
PLANAR: RNA Sequence Alignment using Non-Affine Gap Penaltyand
Secondary Structure

O. GILL ∗

Courant Inst., NYU;
E-mail: gill@cs.nyu.edu.

N. RAMAKRISHNAN
Virginia Tech.;

Email: naren@cs.vt.edu

B. MISHRA
Courant Inst., NYU.;

Email: mishra@nyu.edu

Abstract

An important component of bioinformatics research
is aimed at finding evolutionary relationships among
species, since it allows us to better understand var-
ious important biological functions as they emerged
in these species. These tools simultaneously trace
the associated evolutionary history. In this context,
sequence alignment is commonly used to understand
similarities among the species by comparing their ge-
nomic, transcriptomic and proteomic sequence data. In
our earlier research, we devised PLAINS (Piecewise-
Linear Alignment with Important Nucleotide Seeker) to
align genomic DNA sequences using a general class of
gap distribution model. This paper proposes PLANAR
(Piecewise-Linear Alignment for Nucleotides Arranged
as RNA), a variant of PLAINS designed for aligning
RNA sequences, while properly accounting for their
secondary structures. This paper presents an overview
of the PLANAR algorithm, and compares it to other
competing RNA alignment tools, while emphasizing
many interesting correlations discovered in the process.

Introduction
Within an organism, a small percentage of its genome tran-
scribes into RNA. Even a smaller percentage of that RNA,
namely just the mRNA, is translated into proteins. The
transcription occurs in the nucleus cued by transcriptional
factors and modulated by enhancers and repressors. The
translation occurs in the cytoplasm, and involves ribosomes,
rRNA, tRNA, and other complexes.

Until recently, it was believed that the cellular functions
were primarily carried out by the protein coding genes, and
most cellular functions found in noncoding RNA (such as
rRNA and tRNA) were homologous to coding regions. It
has now been argued that this assumption is most likely
incorrect, because it fails to explain how, despite its func-
tional complexity, there could be as few as just 25 thou-
sand protein-coding genes in the human genome, which is
only twice as many genes as in Drosophila (although the
human genome is far longer than just twice the length of

∗Work supported by NSF ITR, Internal NYU Grants, and Army
PCRP.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Drosophila). A simple resolution to this dilemma is offered
by the suggestion that many more complex cellular func-
tions in humans and other mammals must be carried out by
noncoding RNA.

The discovery of miRNA’s has been regarded as a scien-
tific breakthrough, as they suggest a new and a large class
of eukaryotic regulatory elements for genes. Evidence for
its important functional roles has been concluded from vari-
ous phenotypic, expressional, and evolutionary analyses,al-
though the number of miRNA’s with known functions re-
main still fairly miniscule. Understanding all of its pertinent
features requires powerful in-vivo/vitro and in-silico meth-
ods, since such analyses provide a characterization of reg-
ulators and their targets. A few known miRNA functions
have been characterized in leaf development, timing of lar-
val transitions, apoptosis, fat metabolism, and insulin secre-
tion.

The discovery of miRNA’s has not only led to further
identification of other noncoding RNA, but also many new
bioinformatic research problems. As an example, note
that the bioinformatics of identifying correlations among
miRNA’s differs significantly from that of DNA or proteins
because, unlike with DNA or proteins, the sequence similar-
ities are not sufficient to identify the functional correlations
among these short RNA sequences. For RNA, its function-
ality is also tied to its secondary structure, and is affected
by the fact that its weaker nucleotide bonds (e.g., relativeto
dsDNA) endow it with far more flexibility in its structure.
Consequently, in order to effectively align RNA sequences,
we must account for secondary structures in addition to the
sequences themselves.

The secondary structure of RNA features many loops
(both internal and external hairpin loops), multi-loops,
bulges, and pseudoknots. See Figure 1 for details. The
hairpins help to stabilize the formation of complexes for co-
working elements, e.g., proteins. In order to reduce the run-
time of our alignment algorithms and for the sake of sim-
plicity, we will ignore pseudoknots, and refer the readers to
the work of Eddy and Rivas (Rivas & Eddy 1999) for a more
detailed discussion of alignment using pseudoknots.

