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Abstract 

 

Since the product of a single gene can influence many aspects of plant growth and 

development, it is necessary to understand how gene products act in concert and upon 

each other to effect adaptive changes to stressful conditions. We conducted experiments 

to improve our understanding of loblolly pine response to drought stress, and to further 

develop Expresso, a Next Generation Software computational system. Water was 

withheld from rooted plantlets of Pinus taeda to a water potential of  -1Mpa for mild 

stress and -1.7Mpa for severe stress. Net photosynthesis was measured for each level of 

stress.  RNA was isolated from needles and used in hybridizations against a microarray 

consisting of 2180 cDNA clones selected from 5, pine EST libraries to include the 3’ end 

of representative genes associated with stress responsiveness and stress protection.  The 

expression data was first analyzed based on the linear mixed model of Wolfinger et al. 

(2001) and then redescribed through Inductive Logic Programming (ILP). The change in 

RNA transcript profiles of P. taeda due to drought stress was correlated with 

physiological data reflecting photosynthetic acclimation to mild stress or photosynthetic 

failure during severe stress. Genes encoding specific chaperones, enzymes from the 

aromatic acid and flavonoid biosynthetic pathways, and from carbon metabolism showed 

distinctive responses associated with stress treatment.  Five genes shown to have different 

transcript levels in response to either mild or severe stress were chosen for further 

analysis using Real Time PCR (RT-PCR).  The RT-PCR results were in good agreement 

with those obtained on microarrays. 
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Introduction 

Drought stress can limit plant growth resulting in reduced crop yields.  Many 

attempts to analyze plant responses to drought have focused on single genes.  However, 

the product of a single gene can function in or act upon multiple response pathways, 

influencing many aspects of plant growth and development.  It is necessary, therefore, to 

understand how gene products act in concert and upon each other to effect adaptive 

changes to stressful conditions.  We have used microarrays and Expresso, a Next 

Generation Software, computational system to analyze the changes in gene transcript 

profiles in loblolly pine in response to drought stress. 

Microarrays have emerged as a prominent tool in the analysis of large scale gene 

expression. The spotting of cDNA onto glass slides allows for ascertaining the expression 

profile, as revealed by steady state transcript levels, of thousands of genes at a single 

time. The technique promises to reveal networks of genes that contribute to the same 

biological response and provide new information on the functions of unknown genes 

(Somerville and Somerville, 1999).  Microarrays have been used in plants to identify 

changes in transcript levels of genes associated with drought stress (Seki et al., 2001; 

Ozturk et al., 2002; Heath et al., 2002), cold stress (Seki et al., 2001; Fowler and 

Thomashow, 2002), salt stress (Kawasaki et al., 2001; Ozturk et al., 2002), pathogen 

interaction (Schiedler et al., 2001), and during developmental programs (Ruan et al., 

1998; Girke et al., 2000). 

Microarrays present a challenge to researchers both in terms of their design and 

implementation (Kerr and Churchill, 2001) as well as in subsequent storage and analysis 

of data. Such challenges require automated computational assistance. With the 
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voluminous amounts of data generated from each microarray experiment, effective and 

efficient access to this information becomes critical. As new experiments bring additional 

insights into the genomic response of plants to specific conditions, it is advantageous to 

reanalyze previous experiments in light of these new insights.  For example, Perez-

Amador et al. (2001) used cluster analysis on 47 Arabidopsis gene expression profiles 

stored in the Stanford Microarray Database, an online database, and discovered novel 

expression patterns for several genes identified as having increased transcript levels in a 

mutant. Since the results of one microarray experiment can be used to plan subsequent 

experiments, access to data during design is essential. 

We are designing a computational system - Expresso (Alscher et al., 2001; Heath 

et al., 2002; Sioson et al., 2003) - to address multiple phases of the microarray 

experiment lifecycle, including experimental design, microarray design and printing, data 

acquisition, image analysis, statistical analysis, and data mining. In contrast to many 

existing tools, Expresso is meant to systematize methodological issues in microarray 

experiments.  Alscher et al. 2001 identifies the three key design principles behind 

Expresso: (i) model-based design and management of experiments (i.e., models of every 

step of the microarray experiment are used to avoid costly design errors associated with 

probe selection, probe adhesion to the solid support, and hybridization dynamics); (ii) 

algorithms for ‘closing the experimental loop’ (e.g., adjustments to the design can be 

made based on analyzed results, detected problems, and modified aims of the 

experimental biologist); and (iii) a lightweight data management system that allows 

graceful changes to the underlying schema of the data. For instance, new experiments can 

have attributes and aspects that were absent in previous experiments.  The Expresso 
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system thus does not dictate a rigid experimental framework. The data management 

system is meant to support a variety of analysis algorithms; currently a number of 

attribute-value based clustering algorithms (e.g., Koyuturk et al., 2002) and the relational 

technique of inductive logic programming (Muggleton, 1999; Muggleton and Feng, 

1990) are supported. 

To date, the primary use of Expresso has been to study drought stress responses in 

loblolly pine, the predominant timber species in the southeastern US, covering about 13.4 

million hectares (Schultz, 1999). Loblolly pine is also an important timber crop in Africa, 

Asia, and South America, where tree growth can exceed that of trees grown in the US.  

The faster growth of trees in these locales depends upon the use of suitable seed stock 

and, even then, improvements can be made to optimize growth in each locale (Schultz, 

1999). Tree improvement involves traits such as better wood quality and higher density, 

greater disease resistance, and improved growth under various environmental conditions 

(Schultz, 1999).  Drought stress can limit tree growth and alter wood quality (Lev-Yadun 

and Sederoff, 2000). It is necessary to understand responses to drought stress to achieve 

the development of crops with increased resistance to drought.  Loblolly pine constitutes 

an excellent system to model drought stress in softwood timber species and gymnosperms 

in general.  Furthermore, the use of a gymnosperm will add considerable knowledge to 

comparative genomic studies, extending what is known about gene function from 

angiosperms to gymnosperms.   

Drought stress has been correlated with expression changes in many plant genes.  

These include the heat shock proteins (HSPs; Ristic et al., 1998), late embryogenic 

abundant proteins (LEAs; Iuchi et al., 1996), and aquaporins. Some of the more well-
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characterized responses include genes whose products regulate expression of drought 

responsive genes, the dehydration responsive element binding proteins (DREB; Liu et al., 

1998) and ABA responsive element binding proteins (ABREB; Chu et al., 2000; Kang et 

al., 2001). Other genes involved in drought stress are those associated with lipid signaling 

such as the phospholipase gene families (Katagiri et al., 2001; Sang et al., 2002) and 

those associated with detoxification of reactive oxygen species (Alscher et al., 1997).   

