below.

Frequent Episodes:

In the framework of frequent episodes (Mannila et al., 1997), an event sequence
is denoted as 〈(e1, τ1), . . . , (en, τn)〉, where (ei, τi) represents the ith event; ei is
drawn from a finite alphabet E of symbols (called event-types) and τi denotes
the time-stamp of the ith event, with τi+1 ≥ τi, i = 1, . . . , (n − 1). An `-node
episodes α is defined by a triple α = (Vα, <α, gα), where Vα = {v1, . . . , v`} is a
collection of ` nodes, <α is a partial order over Vα and gα : Vα → E is a map that
assigns an event-type gα(v) to each node v ∈ Vα. An occurrence of an episode α
is a map h : Vα → {1, . . . , n} such that eh(v) = gα(v) for all v ∈ Vα and for all
pairs of nodes v, v′ ∈ Vα such that v <α v′ the map h ensures that τh(v) < τh(v′).
Two occurrences of an episode are non-overlapped (Achar et al., 2012) if no event
corresponding to one appears in-between the events corresponding to the other.
The maximum number of non-overlapped occurrences of an episode is defined as
its frequency in the event sequence.

Frequent Itemsets:

The frequent itemsets mining framework is concerned with the classical market
basket problem (Agrawal and Srikant, 1994), where each data record ei can be
viewed as a transaction of items purchased at a grocery store. Frequent itemsets
will then refer to groups of itemsets frequently purchased together in the given
data set of transactions.

In general, the task in frequent pattern discovery is to find all patterns whose
frequency exceeds a user-defined threshold. Apriori-style level-wise1 algorithms
(Agrawal and Srikant, 1994; Mannila et al., 1997; Yan and Han, 2003; Achar
et al., 2012) are typically applicable in this setting. An important variant is top-
k pattern mining (see (Wang et al., 2005) for definitions in the itemsets mining
context), where, rather than a frequency threshold, the user supplies the number
of most frequent patterns needed.

Definition 1 (Top-k patterns of size `). The set of top-k patterns of size `
is defined as the collection of all `-size patterns with frequency greater than or
equal to the frequency fk of the kth most frequent `-size pattern in the given
data sequence.

The number of top-k `-size patterns can exceed k, although the number of `-
size patterns with frequencies strictly greater than fk is at most (k − 1). In

1 Level-wise algorithms start with patterns of size 1 and with each increasing level estimate
frequent patterns of the next size.
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Fig. 1. A sliding window model for pattern mining over data streams: Bs is the most recent
batch of records that arrived in the stream and Ws is the window of interest over which the
user wants to determine the set of frequent patterns.

general, top-k mining can be difficult to solve without knowledge of a good lower-
bound for fk; for relatively short data sequences the following simple solution
works well-enough: start mining at a high threshold and progressively lower the
threshold until the desired number of top patterns are returned.

3. Problem Statement

The data available (referred to as a data stream) is in the form of a potentially
infinite sequence of data records:

D = 〈(e1, τ1), (e2, τ2), . . . , (ei, τi), . . . , (en, τn), . . .〉 (1)

Our goal is to find all patterns that were frequent in the recent past; for this, we
consider a sliding window model2 for the window of interest. In this model, the
user wants to determine patterns that were frequent over a (historical) window
of fixed-size terminating at the current time-tick. As new records arrive in the
stream, the user’s window of interest shifts, and the data mining task is to next
report the frequent patterns in the new window of interest.

We consider the case where the window of interest is very large and cannot be
stored and processed in-memory. This straightaway precludes the use of standard
multi-pass algorithms for frequent pattern discovery over the window of interest.
We organize the records in the stream into smaller batches such that at any
given time only the latest incoming batch is stored and processed in memory.
This is illustrated in Fig. 1. The current window of interest is denoted by Ws

and the most recent batch, Bs, consists of records in D that occurred between
times (s − 1)Tb and sTb where Tb is the time-span of each batch and s is the
batch number (s = 1, 2, . . .) .

The frequency of a pattern α in a batch Bs is referred to as its batch frequency
fs(α). The current window of interest, Ws, consists of m consecutive batches
ending in batch Bs, i.e.

Ws = 〈Bs−m+1, Bs−m+2, . . . , Bs〉 (2)

Definition 2 (Window Frequency). The frequency of a pattern α over win-
dow Ws, referred to as its window frequency and denoted by fWs(α), is de-
fined as the sum of batch frequencies of α in Ws. Thus, if f j(α) denotes the
batch frequency of α in batch Bj , then the window frequency of α is given by
fWs(α) =

∑
Bj∈Ws

f j(α).

2 Other models such as the landmark and time-fading models have also been studied (Cheng
et al., 2008) but we do not consider them here.
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Fig. 2. Batch frequencies in Example 1.
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Table 1. Window frequencies in Example 1.
pattern ABCD MNOP EFGH WXYZ IJKL PQRS

Window Freq 35 34 25 24 23 19

In summary, we are given a data stream (D), a time-span for batches (Tb), the
number of consecutive batches that constitute the current window of interest (m),
the desired size of frequent patterns (`), the desired number of most frequent
patterns (k) and the problem is to discover the top-k patterns in the current
window without actually having the entire window in memory.

Problem 1 (Streaming Top-k Mining). For each new batch, Bs, of records
in the stream, find all `-size patterns in the corresponding window of interest,
Ws, whose window frequencies are greater than or equal to the window frequency,
fks , of kth most frequent `-size pattern in Ws.

Example 1 (Window Top-k v/s Batch Top-k). Let W be a window of four
batches B1 through B4. The patterns in each batch with corresponding batch
frequencies are listed in Fig. 2. The corresponding window frequencies (sum of
each patterns’ batch frequencies) are listed in Table 1. The top-2 patterns in B1

are (PQRS) and (WXYZ). Similarly (EFGH) and (IJKL) are the top-2 patterns
in B2, and so on. (ABCD) and (MNOP) have the highest window frequencies
but never appear in the top-2 of any batch – these patterns would ‘fly below
the radar’ and go undetected if we considered only the top-2 patterns in every
batch as candidates for the top-2 patterns over W . This example can be easily
generalized to any number of batches and any k.

It is also clear that the size of the batches can play a critical role with regards
to the quality of approximation of top-k. At one end of the spectrum the batch-
size can be as large as the window. Ee would get exact top-k results but such
a scheme would be obviously impractical. At the other end the algorithm could
consume events one at a time (batch-size = 1) updating the top-k results over the
window in an online fashion. However, we expect the quality of approximation
to be poor in this case since no local pattern statistics can be estimated reliably
over batches of size=1. Thus, we suggest using batches of sufficient size, ofcourse,
limited by the number of events that can be stored and processed in-memory.
This will allow us to exploit the slowly changing statistics across batches to get
better top-k approximations over the window.
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Example 1 highlights the main challenge in the streaming top-k mining prob-
lem: we can only store/process the most recent batch of records in the window of
interest and the batchwise top-k may not contain sufficient information to com-
pute the top-k over the entire window. It is obviously not possible to track all
patterns (both frequent and infrequent) in every batch since the pattern space is
typically very large. This brings us to the question of which patterns to track in
every batch – how deep must we search within each batch for patterns that have
potential to become top-k over the window? We develop the formalism needed
to answer this question.