Figure 1: An example of a secondary structure of an RNA
with bulges, hairpin loops, internal loops, multi-loops, and
pseudoknots.

Structural Alignment
Often in this paper, we will formulate our problems as pri-
marily aligningX againstY 1 where we only concern our-
selves withX ’s secondary structure, disregardingY ’s struc-
ture. We will adjust the alignment subsequently usingY ’s
secondary structure as needed. This approach is unlike Liu
et al. (Liu et al. 2005), who alignX andY using bothX
andY ’s secondary structures simultaneously to generate the
alignment. We have chosen not to use such a method in
order to avoid being excessively reliant on secondary struc-
tures. PLANAR further differs from its derived RNA align-
ment tools in that it uses piecewise-linear gap functions—
not a linear gap formula without a penalty for opening a gap
that is typical to RNA alignment.

Binarization
Binarization is the process of converting an RNA sequence
X into a treeTX using its secondary structure. This tree con-
tains nodes of labels ’P’, ’L’, ’R’, ’B’ or ’E’ corresponding
respectively to paired positions, left-only positions, right-
only positions, bifurcations, and end-points. Nodes of ’B’
label have two children; nodes of ’E’ label are leaves; and
all other nodes have exactly one child. ConstructingTX

from X with the secondary structure in this manner is simi-
lar to the Binarization mentioned in the CMSAA algorithm
of Eddy et al. (Eddy 2002). Figure 2 elaborates further. Note
that if |X | = m, thenTX has at most2m nodes.

PLANAR Alignment Formulation
Given two sequencesX and Y with tree TX constructed
for X , let V (v, i, j), denote the alignment forv’s subtree
aligned againstY [i : j], wherev is a node from treeTX .
Also, let |v| denote the number of nodes inv’s subtree, in-
cluding v itself. Next, letLCB(u, v) denote a Boolean
formula that holds only if, for nodesu andv from TX , u is

1with |X| = m, |Y | = n

Figure 2: In the drawing to the left, we see a sample sec-
ondary structure for an RNA sequenceX with indices num-
bered 1 thru 11, and bonds between node pairs(1, 11),
(3, 9), (4, 5), and(6, 8). On the right, we see how CMSAA
would binarizeX into treeTX using the appropriate ’P’, ’L’,
’R’, ’B’ and ’E’ nodes.

belowv, and it is possible to traverse node-by-node fromv
to u without encountering a bifurcation node (node of ’B’
label).

To assist in computing tableV , we use tablesG, D, E,
andF , whereG denotes the alignment ending at a matched
or mismatched position,F denotes the alignment ending
with X (or TX in this case) aligned against a gap,D de-
notes the alignment ending with the left portion ofY aligned
against a gap, andE denotes the alignment ending with the
right portion ofY aligned against a gap. Furthermore, we
will also make use of ap-part piecewise-linear gap func-
tion ww(·), as well ass(·, ·) andb(·, ·, ·, ·) for unbound and
bound position scores for matches and mismatches. All of
this notation is similar to that used in (Gill, Zhou, & Mishra
2005) for the PLAINS formula for DNA alignment, except
that we are also accounting for matters related to secondary
structure here.V (v, i, j) is computed as follows:

• Base Cases:

– If v’s label is ‘E’, then:

V (v, i, j) = ww(j − i + 1)

– If i > j, then:

V (v, i, j) = ww(|v|)

• Recursive Cases:

– If v’s label is ‘B’, then:

V (v, i, j) = max
i−1≤k≤j

[V (v.left, i, k) + V (v.right, k + 1, j)]

– If v’s label is NOT ‘B’, then:

V (v, i, j) = max{D(v, i, j), E(v, i, j), F (v, i, j), G(v, i, j)}

D(v, i, j) = max
i+1≤k≤j+1

[V (v, k, j) − ww(k − i)]

E(v, i, j) = max
i−1≤k≤j−1

[V (v, i, k) − ww(j − k)]

F (v, i, j) = max
u s.t. LCB(u,v)