Results obtained using microarrays have broadened the analysis of gene expression in 

response to drought and confirmed the results of individual gene studies. For example, 

Seki et al. (2001) reported 44 drought-inducible genes in Arabidopsis using microarrays 

and identified putative targets of DREB1A.  Ozturk et al. (2002) noted a change in 

expression using microarrays for several barley genes identified as being drought 

responsive, including a LEA, a dehydrin, and a water channel protein.  A water channel 

protein was also one of those identified by Seki et al (2001) in Arabidopsis, suggesting at 

least some commonality between results from different species.  We have previously 

used Expresso to analyze changes in transcript profiles of loblolly pine in response to 

drought stress.  We designed and printed an array consisting of 384 cDNAs chosen by us 

as being associated with stress responses.  Using the 384 gene microarray, 72 genes 

showed increased transcript levels after four cycles of mild drought stress (Heath et al., 

2002).  This group of genes did not show increased transcript levels as a result of severe 

drought stress, making them candidate genes for drought tolerance mechanisms. The data 

mining technique of inductive logic programming (ILP) incorporated in Expresso 

associated gene expression with membership in putative functional categories. From the 

ILP results, we identified functional categories of genes that responded to the stress, 
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including ’heat’ (HSPs and LEAs) as well as ’membrane transport proteins’ (aquaporins 

and dehydrins). Other categories affected by the stress were ’cell wall related’ and ’lignin 

biosynthesis’. Also identified as being stress regulated were a group of genes categorized 

as isoflavone reductases.  Babiychuk et al. (1995) identified these genes as being 

involved in protection of cells from oxidative stress, which has been correlated with 

drought stress imposition. These enzymes are also related to those involved in lignin 

biosynthesis and in the synthesis of biotic, plant-defense compounds (Gang et al., 1999), 

suggesting that they are involved in multiple stress responsive pathways. 

 We have completed a second series of experiments to improve our understanding 

of loblolly pine response to drought stress, and to further exercise Expresso. The arrays 

consist of 2178 clones selected from 5 existing loblolly pine cDNA libraries (Stasolla et 

al., 2003).  This paper focuses on the use of data mining algorithms in Expresso to 

analyze this newer set of data and to identify significant changes in gene expression.  

 

Materials and Methods 

Plant Material  

Rooted plantlets of Pinus taeda from the Atlantic Coastal Plain were produced 

clonally by Dr. Barry Goldfarb at North Carolina State University (NCSU).  These were 

transported to Virginia Tech and grown in a mixture of peat moss, perlite, and sand 

(1:1:1) under natural daylight in a greenhouse. Supplemental lighting (mercury vapor and 

high-pressure sodium lamps) was used for 6 h in the evening to maintain 16 h daylength 

from July to the termination of the experiment in September. Temperature was 

maintained at 26°C± 4.5 during the day and 18°C± 3.0 at night.  Plants were watered as 
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needed and fertilized once a week with half-strength Hoagland’s solution. For drought 

stress experiments, water was withheld until a desired water potential had been reached:  

-1Mpa for mild stress and -1.7Mpa for severe stress. Trees were dried down to the 

desired water potential and then re-watered. Needles and stems were collected 24 hours 

after re-watering.  The stress was then repeated by again withholding water.  Imposition 

of each level of drought stress was repeated 3 times with harvesting of needles and stems 

24 hours after re-watering (Fig. 1). Water potential of needles was measured in the 

morning (pre-dawn) using a Plant Water Status Console (Model 3005, Soilmoisture 

Equipment Corp. Santa Barbara, CA). Net photosynthesis was measured at the time of 

peak drought stress for each level of stress at light saturation on a LiCor 6400 (Lincoln, 

Nebraska). 

 

Microarrays  

A set of 2178 clones was selected from 5 pine cDNA libraries to include the 3’ 

end of representative genes from all 15 functional categories assigned by MIPS to 

Arabidopsis (Stasolla et al., 2003).  Clone amplification, cleaning, and spotting was 

carried out at NCSU (Stasolla et al., 2003).  Each clone was replicated 4 times on a slide.  

The clones selected to be on the array were placed within a hierarchy of functional 

categories designed by us to reflect processes that are affected by water deficit and the 

mechanisms employed to protect these processes.   

 

RNA Extraction and Hybridization  
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RNA was extracted from needles according to the method of Chang et al. (1993) 

as modified in our laboratory. Briefly, after addition of the extraction buffer to the tissue 

sample, the tissue was homogenized for one minute with a Polytron tissue homogenizer 

at full speed. After centifugation (9000xg for 10 min), the supernatant was transferred to 

a new tube and 1/5th volume of 5% CTAB was added (5% CTAB, 0.7M NaCl). This was 

heated to 65°C for 20 min. An equal volume of chloroform:isoamyl alcohol (IAA; 24:1) 

was added and the sample was centrifuged. The supernatant was re-extracted with an 

equal volume of chloroform:IAA (24:1). The sample was centrifuged and the supernatant 

transferred to a new tube. The RNA was precipitated over night with 1/2 volume 10 M 

LiCl. Each pair of RNAs to be compared (treated vs. control, for each time point) were 

reverse transcribed and labeled with Cy3 and Cy5 dyes (Stasolla et al., 2003).  Reciprocal 

labeling of each comparison was implemented to control for variation due to the dye and 

resulted in 8 replicates per clone per comparison. Hybridizations were carried out 

according to Stasolla et al. (2003). A total of 24 slides was used for the microarray 

analysis. A modified loop design (Kerr and Churchill, 2001) was used to formulate 

comparisons between treated and control samples. For each degree of stress, 12 slides 

were used which compared treated samples with two control samples using reciprocal 

labeling. For example, mild treated 1 was hybridized to mild control 1 and mild control 4; 

mild treated 2 was compared to mild control 2 and mild control 1. This resulted in a total 

of 16 replicate spots per treatment. 

 

Real Time PCR 
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 Real Time PCR was used to confirm the data obtained from the microarray 

experiments.  The relative abundance of five ESTs, chalcone isomerase (07 H08), 

naringenin-2-oxo dioxygenase (Flavonone-3-hydroxylase, NXSI_063_D01), Pine LEA 

group 2 (NXCI_002_G10), Pine LEA group 3 (PC14G04), and HSP18 (ST40F04), 

shown to be differentially expressed in the second and/or third cycle of either mild or 

severe stress in the microarray experiments was tested.  The same total RNA samples as 

were used for the microarrays were analysed. The concentration of total RNA was 

measured using the RiboGreen RNA Quantitation Reagent And Kit (Molecular Probes). 

First strand cDNA was reverse transcribed from 300 ng of total RNA using TaqMan 

Reverse Transcription Reagents (Applied Biosystems) according to manufacturers’ 

instructions. Gene specific primers were designed by the Primer Express 1.0 program 

(Applied Biosystems). The relative transcript abundance was monitored on an Applied 

Biosystems 7700  Sequencer using SYBR Green PCR Master Mix (Applied Biosystems). 

The adenosine kinase amplicon was used as an internal control for normalisation. 

 

Analysis  

Hybridized slides were scanned using a ScanArray 5000 (Perkin Elmer, Boston, 

MA) and image analysis was performed using QuantArray software. The raw and 

background subtracted data were first analyzed based on the linear mixed model of 

Wolfinger et al. (2001). The Wolfinger method uses a two-phase analysis to remove 

global effects and to estimate the interaction between gene and treatment. In the first 

stage, the values of the major factors are estimated by fitting the intensity data to an 

ANOVA normalization model 
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εµ ++++++= APPDATy . 