4. Persistence and Top-k Approximation

We identify two important properties of the underlying data stream which influ-
ence the design and analysis of our algorithms. These are stated in Definitions 3
& 4 below.

Definition 3 (Maximum Rate of Change, ∆). Maximum rate of change ∆(>
0) is defined as the maximum change in batch frequency of any pattern, α, across
any pair of consecutive batches, Bs and Bs+1, i.e., ∀α, s, we have

|fs+1(α)− fs(α)| ≤ ∆. (3)

Intuitively, ∆ controls the extent of change from one batch to the next. While
it is trivially bounded by the number of records arriving per batch, it is often
much smaller in-practice.

Definition 4 (Top-k Separation of (ϕ, ε)). A batch Bs of records is said to
have a top-k separation of (ϕ, ε), ϕ ≥ 0, ε ≥ 0, if it contains at most (1 + ε)k
patterns with batch frequencies of (fsk − ϕ∆) or more, where fsk is the batch
frequency of the kth most-frequent pattern in Bs and ∆ is the maximum rate of
change.

This is essentially a measure of how well-separated the frequencies of the top-
k patterns are relative to the rest of the patterns. We expect to see roughly k
patterns with batch frequencies of at least fks and the separation is considered to
be high (or good) if lowering the threshold from fks to (fsk − ϕ∆) only brings-in
very few additional patterns, i.e. ε remains small as ϕ increases. Top-k separation
of any batch Bs is characterized by, not one but, several pairs of (ϕ, ε) since ϕ
and ε are functionally related: ε is typically close to zero if ϕ = 0, while we have
εk roughly the size of the class of `-size patterns (minus k) if ϕ∆ ≥ fks . Note
that ε is a non-decreasing function of ϕ and that top-k separation is measured
relative to the maximum rate of change ∆.

We now use the maximum rate of change property to design efficient stream-
ing algorithms for top-k pattern mining and show that top-k separation plays
a pivotal role in determining the quality of approximation that our algorithms
achieve.

Lemma 1. The batch frequencies of the kth most-frequent patterns in any pair
of consecutive batches cannot differ by more than the maximum rate of change
∆, i.e., for every batch Bs, we must have

|fs+1
k − fsk | ≤ ∆. (4)
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Proof. There exist at least k patterns in Bs with batch frequency greater than
or equal to fsk (by definition). Hence, there exist at least k patterns in Bs+1

with batch frequency greater than or equal to (fsk −∆) (since frequency of any
pattern can decrease by at most ∆ going from Bs to Bs+1). Hence we must
have fs+1

k ≥ (fsk −∆). Similarly, there can be at most (k − 1) patterns in Bs+1

with batch frequency strictly greater than (fsk + ∆). Hence we must also have
fs+1
k ≤ (fsk + ∆).

The above lemma follows directly from: (i) there are at least k patterns with
frequencies no less than fsk , and (ii) the batch frequency of any pattern can
increase or decrease by no more than ∆ when going from one batch to the next.

Our next observation is that if the batch frequency of a pattern is known
relative to fsk in the current batch Bs, we can bound its frequency in any later
batch Bs+r.

Lemma 2. Consider two batches, Bs and Bs+r, r ∈ Z, located r batches away
from each other. Under a maximum rate of change of ∆ the batch frequency of
any pattern α in Bs+r must satisfy the following:

1. If fs(α) ≥ fsk , then fs+r(α) ≥ fs+r
k
− 2|r|∆

2. If fs(α) < fsk , then fs+r(α) < fs+r
k

+ 2|r|∆

Proof. Since ∆ is the maximum rate of change, we have fs+r(α) ≥ (fs(α)−|r|∆)
and from Lemma 1, we have fs+rk ≤ (fsk + |r|∆). Therefore, if fs(α) ≥ fsk , then

fs+r(α) + |r|∆ ≥ fs(α) ≥ fsk ≥ fs+rk − |r|∆
which implies fs+r(α) ≥ fs+rk − 2|r|∆. Similarly, if fs(α) < fsk , then

fs+r(α)− |r|∆ ≤ fs(α) < fsk ≤ fs+rk + |r|∆
which implies fs+r(α) < fs+rk + 2|r|∆.

Lemma 2 gives us a way to track patterns that have potential to be in the top-
k of future batches. This is an important property which our algorithm exploits
and we recorded this as a remark below.

Remark 1. The top-k patterns of batch, Bs+r, r ∈ Z, must have batch fre-
quencies of at least (fsk − 2|r|∆) in batch Bs. Specifically, the top-k patterns of
Bs+1 must have batch frequencies of at least (fsk − 2∆) in Bs.

Proof. Assume that we know fs
′

k for the batch Bs′ . If a pattern α is to belong
to the set of top-k frequent patterns in the batch Bs′+r, then fs

′+r(α) ≥ fs
′+r
k

(where fs′+r(α) and fs
′+r
k are unknown for r > 0).

Substituting s = s′ + r in Lemma 2, we get fs
′
(α) ≥ fs′k − 2|r|∆.

The maximum rate of change property leads to a necessary condition, in the
form of a minimum batch-wise frequency, for a pattern α to be in the top-k over
a window Ws.

Theorem 1 (Exact Top-k over Ws). A pattern, α, can be a top-k pattern
over window Ws only if its batch frequencies satisfy fs

′
(α) ≥ fs

′

k − 2(m − 1)∆
∀Bs′ ∈Ws.
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Proof. To prove this, we show that if a pattern fails this threshold in even one
batch of Ws, then there exist k or more patterns which can have a greater window
frequency. Consider a pattern β for which fs

′
(β) < fs

′

k − 2(m − 1)∆ in batch
Bs′ ∈ Ws. Let α be any top-k pattern of Bs′ . Consider two patterns α and β
such that in a batch Bs′ f

s′(α) ≥ fs
′

k and fs
′
(β) < fs

′

k − 2(m − 1)∆. In any
other batch Bp ∈Ws, we have

fp(α) ≥ fs′(α)− |p− s′|∆
≥ fs′k − |p− s′|∆ (5)

and

fp(β) ≤ fs′(β) + |p− s′|∆
< (fs

′

k − 2(m− 1)∆) + |p− s′|∆ (6)

Applying |p− s′| ≤ (m− 1) to the above, we get

fp(α) ≥ fs′k − (m− 1)∆ > fp(β) (7)

This implies fWs(β) < fWs(α) for every top-k pattern α of Bs′ . Since there are
at least k top-k patterns in Bs′ , β cannot be a top-k pattern over the window
Ws.

Mining patterns with frequency threshold (fs
′

k − 2(m − 1)∆) in each batch
Bs′ gives complete counts of all top-k patterns in the window Ws where m is the
number of batches in the window, fs

′

k is the frequency of the kth most frequent
pattern in batch Bs′ ∈Ws and ∆ is the continuity parameter.