[V (u, i, j) − ww(|v| − |u|)]

– If v’s label is ‘L’, then:

G(v, i, j) = s(X[lv], Y [i]) + V (v.child, i + 1, j)

– If v’s label is ‘R’, then:

G(v, i, j) = s(X[rv], Y [j]) + V (v.child, i, j − 1)

– If v’s label is ‘P’, andi < j then:

G(v, i, j) = b(X[lv], X[rv], Y [i], Y [j]) + V (v.child, i + 1, j − 1)

– Otherwise:

G(v, i, j) = −∞

We traceback fromV (root, 1, n) to get the alignment for
all of TX aligned toY [1 : n]. Note that the ’P’ nodes of
TX facilitate more meaningful alignments based on the sec-
ondary structure. Also, for algorithmic simplicity and re-
liance on secondary structure, our formulation for gap penal-
ties treats each linear chain inTX independently of each
other.

Using an approach similar to Needleman-Wunsch implies
that our runtime isO((m+n)n2m1 +n3m2) = O(m2n2 +
n3m) and the space usage isO(n2m), wherem1 is the num-
ber of nodes with zero or one child, andm2 is the number
of nodes with two children.

PLANAR Linked-List Assistance and Space
Reduction

However, we improve the space complexity by computing
the V tables differently than Needleman-Wunsch. By us-
ing Linked-List Assistance and CMSAA’s space reduction
strategies, PLANAR improves both the runtime and memory
usages.

In Miller-Myers(Miller & Myers 1988), and subsequently
in the PLAINS paper(Gill, Zhou, & Mishra 2005), the Miller-
Myers Linked-List Assistance has been advantageously ap-
plied to reduce the runtime of the Needleman-Wunsch al-
gorithm. Using a similar tactic for the PLANAR alignment
formula, whenv is fixed, we treat eachn × n deck of form
V (v, ·, ·) separately (and similarly forD, E, F , andG) and
save thet most recently computed decks, wheret is treated
as a constant. For each rowi, we use a listLDi to reduce
the lookups in computingD(v, i, ·). For each columnj, we
use a listLEj to reduce the lookups in computingE(v, ·, j).
We finish computing each deck before moving on to the next
one, and we can empty and reuse each listLDi andLEj

when changing ourv value. For eachi andj, we make a
list R(i,j) to reduce the lookups in computingF (·, i, j), and
each listR(i,j) is updated upon inspecting the next deck.
Also, the updates for listR(i,j) can be dovetailed with the
updates for listsLDi andLEj . Thus, we are able to prop-
erly compute entries for tablesD, E, andF by looking up
entries from our lists, instead of from previously computed
table entries. Because PLANAR usesp-part piecewise-linear
gap functions, the space used by each list isO(p).

Next, we use a methodology similar to CMSAA’s
GENERICSPLIT that recursively aligns linear chains of
TX individually and recursively splits linear chains ofTX

into halves and aligning separately each halve againstY be-
fore gluing all results into the final alignment with the as-
sistance of anyR(i,j) lists computed over smaller portions.
All of this increases runtime by only a constant factor while
reducing space usage.

Because the total number of lists of formLDi, LEj , and
R(i,j) is O(n2), the total space used by all of the lists is
O(n2p). Furthermore, these lists reduce the overall runtime

for the formula mentioned earlier fromO((m + n)n2m1 +
n3m2) to O((log p)n2m1 + n3m2) because of making only
O(log p) lookups within our listsLDi, LEj , andR(i,j) at
non-bifurcation nodes. The space is reduced toO(n2(p +
log m)) space, whereO(log m) is used for the recursions
over linear chains ofTX . This space usage is asymptotically
identical to CMSAA ifp is fixed.