 

The µ accounts for the overall average intensity value across the various factors in the 

experiment.  The effects T, A, D, P, and AP represent the variation in treatments (2 levels, 

treated and control), arrays (6 arrays), dyes (2 dyes, Cy3 and Cy5), printing pins (4 pins), 

and array-pin interactions.  The y values are the logarithms of the intensity signals. In the 

second phase of the analysis, the residual values that result from the first stage are used to 

estimate the interaction between the gene and treatment at α = 0.05, Bonferroni corrected 

significance level.  The gene model used to achieve this is 

 

ε = G + GT + GA + GD + GS(A) +γ . 

 

Here, G, GT, GA, GD, and GS(A) are the expected mean of the residuals, gene-

treatment interaction, gene-array interaction, gene-dye interaction, gene-pin interaction,  

gene-array-pin interaction, gene-spot interaction, where S is nested in A, respectively.   

For each of the 2178 genes on the arrays, a hypothesis test between control and treated is 

constructed.  All of the effects in both stages are assumed to be multiplicative (so their 

logarithms are additive), and the residuals ε and γ are assumed to be normally distributed.  

Different model and distribution assumptions, or a different confidence level would result 

in different expression assessments.  As suggested by Wolfinger et al. (2001) to assure an 

experiment-wide false positive rate of 0.05, the p-value cut-off is set at the Bonferroni 

value of 0.05/2180 = 3e-05. To reflect this on the database, the SAS computed p-values 

of expression fold change for each gene are multiplied by 2178 so that the analysis p-

value cut-off could still be set at 0.05. Genes with positive (negative) estimated fold 
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change with corrected p-value less than or equal to 0.05 are assessed as positively 

(negatively) expressed.  The remaining genes are assessed as unchanged. 

Genes whose raw intensity signals reached the maximum 16-bit intensity value of 

65535 are detected through visual inspection for systematic errors in scatter plots of 

estimated fold changes versus negative of the corresponding p-values.  Systematic errors 

due to these “maxed out” genes appeared as spikes in the scatter plots.  Since the 

intensity signals for these genes were not accurately recorded, they are removed from the 

dataset considered in the next analysis step.   

Following the analysis of variance, the data was redescribed via inductive logic 

programming (ILP). Inductive logic programming is a data mining technique for finding 

relationships (Dzeroski and Lavrac, 2001) and redescription specifies the nature of these 

relationships. Signature patterns of gene expression changes across experiments are also 

derived from ILP. 

 

Data Mining by Redescription 

 Data mining functionality in Expresso is based on a collection of 15 relational 

database tables, implemented using the Postgres database management system. These 

tables summarize information such as experimental conditions (the different stress 

conditions), cDNA details (accession number, annotation, and putative functional 

categories), water potential and photosynthesis measurements, and expression levels. The 

Expresso query interface allows the biologist to perform Structured Query Language 

(SQL) queries on these tables, such as: “which genes belong to the ‘trafficking’ 

category?” SQL queries satisfy the closure property, meaning the results of one query can 
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be used as the input to the next query. For instance, after determining which genes belong 

to the trafficking category, a second SQL query can be performed to determine their 

expression level in ‘mild cycle 2.’ 

Such sequences of queries form the basis of the ‘data mining by redescription’ 

technique. The above sequence of queries constitutes a ‘redescription operation’ because  

the biologist begins by defining a set of genes using one aspect (functional category), and 

then restates the same set in terms of a different aspect (expression level).  

Since the number of possible redescriptions that can be performed is huge (owing 

to the numerous pairs of aspects that can be chosen and the multiple cardinalities of the 

underlying sets), Expresso incorporates a data mining technique (called inductive logic 

programming or ILP) to search through the space of possible redescriptions and to 

automatically identify the most interesting redescriptions. Using ILP, the biologist merely 

instructs Expresso as: “redescribe from categories to expression level” and ILP searches 

for statements that make relationships from some category to some expression level in 

some experimental condition. Pruning strategies are used to focus on the most interesting 

redescriptions (this statement will be qualified shortly). For instance, since the functional 

categories are organized in a hierarchy, we can exploit the subsumption properties of 

membership in this hierarchy to narrow down our possibilities. 

After a successful redescription, a reverse-redescription can be attempted. For 

instance, suppose we mine that “trafficking genes are up-expressed in mild cycle 2.” We 

can then try to see if the relationship holds in reverse, i.e., “are the genes that are up-

expressed in mild cycle 2 present in the trafficking category?” Or, we can continue the 

redecription into a third aspect (e.g., expression level in a different condition). Each of 
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these requests is just a different “schema” for the redescription operation. To summarize, 

the biologist has the ability to instruct Expresso in ways such as “redescribe from 

category to expression level”, “redescribe from expression level to expression level”, or 

“redescribe from expression level to expression level to category.” Redescription results  

are summarized in the form of “rules”. For instance, one rule that redescribes from 

expression level to expression level is: 

 

   ~expression(X,severe,’+’) :- expression(X,mild,’+’). 

 

This rule, represented here in predicate logic form, was reported in our earlier paper 

(Heath et al. 2002). Read from the right to left, it states: “if gene X was up-expressed in 

the mild stress condition, then it was not up-expressed in the severe-stress condition.” 

The symbol “~” denotes logical negation and the symbol “:-” denotes logical implication. 

We found this rule to hold in 69 out of 72 cases, yielding a very high degree of 

confidence. In other words, of the 72 genes that were up-expressed in the mild stress 

condition, 69 of them were indeed either down-expressed or not expressed in the severe 

stress condition. 

Expresso allows the biologist to specify the criteria for mining these rules. In the 

experiments reported here, we require that every implication have a strength of at least 

80%; the results are summarized in Figs. 5 and 6 as cartoons. It is important that the 

criteria of 80% not be interpreted as a measure of statistical significance. All expression 

levels are assessed in Expresso using a 5% Bonferroni corrected significance threshold 

for the Wolfinger test and positing the Wolfinger model and distribution assumptions; the 
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80% criteria influences the amount of confirming instances that the (subsequent) data 

mining algorithm must encounter, before it can generalize data into rules. Since we use 

the rules in a descriptive rather than a predictive fashion, they are meant to be used as a 

summarizer of the data assessments and for suggesting resultant (and testable) biological 

hypotheses.  (Note that the rules describe the computed assessments based on modeling 

assumptions and an arbitrary confidence level threshold and not the expression data 

itself.) 

 

Results 

Drought Stress and Physiological Measurements 

 Trees reached the desired water potential for each cycle of stress at 3-4 days after 

withholding water for mild stress and at 6-7 days after withholding water for severe 

stress. Trees were subjected to three cycles of stress (Fig. 1). Control trees were watered 

normally throughout the experiment.  Trees grown under mild stress showed little 

alteration in growth and, as did control trees, continued to produce new flushes of 

growth.  Trees grown under severe stress had fewer new flushes of growth compared to 

controls, indicating that severe stress limited tree growth.  Photosynthetic measurements 

were taken at the time of peak drought stress to identify the effect of the stress on 

photosynthesis.  Both mild and severe stress levels led to reduced photosynthesis during 

the first cycle of stress with a much greater photosynthetic reduction in trees grown under 

severe stress (Table I).  In subsequent cycles of stress, trees under mild stress showed 

recovery of photosynthetic rate to levels at or approaching those of controls, a result we 

considered to be photosynthetic acclimation to the stress.  Trees grown under severe 
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stress remained much below control levels, a result we noted as photosynthetic failure 

during the stress. 