Based on Theorem 1 we have the following simple algorithm for obtaining
the top-k patterns over a window: Use a traditional level-wise approach to find
all patterns with a batch frequency of at least (fk1 − 2(m − 1)∆) in the first
batch (B1), accumulate their corresponding batch frequencies over all m batches
of Ws and report the patterns with the k highest window frequencies over Ws.
This approach is guaranteed to return the exact top-k patterns over Ws. In order
to report the top-k over the next sliding window Ws+1, we need to consider all
patterns with batch frequency of at least (fk2 − 2(m− 1)∆) in the second batch
and track them over all batches of Ws+1, and so on. Thus, an exact solution to
Problem 1 would require running a level-wise pattern mining algorithm in every
batch, Bs, s = 1, 2, . . ., with a frequency threshold of (fks − 2(m− 1)∆).

4.1. Class of (v, k)-Persistent patterns

Theorem 1 characterizes the minimum batchwise computation needed in order to
obtain the exact top-k patterns over a sliding window. This is effective when ∆
and m are small (compared to fks ). However, the batchwise frequency thresholds
can become very low in other settings, making the processing time per-batch
as well as the number of patterns to track over the window to become imprac-
tically high. To address this issue, we introduce a new class of patterns called
(v, k)-persistent patterns which can be computed efficiently by employing higher
batchwise thresholds. Further, we show that these patterns can be used to ap-
proximate the true top-k patterns over the window and the quality of approxima-
tion is characterized in terms of the top-k separation property (cf. Definition 4).
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Definition 5 ((v, k)-Persistent pattern). A pattern is said to be (v, k)-persistent
over window Ws if it is a top-k pattern in at least v batches of Ws.

Problem 2 (Mining (v, k)-Persistent patterns). For each new batch, Bs, of
records in the stream, find all `-size (v, k)-persistent patterns in the correspond-
ing window of interest, Ws.

Theorem 2. A pattern, α, can be (v, k)-persistent over the window Ws only if
its batch frequencies satisfy fs

′
(α) ≥ (fs

′

k −2(m−v)∆) for every batch Bs′ ∈Ws.

Proof. Let α be (v, k)-persistent over Ws and let Vα denote the set of batches
in Ws in which α is in the top-k. For any Bq /∈ Vα there exists B

p̂(q)
∈ Vα that

is nearest to Bq. Since |Vα| ≥ v, we must have |p̂(q) − q| ≤ (m − v). Applying
Lemma 2 we then get fq(α) ≥ fqk − 2(m− v)∆ for all Bq /∈ Vα.

Theorem 2 gives us the necessary conditions for computing all (v, k)-persistent
patterns over sliding windows in the stream. The batchwise threshold required
for (v, k)-persistent patterns depends on the parameter v. For v = 1, the thresh-
old coincides with the threshold for exact top-k in Theorem 1. The threshold
increases linearly with v and is highest at v = m (when the batchwise threshold
is same as the corresponding batchwise top-k frequency).

The algorithm for discovering (v, k)-persistent patterns follows the same gen-
eral lines as the one described earlier for exact top-k mining, only that we now
apply higher batchwise thresholds: For each new batch, Bs, entering the stream,
use a standard level-wise pattern mining algorithm to find all patterns with
batch frequency of at least (fks − 2(m − v)∆). We provide more details of our
algorithm later in Sec. 5. First, we investigate the quality of approximation of
top-k that (v, k)-persistent patterns offer and show that the number of errors is
closely related to the degree of top-k separation.

4.1.1. Top-k Approximation

The main idea here is that, under a maximum rate of change ∆ and a top-
k separation of (ϕ, ε), there cannot be too many distinct patterns which are
not (v, k)-persistent while still having sufficiently high window frequencies. To
this end, we first compute a lower-bound (fL) on the window frequencies of
(v, k)-persistent patterns and an upper-bound (fU ) on the window frequencies
of patterns that are not (v, k)-persistent (cf. Lemmas 3 & 4).

Lemma 3. If pattern α is (v, k)-persistent over a window, Ws, then its window
frequency, fWs(α), must satisfy the following lower-bound:

fWs(α) ≥
∑
Bs′

fs
′

k − (m− v)(m− v + 1)∆ def= fL (8)

Proof. Consider pattern α that is (v, k)-persistent over Ws and let Vα denote
the batches of Ws in which α is in the top-k. The window frequency of α can be
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written as

fWs(α) =
∑

Bp∈Vα
fp(α) +

∑
Bq∈Ws\Vα

fq(α)

≥
∑

Bp∈Vα
fpk +

∑
Bq∈Ws\Vα

fqk − 2|p̂(q)− q|∆

=
∑

Bs′∈Ws

fs
′

k −
∑

Bq∈Ws\Vα
2|p̂(q)− q|∆ (9)

where B
p̂(q)
∈ Vα denotes the batch nearest Bq where α is in the top-k. Since

|Ws \ Vα| ≤ (m− v), we must have∑
Bq∈Ws\Vα

|p̂(q)− q| ≤ (1 + 2 + · · ·+ (m− v))

=
1
2

(m− v)(m− v + 1) (10)

Putting together (9) and (10) gives us the lemma.

Similar arguments give us the next lemma about the maximum frequency of
patterns that are not (v, k)-persistent (Full proofs are available in (Patnaik et al.,
2012)).

Lemma 4. If pattern β is not (v, k)-persistent over a window, Ws, then its
window frequency, fWs(β), must satisfy the following upper-bound:

fWs(β) <
∑
Bs′

fs
′

k + v(v + 1)∆ def= fU (11)

Proof. Consider pattern β that is not (v, k)-persistent over Ws and let Vβ denote
the batches of Ws in which β is in the top-k. The window frequency of β can be
written as:

fWs(β) =
∑

Bp∈Vβ
fp(β) +

∑
Bq∈Ws\Vβ

fq(β)

<
∑

Bp∈Vβ
fpk + 2|p̂(q)− q|∆ +

∑
Bq∈Ws\Vβ

fqk

=
∑

Bs′∈Ws

fs
′

k +
∑

Bp∈Vβ
2|q̂(p)− p|∆ (12)

where B
q̂(p)
∈Ws \Vβ denotes the batch nearest Bp where β is not in the top-k.

Since |Vβ | < v, we must have∑
Bp∈Vβ

|q̂(p)− p| ≤ (1 + 2 + · · ·+ (v − 1))

=
1
2
v(v + 1) (13)

Putting together (12) and (13) gives us the lemma.
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It turns out that fU > fL ∀v, 1 ≤ v ≤ m, and hence there is always a pos-
sibility for some patterns which are not (v, k)-persistent to end up with higher
window frequencies than one or more (v, k)-persistent patterns. We observed
a specific instance of this kind of ‘mixing’ in our motivating example as well
(cf. Example 1). This brings us to the top-k separation property that we intro-
duced in Definition 4. Intuitively, if there is sufficient separation of the top-k
patterns from the rest of the patterns in every batch, then we would expect to
see very little mixing. As we shall see, this separation need not occur exactly at
kth most-frequent pattern in every batch, somewhere close to it is sufficient to
achieve a good top-k approximation.