Y Secondary Structure Correction

In the event that bothX andY have explicitly established
secondary structures, a suitably modified PLANAR works as
follows: PLANAR obtainsTX based onX ’s secondary struc-
ture, and alignsTX to Y in the manner mentioned earlier to
get the final alignment treeTAX . PLANAR then obtainsTY

based onY ’s secondary structure, and alignsTY to X to get
the final alignment treeTAY , working exactly the same way
as aligningTX to Y , except that roles ofX andY are in-
terchanged. UsingTAX , the alignment obtained usingX ’s
secondary structure, andTAY , the alignment obtained using
Y ’s secondary structure, we then proceed to combine them
to form the final alignmentA in the following way:

We linearizeTAX andTAY into respective linear align-
mentsAX andAY . We can makeTAX into AX recursively
by performing, for each nodeu in TAX , a procedure where
we place intoAX the left indices ofu, then we recursively
visit all of u’s children nodes (ifu is a bifurcation node, we
will visit the left node and then the right node), then we place
into AX the right indices ofu. This sequence of steps cre-
ates the correct linearized alignmentAX . ConvertingTAY

into AY uses the same idea. Our goal is to mergeAX and
AY into a final alignmentA that improves upon either of
the two computed alignments:AX or AY . Figures 3 and 4
illustrate visually the underlying methodology.

Figure 3: Part 1 of how PLANAR “merges” two alignments
AX andAY into the final alignmentA. Going from top to
bottom, first,IX andIY represent respectivelyAX andAY

fragmented into important and unimportant segments based
on alignment scores. Alignment scores are evaluated us-
ing the provided gap, and match/mismatch parameters. In
the event we are evaluating a bound position, the score is
split equally between the two bound positions. The measure
of which fragments belong to important segments is per-
formed in a manner similar to that mentioned in SEPA (Gill
& Mishra 2006). Below that,LO consists of the identical
segments ofAX andAY . Next, we trim the segments ofIX

andIY based onLO.

Figure 4: Part 2 of how PLANAR “merges” two alignments
AX and AY into the final alignmentA. Going from top
to bottom, we convert the segments ofIX , LO, and IY

into nodes, directing an edge from nodeu to nodev only
if we can create an alignment whereu’s segment precedes
v’s segment. There is one detail not shown here: We assign
a weight to each edge(u, v) as the difference between the
score forv’s segment and the gap penalty for any unusedX
andY characters betweenu andv’s alignment segments. We
also create a dummy source and a sink node (called respec-
tively vs andve). For the sake of visual clarity, a few edges
have been omitted from this graph. We solve maximum path
algorithm over this graph. This is akin to Dijkstra’s single-
source shortest-path algorithm from(Cormenet al. 2001),
except that we visit a node only after all of its in-edges have
been visited. Below the graph is a drawing using only the
nodes and edges involved in the optimal path. Using the
segments corresponding to the nodes on this path, plus gaps
for any missingX andY characters, gives us our alignment
A.

PLANAR Parameter Optimization
The alignment generated for sequencesX and Y vary
based on the gap/match-mismatch parameters involved.
These parameters can be classified as five variables:
(α, β, d, ms, mb), whereα, β, andd approximate a logarith-
mic gap function as ap-part piecewise-linear gap function in
exactly the same way as in the PLAINS paper(Gill, Zhou, &
Mishra 2005), andms denotes the penalty for an unbound
mismatch, andmb denotes the reward for match at a bound
position2. These five parameters together represent a vector
v, and the score of the resulting alignmentA from v is de-
noted by the scalar functionf(v). Then, our goal is to find
thev∗ = arg max f(v). This numerical optimization prob-
lem is solved in a manner similar to (Gill, Zhou, & Mishra
2005), that is, using either Simulated Annealing or Genetic
Algorithms.

PLANAR Empirical Results
Table 1 shows a comparison of alignments for PLANAR and
RSMATCH evaluated by SEPA(Gill & Mishra 2006) over
biologically related sequences using unadjustedr andt val-

2We assume all unbound matches and bound mismatches are
each given a reward of 1.