 

Microarrays 

 The two stage, linear mixed model (Wolfinger et al., 2001) used by Expresso  is 

intended to remove global effects from the computed intensity values.  It also allows the 

estimation of significant changes in gene transcript levels below the standard 2.5 fold 

increase (Fig. 2).  All reported results are significant at α=0.05.  Table II shows the 

number of genes that responded by cycle and stress level.  Between mild cycle 1 and 2, 

there was an increase in the number of genes showing regulation (from 127 to 188 

positively affected clones and from 82 to 146 negatively affected clones), which 

correlates with photosynthetic acclimation.  Trees grown under severe stress did not show 

such an increase and the number of genes showing a positive response remained 

consistent across all three cycles of severe stress.  Figure 3 shows the genes that are 

regulated in both mild and severe stress.  Generally, less than 20% of genes showing a 

response are shared between mild and severe stress cycles, which suggests that different 

response pathways are initiated for the different levels of stress.  Many of the genes 

identified as being positively regulated were noted in our previous experiment (Heath et 

al., 2002) and include rubisco binding protein, aquaporin and isoflavone reductase (for a 

complete list of genes that responded, access our website at: 

http://bioinformatics.cs.vt.edu/~expresso/research_gene_expression_pine2.php 

 The results of the six normalization ANOVA models show that the array, 

treatment, pin and pin-array effects are significant in all cycles of mild and severe 



 19

treatment experiments (p < 0.0001).  The dye effect, however, is significant in all mild 

treatment cycles (p <0.0001) and in severe cycle 2 but not in severe cycle 1 (p=0.3297) 

and severe cycle 3 (p=0.2038). In microarray experiments, global effects in the intensity 

signals are expected as shown by the results.  The normalization model employed in 

Expresso is successful in detecting and removing these effects from the logarithm of  the 

intensity values. 

Assessment of 2178 gene models per experiment shows that at α = 0.05, 

significant gene-treatment interaction happens in 59.27 % to 74.31% of the gene models. 

Similarly, significant gene-array interaction, and gene-dye interactions happen in 75% to 

87.71% and 63.35% to 80.92% of the gene models respectively.  Table III shows the 

number of equations where the considered effects are significant at the same significance 

level. The results show that most genes interact with treatment, arrays, and dyes 

significantly.  The gene model, therefore, proved adequate in detecting gene interactions 

with effects other than treatment and removing those from the gene-treatment effects we 

are interested in. 

 To aid in data mining by redescription, clones were assigned to the functional 

categories described in Heath et al. (2002).  Though the clones were selected based on the 

MIPS functional categories, we used the gene annotations to re-categorize the genes in a 

hierarchy more reflective of stress response characteristics, e.g., the categories were 

based on plant responses to stress and the processes protected by the stress responses 

(Fig. 4).  Notice that the categories have a hierarchical structure; if a clone X is in a given 

category C, it is also a member of all parent categories of C. In addition, genes can be 

placed in multiple categories. Inductive logic programming (ILP; Muggleton, 1999) was 
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applied to the statistically significant changes in gene expression levels for the various 

treatments together with the functional categories to obtain relationships between gene 

category and treatment.  Signature patterns of changes in transcript levels relating to the 

functional categories were found using redescription (Figs. 5 and 6). An example of rules 

which shows that transcript levels of genes whose products participate in trafficking 

between the endoplasmic reticulum and the Golgi were elevated during acclimation (mild 

cycle 2 and 3) is:  

 

    expression(X,mc2,’+’) :- category(X,trafficking). 

    expression(X,mc3,’+’) :- category(X,trafficking). 

 

Genes falling into the categories of 'nitrogen and sulfur metabolism', 'respiratory electron 

transport', and 'cell membranes' were also identified by ILP as showing significant 

changes in transcript levels in response to drought stress. We further focused on three 

groups of genes that were identified using ILP.  One group, which can be found in the 

intersection of the categories 'Gene Expression' and 'ROS and Stress', includes 'protection 

and repair' genes such as the chaperones.  These responded positively during acclimation. 

The second group of genes is included in the subcategories of 'carbon metabolism' and 

showed a positive response during all three cycles of mild stress with highest expression 

during acclimation. The third group falls under the category of 'phenylpropanoid 

metabolism' and showed a positive response during the first and third cycles of mild 

stress. 

 



 21

Protection and Repair Genes (Chaperones) 

 Genes encoding the chaperones can be found in the subcategories of protection 

and repair, heat, and cold within ’ROS and Stress’ (Fig. 4).  In trees grown under mild 

stress, more genes within ’heat’ and ’protection and repair’ had increased transcript levels 

compared to severe stress (Figs. 5 and 6).  However, chaperones and other genes 

correlated with cold stress were higher in trees grown under severe stress.   A more 

detailed analysis of some of the HSP and LEA genes identified as having altered 

transcript levels revealed that LEA group 2 homologs were associated more with mild 

stress whereas LEA group 3 were associated more with severe stress (Fig. 7).  Figure 7 

also shows that specific clones of HSP 70 and HSP 90 respond differently to mild and 

severe stress.  For example an HSP 70, DNA k type homolog (clone NXSI_117_C08, 

contig 8005) and an HSP 90 homolog (NXSI_116_B04) show increased transcript levels 

during mild stress and no response during severe stress.  Conversely, a mitochondrial 

HSP 70 (NXCI_022_G01) and a different HSP 90 (NXNV_149_E10, contig 5815) show 

increased transcript levels during severe stress and no response during mild stress. 

 

Carbon metabolism 

 Genes in the category of ’Carbon Metabolism’ were identified by ILP as having 

increased transcript levels in trees grown under mild stress.  We focused on the genes 

associated with core carbon metabolism (Fig. 8).  Genes that showed positive regulation 

in mild stress include pyruvate kinase, which leads to the formation of pyruvate from 

phosphoenolpyruvate, and pyruvate dehyrdrogenase, which feeds carbon from glycolysis 

into the TCA cycle.  Other genes that show increased transcript levels in mild stress 
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include those in the oxidative pentose phosphate pathway such as ribose-5-phosphate 

epimerase, transaldolase and transketolase.  Genes associated with the reductive pentose 

phosphate pathway such as RUBISCO and 2 plastidic isoforms of glyceraldehyde-3-

phosphate show increased transcript levels in severe stress. 

 

Phenylpropanoid Pathway and Aromatic Amino Acids 

 ILP produced rules concerning expression of genes involved in aromatic amino 

acid biosynthesis and in the phenylpropanoid pathway (Fig. 9).  As there is a link 

between one branch of the aromatic amino acid pathway and the phenylpropanoid 

pathway, these groups were examined together.  Genes associated with the entry of 

carbon into these pathways, DAHP synthase and 3-dehydroquinate synthase, had higher 

transcript levels in trees grown under mild stress compared to severe stress.  

Phenylalanine ammonia lyase (PAL) did not show a response in mild stress whereas 

cinnamate-4-hydroxlase had positive expression in cycles 1 and 3 of mild stress.  Nearly 

all the genes involved with flavonoid biosynthesis that were represented on the array 

showed an increase under mild stress.  Genes associated with lignin  generally showed no 

response to mild or severe drought stress.   Of the 12 laccase clones present on the array, 

only 4 showed a response with one isoform of laccase showing a positive response in 

mild stress, while another showed a positive response in severe (Fig. 9).  