Definition 6 (Band Gap patterns, Gϕ). In any batch Bs′ ∈ Ws, the half-
open frequency interval [fks′ − ϕ∆, fks′) is called the band gap of Bs′ . The cor-
responding set, Gϕ, of band gap patterns over the window Ws, is defined as the
collection of all patterns with batch frequencies in the band gap of at least one
Bs′ ∈Ws.

The main feature of Gϕ is that, if ϕ is large-enough, then the only patterns
which are not (v, k)-persistent but that can still mix with (v, k)-persistent pat-
terns are those belonging to Gϕ. This is stated formally in the next lemma. The
proof, omitted here, can be found in (Patnaik et al., 2012).

Lemma 5. If ϕ
2 > max{1, (1− v

m )(m− v + 1)}, then any pattern β that is not
(v, k)-persistent over Ws, can have fWs(β) ≥ fL only if β ∈ Gϕ.

Proof. If a pattern β is not (v, k)-persistent over Ws then there exists a batch
Bs′ ∈ Ws where β is not in the top-k. Further, if β /∈ Gϕ then we must have
fs′(β) < fks′ − ϕ∆. Since ϕ > 2, β cannot be in the top-k of any neighboring
batch of Bs′ , and hence, it will stay below fks′ − ϕ∆ for all Bs′ ∈Ws, i.e.,

fWs(β) <
∑

Bs′∈Ws

fks′ −mϕ∆.

The Lemma follows from the given condition ϕ
2 > (1− v

m )(m− v + 1).

The number of patterns in Gϕ is controlled by the top-k separation property, and
since many of the non-persistent patterns which can mix with persistent ones
must spend not one, but several batches in the band gap, the number of unique
patterns that can cause such errors is bounded. Theorem 3 is our main result
about quality of top-k approximation that (v, k)-persistence can achieve.

Theorem 3 (Quality of Top-k Approximation). Let every batch Bs′ ∈Ws

have a top-k separation of (ϕ, ε) with ϕ
2 > max{1, (1 − v

m )(m − v + 1)}. Let P
denote the set of all (v, k)-persistent patterns over Ws. If |P| ≥ k, then the top-
k patterns over Ws can be determined from P with an error of no more than(
εkm
µ

)
patterns, where µ = min{m− v + 1, ϕ2 ,

1
2 (
√

1 + 2mϕ− 1)}.
Proof. By top-k separation, we have a maximum of (1 + ε)k patterns in any
batch Bs′ ∈Ws, with batch frequencies greater than or equal to fks′ −ϕ∆. Since
at least k of these must belong to the top-k of the Bs′ , there are no more than
εk patterns that can belong to the band gap of Bs′ . Thus, there can be no more
than a total of εkm patterns over all m batches of Ws that can belong to Gϕ.

Consider any β /∈ P with fWs(β) ≥ fL – these are the only patterns whose
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window frequencies can exceed that of any α ∈ P (since fL is the minimum
window frequency of any α). If µ denotes the minimum number of batches in
which β belongs to the band gap, then there can be at most

(
εkm
µ

)
such distinct

β. Thus, if |P| ≥ k, we can determine the set of top-k patterns over Ws with
error no more than

(
εkm
µ

)
patterns.

There are now two cases to consider to determine µ: (i) β is in the top-k of
some batch, and (ii) β is not in the top-k of any batch.

Case (i): Let β be in the top-k of Bs′ ∈Ws. Let Bs′′ ∈Ws be t batches away
from Bs′ . Using Lemma 2 we get fs

′′
(β) ≥ fks′′ − 2t∆. The minimum t for which

(fks′′ − 2t∆ < fks − ϕ∆) is
(
ϕ
2

)
. Since β /∈ P, β is below the top-k in at least

(m−v+ 1) batches. Hence β stays in the band gap of at least min{m−v+ 1, ϕ2 }
batches of Ws.

Case (ii): Let VG denote the set of batches in Ws where β lies in the band
gap and let |VG| = g. Since β does not belong to top-k of any batch, it must
stay below the band gap in all the (m− g) batches of (Ws \ VG). Since ∆ is the
maximum rate of change, the window frequency of β can be written as follows:

fWs(β) =
∑

Bp∈VG
fp(β) +

∑
Bq∈Ws\VG

fq(β)

<
∑

Bp∈VG
fp(β) +

∑
Bq∈Ws\VG

(fkq − ϕ∆) (14)

Let B
q̂(p)

denote the batch in Ws \VG that is nearest to Bp ∈ VG. Then we have:

fp(β) ≤ f q̂(p)(β) + |p− q̂(p)|∆
< fk

q̂(p)
− ϕ∆ + |p− q̂(p)|∆

< fkp − ϕ∆ + 2|p− q̂(p)|∆ (15)

where the second inequality holds because β is below the band gap in B
q̂(p)

and
(15) follows from Lemma 1. Using (15) in (14) we get

fWs(β) <
∑

Bs′∈Ws

fks′ −mϕ∆ +
∑

Bp∈VG
2|p− q̂(p)|∆

<
∑

Bs′∈Ws

fks′ −mϕ∆ + 2(1 + 2 + · · ·+ g)∆

=
∑

Bs′∈Ws

fks′ −mϕ∆ + g(g + 1)∆ = UB (16)

The smallest g for which (fWs(β) ≥ fL) is feasible can be obtained by setting
UB ≥ fL. Since ϕ

2 > (1− v
m )(m− v + 1), UB ≥ fL implies∑

Bs′∈Ws

fks′ −mϕ∆ + g(g + 1)∆ >
∑

Bs′∈Ws

fks′ −
mϕ∆

2

Solving for g, we get g ≥ 1
2 (
√

1 + 2mϕ− 1). Combining cases (i) and (ii), we get
µ = min{m− v + 1, ϕ2 ,

1
2 (
√

1 + 2mϕ− 1)}.
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Theorem 3 shows the relationship between the extent of top-k separation
required and quality of top-k approximation that can be obtained through (v, k)-
persistent patterns. In general, µ (which is minimum of three factors) increases
with ϕ

2 until the latter starts to dominate the other two factors, namely, (m−v+
1) and 1

2 (
√

1 + 2mϕ− 1). The theorem also brings out the tension between the
persistence parameter v and the quality of approximation. At smaller values of v,
the algorithm mines ‘deeper’ within each batch and so we expect fewer errors with
respect to the true top-k epispodes. On the other hand, deeper mining within
batches is computationally more intensive, with the required effort approaching
that of exact top-k mining as v approaches 1.

Finally, we use Theorem 3 to derive error-bounds for three special cases; first
for v = 1, when the batchwise threshold is same as that for exact top-k mining
as per Theorem 1; second for v = m, when the batchwise threshold is simply
the batch frequency of the kth most-frequent pattern in the batch; and third, for
v =

⌊
m+1

2

⌋
, when the batchwise threshold lies midway between the thresholds

of the first two cases. (Proofs are detailed in (Patnaik et al., 2012)).