Test Name PLANAR RSMATCH

t r ζ′ t r ζ′

rnase.1_2 204.67 3 3.37 118.58 1 5.99

rnase.1_3 134.35 2 4.53 85.55 1 5.99

rnase.1_4 92.53 1 5.98 34.37 2 4.51

rnase.1_5 92.82 2 4.51 57.61 2 4.51

rnase.2_3 184.24 2 4.56 101.35 2 4.53

rnase.2_4 111.35 3 3.27 18.12 2 4.51

rnase.2_5 89.06 2 4.51 41.37 1 5.98

rnase.3_4 78.80 1 5.98 16.17 1 5.98

rnase.3_5 120.76 2 4.51 42.88 1 5.98

rnase.4_5 104.17 1 5.98 93.08 2 4.49

telomerase.1_2 29.58 2 4.47 14.89 2 4.47

telomerase.1_3 79.23 2 4.48 24.67 2 4.48

telomerase.2_3 17.06 1 6.10 2.60 1 6.10

Table 1: Shown here for PLANAR and RSMATCH are the
r, t, andζ′ values obtained from aligning noncoding RNA
sequences of lengths between100 and200 nucleotides (nts)
where the pairs are biologically related, with correlated sec-
ondary structures, but poor correlations within their primary
structures. r denotes the number of important segments
identified, andt andζ′ respecitvely denote the total score
and the reliability measure for these important segments.
Note thatζ′ adjusts for sequence lengths, as described in
the SEPA paper (Gill & Mishra 2006).

ues, andζ′ values, withρ = 0.9. Note thatp-values are
a measure of reliability for alignments, withζ′ acting as a
reliability measure for all important segments of an align-
ment identified by SEPA, with higher values correspond-
ing to a more reliable alignment. Because of the lower pri-
mary structure sequence similarities present in these RNA
sequences versus the DNA sequences typically examined
by SEPA, we chose to useρ = 0.9 instead of the typical
ρ = 0.5 value used by SEPA, in order not to risk missing
the most important segments3. Also, there is a loss of pre-
cision involved in the reporting ofζ′ values, which in some
cases “appear” to be the same for PLANAR and RSMATCH,
even if they are not exactly the same. The rnase experiments
use Delta/Epsilon Purple Bacteria RNase P sequences from
the RNaseP database, and the telomerase experiments use
ribonucleoprotein reverse transcriptase synthesizing telom-
eric DNA found from the RFAM database with accession
number RF00025. For further information regarding the se-
quences used, consult Table 2.

Note from table 1 that, just as with the results discussed
in (Gill & Mishra 2006), PLANAR may occasionally fail to
yield the results of least coincidental probability for reasons
similar to those explaining the behavior of PLAINS. Cap-
turing the biology faithfully when sequences have expected
large gaps and low similarities causes PLANAR to aggres-
sively align as many regions as possible, raising itsr andt
values, with an increase in ther value high enough to ad-

3Although SEPA does not account for secondary structure in its
p-values orζ values, the technique used in obtaining alignmentA
from AX andAY could easily fix this problem. However, this ap-
proach would require a separate analysis of the important segments
for that case.

versely affect itsζ′ value. As a result, if we fixr for PLA -
NAR and RSMATCH, ther segments generated by PLANAR
is seen to have smaller individual coincidental probabilities.

Using fixed match/mismatch and gap parameters, for
aligning a pair of RNA sequences of length 200 bp, PLANAR
takes roughly a minute, about the same amount of time that
PLAINS would use for a pair of DNA sequences of length 12
Kb. PLANAR runs about3 times slower than RSMATCH.
The extra time used by PLANAR is usually devoted to the
complex task of aligning the piecewise-linear gap functions
(compared to the much simpler linear gap functions used in
RSMATCH), as well as the time involved in merging two
alignmentsAX andAY .

Conclusions and Open Problems
PLANAR holds significant promises. The evidence in favor
of its power are many: It caught stronger correlations than
its competitions, achieving an effect similar to PLAINS, ex-
cept that it works in the more complex domain of RNA se-
quences. It combines the structure information from both
sequences. It incorporates more general gap distributions
without paying through a heavy computational complexity
for this flexibility. Furthermore, we note that aggressively
incorporating too many segment pairs into an alignment can
corrupt the overall result with false positives, in spite ofan
apparent improvement in the total score, as illustrated by
PLANAR . However, if we select only the bestr segments
from an alignment, the strength of PLANAR becomes obvi-
ous, since itsr segments are less coincidental than its com-
petition, and have higher scores, and hence betterζ′ values.