 

Real Time PCR 

 Five genes shown to have different transcript levels in response to either mild or 

severe stress were chosen for further analysis using Real Time PCR (RT PCR).  Two 
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genes encoding LEA proteins were found to have similar expression profiles using RT 

PCR as compared with the microarrays.  Pine LEA g3 (P14G04) was shown to be up-

expressed in all 3 cycles of severe stress using microarray analysis (Fig. 7).  A similar 

result was seen with the RT PCR where there was a 2.5 fold increase in transcript level 

during the second cycle of severe stress and a 1.7 fold increase in transcript level during 

the third cycle of severe stress (Table IV).  The results generated for pLEAg2 by RT PCR 

were also similar to those generated by microarray analysis (Table IV and Fig. 7) with an 

increase in transcript levels during the third cycle of mild stress but no change during 

severe stress.  The flavonoid genes chalcone isomerase and naraningenin-2-oxo 

dioxygenase (3-flavonone hydroxylase) were also found to have similar transcript 

profiles during drought stress when analyzed using RT PCR compared to the results 

obtained from microarrays (Table IV and Fig. 9).   

 

Discussion 

 The analysis of drought response in loblolly pine using microarrays has 

implications for many aspects of the timber industry, including crop improvement.  

Results obtained with pine serve as a model to expand the knowledge of angiosperm gene 

analysis into gymnosperms.  We have previously demonstrated that 72 of 384 genes show 

increased transcript abundance in loblolly pine grown under mild stress whereas 69 of 

those genes showed no response in severe stress (Heath et al., 2002).  These expression 

patterns were correlated with acclimation to the stress.  To further analyze the response of 

loblolly pine to drought, we used a 2178 gene array.  We also took photosynthetic 

measurements at the time of tissue harvest.  Pines grown under mild stress showed an 
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initial reduction in photosynthetic rate, with recovery to near control levels in subsequent 

drought cycles.  The recovery in photosynthetic rate is an expression of photosynthetic 

acclimation to the drought stress.   

The change in RNA transcript profiles of P. taeda due to drought stress can be 

correlated with physiological data reflecting photosynthetic acclimation to mild stress or 

photosynthetic failure during imposition of severe stress.  The number of clones showing 

either positive or negative changes in transcript levels increases from 5.8% to 8.6% 

between mild cycle 1 and 2, suggesting that the behavior of these genes is correlated with 

acclimation.  The near doubling of the number of genes showing negative changes (3.8% 

to 6.7 %) suggests that negative gene expression shares importance with positive gene 

expression in acclimation to the imposed stress.  There was no comparable change in 

trees grown under severe water deficit where changes in genes showing altered transcript 

profiles remained at 6%.  However, in both mild and severe stress the genes with altered 

transcript profiles dropped in the third cycle of stress. 

 The large number (approximately 80% of genes showing changes in transcript 

profiles) of genes unique to each stress level suggests that the plant is able to sense the 

degree of stress and activate different response pathways to cope with that stress. These 

different response pathways contain related genes; however, clones with the same 

annotation seem to be differentially expressed members of a multi-gene family.  For 

example, one clone of laccase is positively regulated during mild stress and negatively 

regulated during severe, whereas another laccase gene is negatively regulated during mild 

stress and positively regulated in severe.  Other examples include genes that encode 

annexin, a Ca2+ binding protein involved in diverse cellular functions (Gerke and Moss, 
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2002); ADP-ribosylation factor, a GTPase involved in vesicle budding and membrane 

trafficking (Takeuchi et al., 2002); and myo inositol-1-phosphate synthase (see 

supplemental data at 

http://bioinformatics.cs.vt.edu/~expresso/research_gene_expression_pine2.php).  These 

results suggest that microarrays can differentiate among some members of a multi-gene 

family and that, in at least some cases, microarrays can be used to uncover the different 

function each member of a multi-gene family might have in plant physiology. 

The expression of genes encoding chaperones have been associated with 

responses to stress imposition (Xu et al., 1996; Lee and Vierling, 2000; Zhang et al., 

2000). We previously identified chaperones as being positively regulated in response to 

drought and suggested that they aided in adaptation to drought stress by protecting 

processes within the cell (Heath et al., 2002).  Lee and Vierling (2000) suggest that one 

protection afforded by HSPs is manifested through the interaction of small HSPs with 

denatured proteins, preventing aggregation and promoting refolding of denatured 

proteins.  Through ILP we have found that different chaperones were expressed in either 

mild or severe stress (Fig. 7).  We generated a phylogenetic tree to determine how the P. 

taeda LEAs are related to each other and to LEAs from other species (Fig. 10).  Two pine 

clones associate with group 2 LEAs (dehydrins) from cotton, Arabidopsis, and white 

spruce.  Studies of dehydrin in cowpea point to a possible function in membrane 

protection (Ismail et al., 1999).  Furthermore, Iuchi et al. (1996) found that group 2 LEAs 

were highly expressed under drought stress in a drought-tolerant cowpea.  The group 2 

LEAs from pine had higher transcript levels during mild stress suggesting that they are 

important for acclimation, possibly by stabilizing membranes.  Several pine clones show 
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close homology to group 3 LEAs from Arabidopsis and cotton.  A group 3 LEA from 

Barley (HVA1) confers tolerance to water and salt stress when expressed in rice (Xu et 

al., 1996).  The pine group 3 LEAs had increased transcript levels in severe stress. We 

previously identified HSPs and LEAs as being responsive to drought stress and our 

results suggested that different homologs responded to the different levels of stress 

(Heath et al., 2002). The results of this study corroborate our previous experiment 

showing that the changes in expression of LEAs and HSPs are important to drought stress 

reponses in general.  However, some, such as the group 2 LEAs, are more important 

during acclimation, whereas the group 3 LEAs may be more important to protection 

during severe stress.  The LEAs that responded under severe stress have also been 

associated with cold responses (Dong et al., 2002) and ILP indicated that other cold 

associated genes showed higher transcript levels in severe stress than in mild.  This 

suggests that severe drought stress activates different response pathways. It also indicates 

that the plant can sense the degree of stress and respond accordingly.  