Corollary 1. Let every batch Bs′ ∈Ws have a top-k separation of (ϕ, ε) and let
Ws contain at least m ≥ 2 batches. Let P denote the set of all (v, k)-persistent
patterns over Ws. If we have |P| ≥ k, then the maximum error-rate in the top-k
patterns derived from P, for three different choices of v, is given by:

1.
(
εkm
m−1

)
for v = 1, if ϕ

2
> (m− 1)

2. (εkm) for v = m, if ϕ
2
> 1

3.

(
4εkm2

m2−1

)
for v =

⌊
m+1

2

⌋
, if ϕ

2
> 1

m

⌈
m−1

2

⌉ ⌈
m+1

2

⌉
Proof. We show the proof only for v =

⌊
m+1

2

⌋
. The cases of v = 1 and v = m

are obtained immediately upon application of Theorem 3.
Fixing v =

⌊
m+1

2

⌋
implies (m−v) =

⌈
m−1

2

⌉
. For m ≥ 2, ϕ2 >

1
m

⌈
m−1

2

⌉ ⌈
m+1

2

⌉
implies ϕ

2 > max{1, (1 − v
m )(m − v + 1)}. Let tmin = min{m − v + 1, ϕ2 }. The

minimum value of tmin is governed by

tmin ≥ min
{⌈

m+ 1
2

⌉
,

1
m

⌈
m− 1

2

⌉⌈
m+ 1

2

⌉}
=

1
m

⌈
m− 1

2

⌉⌈
m+ 1

2

⌉
≥
(
m2 − 1

4m

)
(17)

Let gmin = 1
2 (
√

1 + 2mϕ− 1). ϕ > 2
m

⌈
m−1

2

⌉ ⌈
m+1

2

⌉
implies gmin >

(
m−1

2

)
. From

Theorem 3 we have

µ = min{tmin, gmin} ≥
(
m2 − 1

4m

)
and hence the number of errors is no more than

(
4εkm2

m2−1

)
.

Using v = 1 we make roughly εk errors by considering only persistent patterns
for the final output, while the same batchwise threshold can give us the exact
top-k as per Theorem 1. On the other hand, at v = m, the batchwise thresholds
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Fig. 3. The set of frequent patterns can be incrementally updated as new batches arrive.

are higher (the algorithm will run faster) but the number of errors grows linearly
with m. Note that the (ϕ, ε)-separation needed for v = 1 is much higher than for
v = m. The case of v =

⌈
m+1

2

⌉
lies in-between, with roughly 4εk errors under

reasonable separation conditions.

5. Algorithm

In this section we present an efficient algorithm for incrementally mining patterns
with frequency at least (fsk − θ) in batch Bs, for each batch in the stream. The
threshold parameter θ is set to 2(m − v)∆ for mining (v, k)-persistent patterns
(see Theorem 2) and to 2(m− 1)∆ for exact top-k mining (see Theorem 1).

A trivial (brute-force) algorithm to find all patterns with frequency greater
than (fsk−θ) in Bs is as follows: Apply an Apriori-based pattern mining algorithm
(e.g. (Mannila et al., 1997; Achar et al., 2012)) on batch Bs. If the number of
patterns of size-` is less than k, the support threshold is decreased and the mining
repeated until at least k `-size patterns are found. At this point fsk is known. The
mining process is then repeated once more with the frequency threshold (fsk −
θ). Doing this entire procedure for every new batch is expensive and wasteful.
After seeing the first batch of the data, whenever a new batch arrives we have
information about the patterns that were frequent in the previous batch. This can
be exploited to incrementally and efficiently update the set of frequent patterns
in the new batch. The intuition is that the frequencies of most patterns do not
change much from one batch to the next. As a result only a small number of
previously frequent patterns fall below the new support threshold in the new
batch; similarly, some new patterns may become frequent. This is illustrated in
Figure 3. In order to efficiently find these sets of patterns, we need to maintain
additional information that allows us to avoid full-blown candidate generation in
each batch. We show that this state information is a by-product of an Apriori-
based algorithm and therefore any extra processing is unnecessary.

Frequent patterns are discovered level-wise, in ascending order of pattern-size.
An Apriori procedure alternates between counting and candidate generation.
First a set Ci of candidate i-size patterns is determined by combining frequent
(i− 1)-size patterns from the previous level. Then the data is scanned for deter-
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mining frequencies of the candidates, from which the frequent i-size patterns are
obtained. We note that all candidate patterns that are not frequent constitute
the negative border of the frequent pattern lattice (Aumann et al., 1999). This is
because, a candidate is generated only when all its subpatterns are frequent. The
usual approach is to discard the border. For our purposes, the border contains
information required to identify changes in the frequent patterns from one batch
to the next3.

The pseudocode for incrementally mining frequent patterns in batches is
listed in Algorithm 1. The inputs to the algorithm are: (i) Number k of top
patterns desired, (ii) New incoming batch Bs of records in the stream, (iii) Lat-
tice of frequent (F∗s−1) and border patterns (B∗s−1) from previous batch, and
(iv) threshold parameter θ. Frequent and border patterns of size-i, with respect
to frequency threshold fsk − θ, are denoted by the sets F is and Bis respectively
(F∗s and B∗s denote the corresponding sets for all pattern sizes).

For the first batch B1 (lines 1–3) the top-k patterns are found by a brute-
force method, i.e., by mining with a progressively lower frequency threshold until
at least k patterns of size ` are found. Once f1

k is determined, F∗1 and B∗1 are
obtained using an Apriori procedure.

For subsequent batches, we do not need a brute-force method to determine
fsk . Based on Remark 1, if θ ≥ 2∆, F`s−1 from batch Bs−1 contains every potential
top-k pattern of the next batch Bs. Therefore simply updating the counts of all
patterns in F`s−1 in the new batch Bs and picking the kth highest frequency gives
fsk (lines 4–6). To update the lattice of frequent and border patterns (lines 7–
24) the procedure starts from the bottom (size-1 patterns). The data is scanned
to determine the frequency of new candidates together with the frequent and
border patterns from the lattice (line 11). In the first level (patterns of size 1),
the candidate set is empty. After counting, the patterns from F`s−1 that continue
to be frequent in the new batch are added to F`s (lines 13–14). But if a pattern
is no longer frequent it is marked as a border set and all its super patterns are
deleted (lines 15–17). This ensures that only border patterns are retained in the
lattice. In the border and new candidate sets, any pattern that is found to be
frequent is added to both F is and F inew (lines 18–21). The remaining infrequent
patterns belong to the border because, otherwise, they would have at least one
infrequent subpattern and would have been deleted at a previous level; hence,
these infrequent patterns are added to B`s (lines 22–23).

Finally, the candidate generation step (line 24) is required to fill out the miss-
ing parts of the frequent pattern lattice. We want to avoid a full blown candidate
generation. Note that if a pattern is frequent in Bs−1 and Bs then all its subpat-
terns are also frequent in both Bs and Bs−1. Any new pattern ( 6∈ F`s−1 ∪ B`s−1)
that turns frequent in Bs, therefore, must have at least one subpattern that
was not frequent in Bs−1 but is frequent in Bs. All such patterns are listed in
F inew. Hence the candidate generation step (line 24) for the next level generates
only candidates with at least one subpattern ∈ F inew. This reduces the num-
ber of candidates generated at each level without compromising completeness
of the results. The space and time complexity of candidate generation is now
O(|F inew|.|F is|) instead of O(|F is|2) and in most practical cases |F inew| � |F is|.