Also, it has become rather apparent that some upward
scaling is essential if PLANAR is to be run over sequences
with more than2000 nucleotides. PLANAR is only suitable
for sequences of lengths up to2000 nucleotides due to the
higher time and space needed for it to achieve similar power
as PLAINS while additionally incorporating secondary struc-
tures.

Possible future extensions are in many dimensions. The
most important one focuses on aligning large sequences (of
megabases of nucleotides), and then using PLANAR to re-
fine alignments over smaller areas, where localized align-
ments and possibly secondary structures analysis can be per-
formed. With this, PLANAR could become an ideal tool for
aligning rRNA’s or tRNA’s to a genome. Another possible
extension involves incorporating a model to learn expected
alignments over various species, as opposed to just merely
approximating the best gap/mismatch parameters. We can
further improve SEPA by accounting for secondary struc-
tures in itsp-values for RNA alignments.

In addition, PLANAR at the moment assigns to unbounded
positions a reward of1 for match and penalty ofms (spec-
ified by user) for mismatch, and assigns to bound positions
rewards of1 for mismatch andmb (specified by user) for
match. It may be useful to have a more informative scor-
ing matrix to assign different scores to different types of
matches/mismatches in these cases. Note that the algorithm
and its complexity will remain unchanged, only we need to
explore how to model these parameters in a meaningful evo-
lutionary context.

Name First Sequence Second Sequence

rnase.1_2 D.desulfuricans D.vulgaris

rnase.1_3 D.desulfuricans G.sulfurreducens

rnase.1_4 D.desulfuricans C.jejuni

rnase.1_5 D.desulfuricans H.pylori-26695

rnase.2_3 D.vulgaris G.sulfurreducens

rnase.2_4 D.vulgaris C.jejuni

rnase.2_5 D.vulgaris H.pylori-26695

rnase.3_4 G.sulfurreducens C.jejuni

rnase.3_5 G.sulfurreducens H.pylori-26695

rnase.4_5 C.jejuni H.pylori-26695

telomerase.1_2 telo. 1: AF417611/283-441 telo. 2: U10565/50238

telomerase.1_3 telo. 1: AF417611/283-441 azeAF417612/231392

telomerase.2_3 telo. 2: U10565/50238 azeAF417612/231392

Table 2: Sequence details for the RNA alignments com-
puted. All the sequences are retrieved from CARNAC web-
site [http://bioinfo.lifl.fr/carnac/]. The rnase experiments all
involve RNase P RNA. Note: telo. is an abbreviation for
telomerase.

Sequence Details
Shown in Table 2 are further details for the sequences used
to compare PLANAR against RSMATCH.

References
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms, 2nd Edition. MIT Press.
Eddy, S. 2002. A memory-efficient dynamic programming
algorithm for optimal alignment of a sequence to an rna
secondary structure.BMC Bioinformatics 3.
Gill, O., and Mishra, B. 2006. Sepa: Approximate non-
subjective empirical p-value estimation for nucleotide se-
quence alignment.Lecture Notes in Comp. Sci. 3992:638–
645.
Gill, O.; Zhou, Y.; and Mishra, B. 2005. Align-
ing sequences with non-affine gap penalty: Plains algo-
rithm, a practical implementation, and its biological ap-
plications in comparative genomics.Series in Math. Bio.
and Medicine 8. An unabridged version can be found at:
http://bioinformatics.nyu.edu/˜gill .
Liu, J.; Wang, J.; Hu, J.; and Tian, B. 2005. A method for
aligning rna secondary structures and its application to rna
motif detection.BMC Bioinformatics 6.
Miller, W., and Myers, E. 1988. Sequence comparison with
concave weighting functions.Bulletin of Mathematical Bi-
ology 50:97–120.
Rivas, E., and Eddy, S. 1999. A dynamic programming al-
gorithm for rna structure prediction including pseudoknots.
J. Mol. Biol. 285:2053–2068.