ILP found several rules indicating significant changes in carbon metabolism in 

response to mild drought stress. Our data suggest that carbon metabolism has a role in 

acclimation to drought stress. Using cluster analysis, Scheideler et al. (2001) found that 

genes categorized in carbon metabolism tended to have higher transcript levels in 

Arabidopsis treated with Pseudomonas syringae pv. tomato.  They suggested that 

transcript regulation of genes encoding enzymes involved in carbon metabolism could 

direct the flow of carbon into specific pathways necessary to the response.  That appears 

to be the case here, where at least two genes encoding enzymes involved in carbon 

metabolism, which could provide carbon skeletons to other metabolic processes, showed 
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increased transcript levels during mild stress. One of these genes encodes pyruvate 

kinase, which may be involved in providing carbon skeletons for amino acid 

biosynthesis.  Since it is also an ATP producing enzyme, it may be necessary to provide 

reducing equivalents for other biosynthetic reactions.  Another gene encodes pyruvate 

dehydrogenase, which is important for shuttling carbon from glycolysis into the TCA 

cycle.  None of the other enzymes of the TCA cycle show increased transcript levels, 

which suggests that there is no net increase in flow through the TCA cycle.  It is 

important to note, however, that regulation of these enzymes could be post-

transcriptional.  Since the TCA cycle provides carbon skeletons for many biosynthetic 

reactions, the increased transcript level of pyruvate dehydrogenase could be providing 

carbon for diverse uses within the plant.  The maintenance and possible increase of 

general carbon metabolic pathways could be reflective of the acclimation process during 

mild drought stress.  Trees grown under severe stress had reduced transcript levels of 

genes associated with reductive pentose phosphate pathway, suggesting that little 

photosynthate was being generated, which is in agreement with the photosynthetic data. 

Under severe stress, there is a general increase in mitochondrial electron transport 

(supplemental data) suggesting that the plant is compensating for drought-induced lack of 

reducing equivalents from the light reactions. 

RT PCR analysis of the genes discussed above corroborated the results generated 

by the microarray data. Three of the genes within the functional category of ‘Chaperones’ 

were analyzed. As with microarray analysis, the group 2 LEAs were more responsive 

during photosynthetic acclimation in trees grown under mild water deficit.  The group 3 

LEAs, however, had higher transcript levels in severe stress suggesting a protective role 
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during photosynthetic failure.  The two genes in ‘flavonoids’ that were selected for RT 

PCR analysis also had a similar expression profile with the two techniques. Therefore, 

the results of the RT PCR analysis serve to confirm the results of the microarray analysis 

and add support to the conclusions drawn from the microarray data. 

Other rules found by ILP suggest that nitrogen and sulfur metabolism and 

phenylpropanoid metabolism are important to acclimation to drought stress.  Within 

nitrogen and sulfur metabolism, an increase in transcripts encoding enzymes of aromatic 

amino acid biosynthesis was found.  An increase in transcript levels of several genes in 

the oxidative pentose phosphate pathway under mild stress (Fig. 8) suggests that carbon 

is being shuttled to aromatic amino acid biosynthesis.  A similar increase is not seen in 

severe stress cycles.  Since there is no overall positive trend in the genes of lignin 

biosynthesis, we suggest that carbon from aromatic amino acids is being channeled 

through the phenylpropanoid pathway into flavonoids.  A rise in transcript levels of some 

genes important to flavonoid biosynthesis is seen under mild stress.  Flavonoids have 

been implicated in stress responses (Winkel-Shirley, 2002), and we previously noted that 

isoflavone reductase was positively regulated in trees grown under mild stress but not 

trees grown under severe stress (Heath et al., 2002).  An increase in dihydroflavonol-4-

reductase transcripts was noted during osmotic, ionic, and heat stress in yeast (Garay-

Arroyo, 1999).  Dihydroflavonol-4-reductase also showed an increase in transcript levels 

during dehydration in a drought resistant cow pea (Vigna unguiculata; Iuchi et al., 1996) 

suggesting that dihydroflavonols are important to resistance to the stress.  Flavonone-3-

hydroxylase (naringenin-2-oxo dioxygenase) is the first enzyme in the production of 

dihydroflavonols and showed increased transcript levels in all 3 cycles of mild stress.  
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Since photosynthetic acclimation only occurred in mild stress, it is possible that the flow 

of carbon to the flavonoids and specifically the dihydroflavonols is important to 

photosynthetic acclimation to mild drought stress.   

Another gene associated with nitrogen and sulfur metabolism whose expression 

was affected by mild stress is arginine decarboxylase.  This gene product is involved in 

polyamine biosynthesis and was noted as being drought responsive by Ozturk et al 

(2002).  Arginine decarboxylase had higher transcript levels in the third cycle of mild 

stress when the plants have acclimated.  Arginine decarboxylase along with s-

adenosylmethionine (SAM) decarboxylase had lower transcript levels in trees grown 

under severe stress and were identified by ILP as being negatively regulated during 

severe cycles 1 and 2 (supplemental data).  Other researchers have correlated SAM 

decarboxylase with drought stress, suggesting that polyamine biosynthesis is important to 

drought stress (Li and Chen, 2000; Li and Chen, 2000b).  Spermine and spermidine, two 

polyamines in the SAM decarboxylase pathway, were  found to induce elongation 

growth, increase photosynthetic capacity and reduce membrane leakage in drought 

stressed jack pine (Pinus banksiana; Rajasekeran and Blake 1999) pointing to a direct 

role of polyamines in cellular responses to drought stress.  The negative regulation of 

arginine decarboxylase and SAM decarboxylase during severe drought stress may 

suggest that synthesis of the polyamines is reduced and that the polyamines are not 

functional in the protection of cellular processes during severe stress.  However, SAM 

decarboxylase is important to ethylene synthesis, since it diverts SAM away from the 

ethylene biosynthetic pathway.  The down-regulation of SAM decarboxylase may 

therefore reflect an increase in ethylene production in trees grown under severe stress.  
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Ethylene has been associated with many stress responses in plants (e.g., Chen et al., 

2002), as well as with abscission and senescence (Taylor and Whitelaw, 2001).  Since 

ethylene is associated with senescence, the trees grown under severe stress may be 

switching to a senescence program.  Two senescence-related genes were found to have 

higher transcript levels in trees at the third cycle of severe stress (supplemental data).   

Many of the same genes present on our 384 element arrays (Alscher et al., 2002) 

were present on the arrays used here allowing us to corroborate our previous data.  The 

data presented here reflects changes in transcript profiles of loblolly pine over several 

cycles of stress, and it can be seen that the changes in transcript profiles of loblolly pine 

as discovered through the use of microarrays are both quantitative and qualitative.  A 

large number of genes showed changes in transcript levels due to mild stress, and there 

was an increase in these genes with acclimation.  Many of the genes identified have been 

previously correlated with plant stress responses including LEAs and HSPs.   However, 

we found that certain homologs of the same gene respond differently to the two levels of 

drought stress.  Again, this indicates that the plant is able to sense the degree of stress and 

may activate different response pathways accordingly.  Many of the other genes 

identified in this study encode proteins associated with ’house-keeping’ functions 

(pyruvate dehydrogenase and pyruvate kinase).  This suggests that alteration of ’normal’ 

metabolism can play a significant role in the stress response, perhaps in directing carbon 

or energy into stress-response pathways.  The results presented here have been used in 

probe selection and design of our next microarray experiment. 

One of the major advantages of data mining, as employed in Expresso, is the 

support for incorporating partial information into the analysis. Such partial information 
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can take many forms: results from previous years’ experiments, prior data about which 

genes are implicated in which physiological processes, and information from the 

literature. Data mining techniques should have the ability to flexibly incorporate such 

partial information and build from them, rather than function as obscure, isolated 

algorithms. The inductive logic programming technique described in this paper is only 

one of the many approaches that can harness partial information.  We are now supporting 

the construction and mining of multimodal networks, to help piece together parts of 

biological pathways. This approach uses algorithms from graph theory and probabilistic 

modeling to support the mining of such networks. Together, these approaches help 

address some of the grand challenges in bioinformatics data mining. 
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Table I. Effect of mild or severe drought stress on net photosynthesis in one year old 

loblolly pine rooted cuttings.  