3 Border sets were employed by (Aumann et al., 1999) for efficient mining of dynamic
databases. Multiple passes over older data are needed for any new frequent itemsets, which is
not feasible in a streaming context.
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Algorithm 1 Persistent pattern miner: Mine top-k v-persistent patterns.
Input: Number k of top patterns; New batch Bs of events;

Current lattice of frequent & border patterns (F∗s−1,B
∗
s−1);

Threshold parameter θ (set to 2(m−v)∆ for (v, k)-persistence, 2(m−1)∆ for exact top-k)
Output: Lattice of frequent and border patterns (F∗s ,B∗s ) after Bs

1: if s = 1 then
2: Determine f1

k (brute force)

3: Compute (F∗1 ,B
∗
1)← Apriori(B1, `, f1

k − θ)
4: else
5: CountFrequency(F`s−1, Bs)

6: Determine fsk (based on patterns in F`s−1)

7: Initialize C1 ← φ (new candidates of size 1)
8: for i← 1, . . . , ` do
9: Initialize F is ← φ, Bis ← φ

10: Initialize F inew ← φ (new frequent patterns of size i)
11: CountFrequency(Fis−1 ∪ B

i
s−1 ∪ C

i, Bs)

12: for α ∈ F is−1 do

13: if fs(α) ≥ fsk − θ then

14: Update F is ← F is ∪ {α}
15: else
16: Update Bis ← Bis ∪ {α}
17: Delete super-patterns of α from (F∗s−1,B

∗
s−1)

18: for α ∈ Bis−1 ∪ C
i do

19: if fs(α) ≥ fsk − θ then

20: Update F is ← F is ∪ {α}
21: Update F inew ← F inew ∪ {α}
22: else
23: Update Bis ← Bis ∪ {α}
24: Ci+1 ← GenerateCandidate(Finew,Fis)
25: return (F∗s ,B∗s )

Later in the experiments section, we show how border-sets help our algorithm
run very fast.

For a window Ws ending in the batch Bs, the set of output patterns can
be obtained by picking the top-k most frequent patterns from the set F`s . Each
pattern also maintains a list that stores its batch-wise counts is last m batches.
The window frequency is obtained by adding these entries together. The output
patterns are listed in decreasing order of their window counts.

Example 2. In this example we illustrate the procedure for incrementally up-
dating the frequent patterns lattice as a new batch Bs is processed (see Figure 4).

Figure 4(A) shows the lattice of frequent and border patterns found in the
batch Bs−1 (The figure does not show all the subpatterns at each level, only some
of them). ABCD is a 4-size frequent pattern in the lattice. In the new batch Bs,
the pattern ABCD is no longer frequent. The pattern CDXY appears as a new
frequent pattern. The pattern lattice in Bs is shown in Figure 4(B).

In the new batch Bs, AB falls out of the frequent set. AB now becomes
the new border and all its super-patterns namely ABC, BCD and ABCD are
deleted from the lattice.

At level 2, the border pattern XY turns frequent in Bs. This allows us to
generate DXY as a new 3-size candidate. At level 3, DXY is also found to be
frequent and is combined with CDX which is also frequent in Bs to generate
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Fig. 4. Incremental lattice update for the next batch Bs given the lattice of frequent and
border patterns in Bs−1.

CDXY as a 4-size candidate. Finally at level 4, CDXY is found to be frequent.
This shows that border sets can be used to fill out the parts of the pattern lattice
that become frequent in the new data.

5.1. Estimating ∆ dynamically

The parameter ∆ in the bounded rate change assumption is a critical parameter
in the entire formulation. But unfortunately the choice of the correct value for ∆
is highly data-dependent. In the streaming setting, the characteristics of the data
can change over time. Hence one predetermined value of ∆ cannot be provided in
any intuitive way. Therefore we estimate ∆ from the frequencies of `-size patterns
in consecutive windows. We compute the differences in frequencies of patterns
that are common in consecutive batches. Specifically, we consider the value at
the 75th percentile as an estimate of ∆. We avoid using the maximum change
as it tends to be noisy. A few patterns exhibiting large changes in frequency can
skew the estimate and adversely affect the mining procedure.

6. Results

6.1. Experimental Setup

We show experimental results for mining two different pattern classes, namely,
episodes and itemsets. For episode mining we have one synthetic and two real
data streams, from two very different domains: experimental neuroscience and
telecom networks. In neuroscience, we consider (1) synthetic neuronal spike-
trains based on mathematical models of interconnected neurons, with each neu-
ron modeled as an inhomogeneous Poisson process (Achar et al., 2012), and
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Table 2. Experimental setup.
(a) Datasets used in the experiments.

Dataset Alphabet-size Data-length Type

Call-logs 8 42,030,149 Events
Neuroscience 58 12,070,634 Events

Synthetic 515 25,295,474 Events
Kosarak 41,270 990,000 Itemsets

T10I4D100K 870 100,000 Itemsets

(b) Parameter set-up.

Parameter Value

k (in Top-k patterns) 25
Number of batches in a window, m 10
Batch-size (as number of events) 106

Error parameter (applicable to Chernoff-based and Lossy
counting methods)

0.001

Parameter v (applicable to Persistence miner) m/2

(2) real neuronal spiking activity from dissociated cortical cultures, recorded
using multi-electrode arrays at Steve Potter’s lab, Georgia Tech (Wagenaar
et al., 2006). The third kind of data we consider are call data records from a large
European telecom network. Each record describes whether the associated call was
voice or data, an international or local call, in-network or out-of-network, and
of long or short duration. Pattern discovery over such data can uncover hidden,
previously unknown, trends in usage patterns, evolving risk of customer churn,
etc. In case of itemsets we present results on two publicly available datasets:
Kosarak and T10I4D100K. The Kosarak dataset contains (anonymized) click-
stream data of a hungarian on-line news portal while the T10I4D100K dataset
was generated using the itemset simulator from the IBM Almaden Quest re-
search group. Both can be downloaded from the Frequent Itemset Mining Dataset
Repository http://fimi.ua.ac.be/data. The data length in terms of number
of events or transactions and the alphabet size of each of these datasets is shown
in Table 2(a). Table 2(b) gives the list of parameters and the values used in
experiments that we do not explicitly mention in the text.

We compare persistent pattern miner against two methods from itemsets min-
ing literature (Wong and Fu, 2006): one that fixes batchwise thresholds based on
Chernoff-bounds under an iid assumption over the event stream, and the second
based on a sliding window version of the Lossy Counting algorithm (Manku and
Motwani, 2002). These methods were designed for frequent itemset mining and
therefore we adapt them suitably for mining episodes. We modify the support
threshold computation using chernoff bound for episodes since the total number
of distinct episodes is bounded by the size of the largest transaction while for
itemsets it is the alphabet size that determines this. As mentioned earlier, we
are not aware of any streaming algorithms that directly address top-k episode
mining over sliding windows of data.