 

Net Photosynthesis (µmol CO2 m-2 s-1)a 

Condition Cycle Control Stressed 

Mild 1 4.28 2.48 

 2 3.54 3.82 

 3 4.75 3.28 

Severe 1 3.67 0.88 

 2 3.00 0.19 

 3 2.90 0.77 

 
aMeasurements were made on the first fully mature fasicle in each case, using the Li-Cor 

6400. Three or four repeated measurements were made in each case.   
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Table II. Effect of mild or severe drought stress on number of clones showing 

differential regulation 

Significanta Gene Expression 

Condition Cycle # of clones (+) 

expressed (T:C) 

# of clones (-) 

expressed (T:C) 

Mild 1 133 94 

 2 213 159 

 3 62 90 

Severe 1 145 144 

 2 162 156 

 3 135 53 

 

a Significant changes in gene expression were identified using a linear model to normalize 

our data and a linear mixed model to find the significance of the interaction between gene 

and treatment. (Wolfinger et al. 2001).  Only those changes with a 0.05 significance or 

lower were considered. (T = treatment, C= control.) 2,178 clones on array.
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Table III. Number of Genes out of 2178 where the interactions GT, GA, and GD are 

significant at α= 0.05 in mild vs. control cycles and severe vs. control cycles. 

 Mild Treatment vs. Control Severe Treatment vs. Control 

 Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3 

GT 1382 1620 1292 1535 1448 1340 

GA 1764 1427 1481 1406 1496 1381 

GD 1736 1776 1835 1693 1912 1635 
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Table IV.  Real Time PCR results of selected genes shown by microarray analysis to 

have altered transcript levels during either mild or severe drought stress.   

 

Clone ID Mild Drought Stress Severe Drought Stress 

 Cycle 2 Cycle 3 Cycle 2 Cycle 3 

07 H08 0.899a ± 0.326 3.66 ± 0.469 0.993 ± 0.249 2.06 ± 0.371 

NXSI_063_D01 0.407 ± 0.182 2.1 ± 1.73 1.28 ± 1.5 1.59 ± 0.369 

PC14G04 0.845 ± 0.836 0.62 ± 0.332 2.54 ± 1.01 1.74 ± 0.421 

NXCI_002_G10 0.79 ± 0.122 2.13 ± 0.562 1.45 ± 0.327 1.75 ± 0.486 

ST40F04 0.51 ± 0.506 2.93 ± 0.909 1.00 ± 1.41 1.29 ± 1.53 

 

a Indicates fold change (where 1 is equal to no change, numbers greater than 1 represent a 

positive change in gene expression and numbers less than 1 represent negative changes in 

gene expression) plus or minus one standard deviation in RNA level of target gene in 

treated samples as compared to control samples.  
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Figure 1.  Graphical representation of experimental design for mild and severe drought 

stress treatments (does not reflect actual time period) 

Water was withheld from treated trees until a desired water potential was reached (-1MP, 

-10 bars for mild stress, and -1.5 Mpa, -15 bars for severe stress) as determined by pre-

dawn, water potential measurements.  At maximum drought stress, photosynthesis was 

measured and plants were re-watered.  Needles and stems were harvested 24 h after re-

watering. 

 

Figure 2  Gene significance results for the first cycle of milddrought stress vs. controls  

on rooted cuttings of loblolly pine. The result of analysis of the first cycle data of Mild vs 

Control experiment is shown in Figure 1.  The vertical axis represents -log10(p-value) 

while the horizontal axis represents lg(fold change).  Each spot at the right of the vertical 

axis and above the threshold value -log10(0.05) §�����DUH�SRVLWLYHO\�H[SUHVVHG�FORQHV���

Similarly, those at the left and above the threshold line are negatively expressed. 

 

Figure 3.  Venn diagrams representing number of unique clones responding either 

positively (A) or negatively (B) to mild or severe stress. 

Genes showing significant changes in transcript level were compared between mild and 

severe stress.  The results are presented in the form of Venn diagrams here. 

 

Figure 4.  Schematic diagram of hierarchy of gene functional categories. 

Clones were assigned to functional categories based on information in the gene 

annotation and information from the litereature.  The categories are based on known plant 



 45

stress responses and the process that are thought to be protected by those stresses. By 

virtue of being placed in a category, a clone automatically becomes a member of all 

parent categories. In addition, a clone can be placed in multiple functional categories that 

are not direct ancestors of each other (see chaperones above). 

 

Figure 5.  Signature patterns of changes in gene expression profiles for trees grown under 

mild drought stress. The data generated through microarray analysis were redescribed 

using ILP such that expression patterns were related to functional categories.  The rules 

generated by ILP are represented as colored ovals in the diagram.  Subcategories are 

represented as ovals within larger ovals.  The green oval represents a subcategory that 

responded and is shared between two main categories.  

 

Figure 6. Signature patterns of changes in gene expression profiles for trees grown under 

severe drought stress.  Diagrams were developed as in Figure 4. 

 

Figure 7.  Response of genes encoding chaperones to mild and severe drought stress as 

discovered through microarrays and ILP. 

Genes encoding chaperones are grouped according to the chaperone class in which they 

fall.  Changes in transcript profiles are shown as positive (+), negative (-) or unchanged 

(0) 

 

Figure 8.  Transcript profiles of genes in the category of carbon metabolism during three 

cycles of mild or severe drought stress. 
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Genes within the categories of ’carbon metabolism’ were identified by ILP as having 

increased transcript levels in trees grown under mild stress.  The genes within these 

categories that are present on the array are represented here .  Expression is indicated as 

positive (+), negative (-) or unchanged (0).  Blue squares indicate genes that were not 

represented on the array. 

 

Figure 9.  Transcript profiles of genes in the categories of ’phenylpropanoid metabolism’ 

and ’aromatic amino acids’ during three cycles of either mild or severe drought stress. 

Genes within the categories of ’phenylpropanoid metabolism’ and ’aromatic amino acids’ 

were identified by ILP as having increased transcript levels in trees grown under mild 

stress.  The genes within these categories (identified by annotation) that are present in a 

pathway are represented here.  Expression is indicated as positive (+), negative (-) or 

unchanged (0).  Blue squares indicate genes that were not represented on the array. 

 

Figure 10.  Phylogenetic tree of different groups of LEA proteins from Pinus taeda with 

those from other species. 

The tree was generated using pine contigs (that contain the ESTs with differential 

expression). BLASTX was used to obtain homologous sequences in Genbank. Alignment 

of translated pine sequences (translated using the SIXFRAME tool in workbench 

http://workbench.sdsc.edu) and homologous sequences was performed using the 

CLUSTALW tool of workbench.  The parameters used were the default parameters from 

workbench.  The njplot tool was used to visualize the resulting tree and to generate a 

postscript file.  Color and numbering was added to the postscript file.  Pine clones are 

identified by Contig number and clone ID, other plant proteins are identified by GenBank 
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numbers.  Group 4 (G4) LEAs make up the first main group in black.  Group 2 (G2) 

LEAs are colored in blue, Group 3 (G3) LEAs are colored in burgundy, and Group 5 

LEAs are colored green.  The Group 1 (G1) LEAs are colored black and lie between 

Group 2 and Group 3. 
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Clone ID Annotation Class
1 2 3 1 2 3

14D07 Putative Dehydrin LEA Group 2 0 + 0 0 0 0
NXCI_002_C10 Putative Dehydrin LEA Group 2 0 0 + 0 0 0
NXCI_006_H04 Embyonic abunndant protein (white spruce) LEA Group ? 0 0 + 0 0 0
PC23D04 LEA76 homolog LEA Group 3 0 0 0 0 + 0
ST01E01 Putative LEA LEA Group 3 0 0 0 0 + +
PC14C08 LEA76 homolog LEA Group 3 0 0 0 0 0 +
PC14G04 LEA76 homolog LEA Group 3 - 0 - + + +
PC05A11 LEA76 homolog LEA Group 3 0 0 - + + 0
PC08E04 LEA76 homolog LEA Group 3 0 0 - + 0 +
39A03 DNA J-like protein DNA J 0 + 0 - 0 0
40F04 Low molecular weight heat shock protein sHSP + 0 - 0 0 0
NXNV_132_E06 DNA J homolog DNA J + 0 0 0 0 0
NXSI_116_B04 Heat Shock Protein 82 HSP 90 0 + 0 0 0 0
NXSI_117_C08 DNA K type molecular chaperone hsc 70 HSP 70 0 + 0 - 0 0
NXNV_149_E10 Putative Heat Shock Protein 90 HSP 90 0 0 0 0 + 0
NXCI_022_G01 Heat Shock 70 Kda protein, mitochonrial HSP 70 0 0 0 + + 0
NXNV_ Heat Shock Protein, 82K, precursor HSP 90 0 0 0 + 0 0
13C12 Putative peptidyl-prolyl cis-trans isomerase Ppiase 0 0 0 + 0 0
38H03 Peptidyl proline isomerase Ppiase 0 + 0 0 0 0
39H08 Peptidyl prolyl cis-trans isomerase Ppiase 0 + 0 0 0 0

Mild Severe



Clone ID Annotation

1 2 3 1 2 3

NXCI_007_H12 Sucrose synthase -

NXCI_032_F09 Sucrose synthase +

NXCI_106_C10 Sucrose synthase - - -

NXSI_116_F02 Hexokinase +

NXNV_079_G08 Fructokinase -

NXCI_157_B10 Fructokinase -

NXSI_021_D06 Glucose-6-P isomerase - -

NXCI_034_B04 PPi dep. Phosphofructokinase

NXNV_144_H09 Aldolase -

07 E05 Aldolase +

NXNV_124_C02 Triose-P isomerase - -

NXSI_034_D06 Triose-P isomerase + -

NXSI_064_G04 Glyceraldehyde-3-P Dehydrog

NXSI_134_C01 Glyceraldehyde-3-P Dehydrog

NXSI_031_H06 Phosphoglycerate Kinase

Phosphoglycerate mutase

NXCI_122_A09 Enolase +

NXSI_143_H06 Pyruvate kinase +

NXCI_126_D02 Pyruvate kinase + + +

NXNV_066_D03 Pyruvate decarboxylase

20 A11 Alcohol dehydrogenase + +

NXSI_100_H03 Alcohol dehydrogenase -

NXNV_074_H11 Pyruvate dehydrogenase + +

NXCI_150_E08 Pyruvate dehydrogenase + -

NXCI_094_G11 Pyruvate dehydrogenase +

29 A09 Citrate synthase +

Aconitate hydratase

Isocitrate dehydrogenase

NXSI_066_A02 2 oxoglutarate dehydrogenase

NXSI_039_A11 Succinly CoA synthase

Succinate dehydrogenase

NXCI_106_D10 Fumarase

NXSI_048_D06 Malate dehydrogenase -

Glucose-6-P dehydrogenase

Phosphoglucono lactonase

NXCI_018_D09 Phosphogluconate dehydrog

NXCI_153_D09 Ribose-5-P isomerase -

NXNV_075_A12 Ribose-5-P isomerase + - -

NXCI_146_H08 Transketolase + -

NXSI_145_D04 Transaldolase + + +

39 F01 RUBISCO + +

NXCI_115_A02 Phosphoglycerate Kinase -

NXSI_134_C01 Glyceraldehyde-3-P Dehydrog

NXCI_144_H09 Glyceraldehyde-3-P Dehydrog + +

NXCI_071_F03 Glyceraldehyde-3-P Dehydrog +

Triose-P isomerase

NXNV_144_H09 Aldolase -

07 E05 Aldolase +

Fructose 1,6 bisphosphatase

NXCI_146_H08 Transketolase + -

NXSI_145_D04 Transaldolase + + +

Sedohept 1,7 bisphosphatase

NXCI_153_D09 Ribose-5-P isomerase -

NXNV_075_A12 Ribose-5-P isomerase + - -

Ribose-5-P epimerase

18 H10 Phosphoribulokinase +

Mild Severe

TCA Cycle

OPPP

Glycolysis

RPPP



Clone ID Annotation 1 2 3 1 2 3

NXCI_047_C05 DAHP synthase + - -

NXCI_071_C01 3-dehydroquinate synthase + + -

NXCI_117_D08 3-dehydroquinate dehydratase

NXNV_185_H02 Shikimate dehydrogenase

NXCI_034_B01 Shikimate kinase

EPSP Synthase

NXCI_163_G07 Chorismate synthase + - +

NXSI_051_F10 Chorismate synthase

NXCI_016_F11 Chorismate mutase +

Prephenate aminotransferase

Arogenate dehydratase

Arogenate dehydrogenase

NXCI_093_H05 PAL -

NXSI_118_A03 Cinnimate 4 hydroxylase

NXCI_087_F07 Cinnimate 4 hydroxylase

NXCI_045_B07 Cinnimate 4 hydroxylase + +

12 E05 Caffeoyl O methyl transferase +

NXSI_055_H08 Caffeoyl O methyl transferase

NXSI_130_F05 Caffeoyl O methyl transferase

02 B03 Cinnamyl alcohol dehydrogenase -

NXNV_162_F07 Cinnamyl alcohol dehydrogenase -

NXCI_165_H04 Cinnamoyl CoA reductase -

34 F04 Cinnamoyl CoA reductase

NXNV_044_G05 Laccase -

NXSI_127_C02 Laccase + -

NXNV_136_F10 Laccase - + +

NXCI_005_C10 Laccase -

NXCI_018_F10 Pinoresinol reductase

Chalcone synthase

NXCI_098_F10 Chalcone/Flavone isomerase + +

07 H08 Chalcone/Flavone isomerase + + +

NXNV_127_E04 Isoflavone reductase

NXNV_127_F01 Isoflavone reductase

NXCI_002_E07 Isoflavone reductase + + -

NXSI_063_D01 Naringenin-2-oxo dioxygenase + + +

28 B11 Naringenin-2-oxo dioxygenase + +

13 H06 Leucoanthocyanidin reductase +

Mild Severe

Flavonoids

Aromatic 
Amino Acid

Phenyl-
propanoid

Lignin