Estimating ∆ dynamically : ∆ is a critical parameter for our persistent pattern
miner. But unfortunately the choice of the correct value is highly data-dependent
and the characteristics of the data can change over time. One predetermined
value of ∆ cannot be provided in any intuitive way. Therefore we estimate ∆
from the frequencies of `-size patterns in consecutive batches by computing the
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change in frequency of patterns and using the 75th percentile as the estimate.
We avoid using the maximum change as it tends to be noisy.

6.2. Quality of top-k mining

We present aggregate comparisons of the three competing methods in Table 3.
These datasets provide different levels of difficulty for the mining algorithms.

Mining episodes: Tables 3(a) & 3(c) shows high f-scores4 for the synthetic
and real neuroscience data for all methods (Our method performs best in both
cases). On the other hand we find that all methods report very low f-scores on
the call-logs data (see Table 3(b)). The characteristics of this data does not allow
one to infer window top-k from batches (using limited computation). But our
proposed method nearly doubles the f-score with identical memory and CPU
usage on this real dataset. It may be noteworthy to mention that the competing
methods reported close to 100% accuracies but they do not perform that well
on more realistic datasets. In case of the synthetic data (see Table 3(c) the
characteristics are very similar to that of the neuroscience dataset.

Mining itemsets: Tables 3(d) and 3(e) show that for itemset data all the
three competing methods perform identically with f-score = 100. But run-times
of Persistent pattern mining is significantly better than the other methods with
nearly the same or less memory requirement.

6.3. Computation efficiency comparisons

Table 3 shows that we do better than both competing methods in most cases
(and never significantly worse than either) with respect to time and memory.

6.3.1. Effect of parameters on performance

In Figure 5, we see all three methods outperform the reference method (the
standard multi-pass apriori based miner) by at least an order of magnitude in
terms of both run-times and memory.

In Figure 5(a)-(c), we show the effect of increasing k on all the methods.
The accuracy of Lossy-counting algorithm drops with increase in k, while that
of Chernoff based method and Persistence miner remain unchanged. Persistence
miner has lower runtimes for all choices of k while having comparable memory
footprint as the other two methods.

With increasing window-size (m = 5, 10, 15 and batch − size = 106 events),
we observe better f-scores for Persistence miner but this increase is not significant
enough and can be caused by data characterisitcs alone. The runtimes and mem-
ory of Persistence miner remain nearly constant. This is important for streaming
algorithms as the runtimes and memory of the standard multi-pass algorithm
increases (roughly) linearly with window size.

4 fscore = 2 · precision·recall
precision+recall
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Table 3. Aggregate performance comparison of different algorithms.
(a) Dataset: Neuroscience, Size of patterns = 4, Pattern class: Episodes

Top-k Miner F Score Runtime (sec) Memory (MB)

Chernoff-bound based 92.0 456.0 251.39
Lossy-counting based 92.0 208.25 158.5
Persistent pattern 97.23 217.64 64.51

(b) Dataset: Call-logs, Size of patterns = 6, Pattern class: Episodes

Top-k Miner F Score Runtime (sec) Memory (MB)

Chernoff-bound based 32.17 11.87 66.14
Lossy-counting based 24.18 3.29 56.87
Persistent pattern 49.47 3.34 67.7

(c) Dataset: Synthetic data, Size of patterns = 4, Pattern class: Episodes

Top-k Miner F Score Runtime (sec) Memory (MB)

Chernoff-bound based 92.7 14.91 43.1
Lossy-counting based 92.7 6.96 32.0
Persistent pattern 96.2 4.98 34.43

(d) Dataset: Kosarak, Size of patterns = 4, batch-size = 10,000 transactions, v = 9,
m = 10, Pattern class: Itemsets

Top-k Miner F Score Runtime (sec) Memory (MB)

Chernoff-bound based 100 32.18 31.85
Lossy-counting based 100 15.57 25.87
Persistent pattern 100 1.93 25.54

(e) Dataset: T10I4D100K, Size of patterns = 4, batch-size = 10,000 transactions, k = 10,
v = 9, m = 10, Pattern class: Itemsets

Top-k Miner F Score Runtime (sec) Memory (MB)

Chernoff-bound based 100 662.05 170.77
Lossy-counting based 100 335.71 87.86
Persistent pattern 100 73.38 116.27

6.3.2. Utility of Border Sets

For patterns with slowly changing frequency we show in Section 5 that using
border-sets to incrementally update the frequent patterns lattice results in an
order complexity of O(|F inew|.|F is|) instead of O(|F is|2) for candidate generation
and in most practical cases |F inew| � |F is|. Table 4 demonstrates the speed-
up in runtime achieved by using border-set. We implemented two versions of
our Persistence miner. In one we utilize border-sets to incrementally update the
lattice where as in other we rebuild the frequent pattern lattice from scratch in
every new batch. The same batch-wise frequency thresholds used as dictated by
Theorem 2. We ran the experiment on our call-logs dataset and T10I4D100K
dataset, and for various parameter settings of our algorithm we observed a speed-
up of ≈ 4× resulting from use of border-sets.
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Fig. 5. Performance with different parameters (Dataset: Call logs)

6.4. Adapting to Dynamic data

In this experiment we show that Persistence miner adapts faster than the com-
peting algorithms to changes in underlying data characteristics. We demon-
strate this using synthetic data generated using the multi-neuronal simulator
based (Achar et al., 2012). The simulation model was adapted to update the
connection strengths dymanically while generating synthetic data. This allowed
us to change the top-k episode patterns slowly over the length of simulated data.
We embedded 25 randomly picked episodes with time-varying arrival rates. The
arrival rate of each episode was changed by changing the connection strength of
between consecutive event types in the episode from 0.1 to 0.9 as ramp function
time. By setting a different periodicity of the ramp functions for each episode we
were able to change the top-k frequent episodes over time. Figure 6(a) shows the
performance of the different methods in terms of f-score computed after arrival
of each new batch of events but for top-k patterns in the window. The ground
truth is again the output of the standard multi-pass apriori algorithm that is
allowed access to the entire window of events. The f-score curves of the both the
competing methods almost always below that of the Persistence miner. While
the runtimes for Persistence miner are always lower than those of the compet-
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Table 4. Utility of border set.
(a) Dataset: Call-logs, Size of patterns = 6, Parameter v = m/2, Pattern class: Episodes

Window Runtime Runtime Memory Memory
size (border-set) (no-border-set) (border-set) (no-border-set)

5 2.48 12.95 67.55 66.21
10 3.13 11.41 67.7 66.67
15 3.47 13.76 67.82 67.02

(b) Dataset: Call-logs, Size of patterns = 6, window size m = 10, Patther class: Episodes

Parameter Runtime Runtime Memory Memory
v (border-set) (no-border-set) (border-set) (no-border-set)

0 2.78 11.98 67.7 66.67
5 3.13 11.41 67.7 66.67
10 3.21 10.85 67.69 57.5

(c) Dataset: T10I4D100K, Size of patterns = 4, window size m = 10, Pattern class:
Itemsets

Parameter Runtime Runtime Memory Memory
v (border-set) (no-border-set) (border-set) (no-border-set)

9 73.38 285.46 116.27 79.89

ing methods (see Figure 6(b). Lossy counting based methods is the slowest at
error parameter set to 0.0001. The effective batch-wise thresholds of both the
lossy counting and Chernoff bounds based algorithm were very similar leading
to identical performance of the two competing methods in this experiments.

The main reason of better tracking in the case of Persistence miner is that
the output of the algorithm filters out all non-(v, k) persistent patterns. This
acts in favor of Persistence miner as the patterns most likely to gather sufficient
support to be in the top-k are also likely to be persistent. The use of border-sets
in Persistence miner explains the lower runtimes.

6.5. Correlation of f-score with theoretical error

Can we compute theoretical errors (data-dependent quantity) and guess how well
we perform? This could be invaluable in a real-world streaming data setting.

In this experiment we try to establish the usefulness of the theoretical analysis
proposed in the paper. The main power of the theory is to predict the error in
the output set at the end of each batch. Unlike other methods we compute the
error bounds using the data characteristics and is dynamically updated as new
data arrives. The error guarantees of both Lossy counting and Chernoff based
methods are static.

In Figure 7, we plot the error bound using Theorem 3 and the f-score com-
puted with respect to the reference method (standard multi-pass apriori) in a
2D histogram. According to the theory different pairs of (φ, ε) output a different
error bound in every batch. In our experiment we pick the smallest error bound
in the allowable range of φ and corresponding ε in each batch and plot it with
the corresponding f-score. The histogram is expected to show negative correla-
tion between f-score and our predicted error bound i.e. the predicted error for
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Fig. 6. Comparison of different methods in tracking top-k patterns over dynamically changing
event stream (Parameters used: k = 25, m = 10, Persistence miner: v=0.5, alg 6,7: error =
1.0e-4)

high-f-score top-k results should be low and vice versa. The correlation is not
very evident in the plot. The histogram shows higher density in the left top part
of the plot, which is a mild indication that high f-score has a corresponding low
error predicition.

7. Related work

Traditionally, data stream management systems (DSMSs) (Babcock et al., 2002)
have been used mainly for detecting patterns and conditions mined over of-
fline data using traditional multi-pass frequent patterns, frequent itemsets, and
sequential patterns and motif-detection techniques. However, as real-time data
acquisition becomes ubiquitous, there is a growing need to derive insights directly
from high-volume streams at low latencies and under limited memory using a
DSMS (Chandramouli et al., 2012).

Mining Itemsets over Streams The literature for streaming algorithms for
pattern discovery is dominated by techniques from the frequent itemset min-
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ing context (Manku and Motwani, 2002; Karp et al., 2003; Chang and Lee,
2003; Chang and Lee, 2004; Jin and Agrawal, 2005; Wong and Fu, 2006; Calders
et al., 2007; Cheng et al., 2008; Lam et al., 2011), and we are unaware of any
algorithms for pattern mining over event streams that possess the generality
of mining approach we have presented here. Manku and Motwani (Manku and
Motwani, 2002) proposed the lossy counting algorithm for approximate frequency
counting in the landmark model (i.e., all events seen until the current-time con-
stitute the window of interest). One of its main drawbacks is that the algorithm
must essentially operate at a threshold of ε to provide ε error guarantees, which
is impractical in many real-world scenarios. Karp et al. (Karp et al., 2003) also
propose a one pass streaming algorithm for finding frequent items, and these
ideas were extended to itemsets by Jin and Agrawal (Jin and Agrawal, 2005),
but all these methods require even more space than lossy counting. Mendes et
al. (Mendes, Ding and Han, 2008) extend the pattern growth algorithm (PrefixS-
pan) (Pei et al., 2001) for mining sequential patterns to incorporate the idea of
lossy counting. Chang and Lee (Chang and Lee, 2004) and Wong and Fu (Wong
and Fu, 2006) extend lossy counting to sliding windows and top-k setting, re-
spectively. New frequency measures for itemsets over streams have also been
proposed (e.g., Calders et al. (Calders et al., 2007) Lam et al.(Lam et al., 2011))
but these methods are heavily specialized toward the itemset context. There has
also been renewed recent interest in adapting pattern matching (Chandramouli
et al., 2010; Agrawal et al., 2008) (as opposed to mining) algorithms to the
streaming context. It is not obvious how to extend them to accommodate pat-
terns in a manner that supports both candidate generation and counting.

Mining Time-Series Motifs An online algorithm for mining time series motifs
is proposed by Mueen et al. (Mueen and Keogh, 2010). The algorithm uses an
interesting data structure to find a pair of approximately repeating subsequences
in a window. The Euclidean distance measure is used to measure the similarity
of the motif sequences in the window. Unfortunately this notion does not extend
naturally to discrete patterns. Further, this motif mining formulation does not
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explicitly make use of a support or frequency threshold and returns exactly one
pair of motifs that are found to be the closest in terms of distance.

Sequential Patterns and pattern Mining An pattern or a general partial
order pattern can be thought of as a generalization of itemsets where each item
in the set is not confined to occur within the same transaction (i.e., at the same
time tick) and there is additional structure in the form of ordering of events
or items. In serial patterns, events must occur in exactly one particular order.
Partial order patterns allow multiple orderings. In addition there could be re-
peated event types in a pattern. The loosely coupled structure of events in a
pattern results in narrower separation between the frequencies of true and noisy
patterns (i.e., resulting from random co-occurrences of events) and quickly leads
to combinatorial explosion of candidates when mining at low frequency thresh-
olds. Most of the itemset literature does not deal with the problem of candidate
generation. The focus is on counting and not so much on efficient candidate gen-
eration schemes. While pattern mining in offline multi-pass scenarios has been
researched (Laxman, 2006; Achar et al., 2012), this paper is the first to explore
ways of doing both counting and candidate generation efficiently in a streaming
setting. We devise algorithms that can operate at as high frequency thresholds
as possible and yet give certain guarantees about frequent output patterns.

8. Conclusions

While pattern mining in offline multi-pass scenarios has been researched (Agrawal
and Srikant, 1994; Mannila et al., 1997; Achar et al., 2012), this paper is the first
to explore ways of doing both counting and candidate generation efficiently in
a streaming setting. The key ingredients of our approach involve parameteri-
zation of the streaming algorithm using data-driven quantities such as rate of
change and top-k separation. This leads to algorithms that can operate at high
frequency thresholds and with theoretical guarantees on the quality of top-k ap-
proximation. Further, our algorithms employ border sets in a novel way, ensuring
minimal computation redundancy as we process adjacent (potentially similar)
batches. Experiments demonstrate the effectiveness of our algorithms for two
popular pattern classes, namely, itemsets and episodes. The approach presented
here is applicable for any general pattern class provided we have black-box access
to a level-wise algorithm for that class.
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