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Abstract

Online social media activity can often be a precursor to disruptive events such as protests,
strikes, and “occupy” movements. We have observed that such civil unrest can galvanize
supporters through social networks and help recruit activists to their cause. Understanding
the dynamics of social network cascades and extrapolating their future growth will enable
an analyst to detect or forecast major societal events. Existing work has primarily used
structural and temporal properties of cascades to predict their future behavior. But factors
like societal pressure, alignment of individual interests with broader causes, and perception
of expected benefits also affect protest participation in social media. Here we develop an
analysis framework using a differential game theoretic approach to characterize the cost of
participating in a cascade, and demonstrate how we can combine such cost features with
classical properties to forecast the future behavior of cascades. Using data from Twitter, we
illustrate the effectiveness of our models on the “Brazilian Spring” and Venezuelan protests
that occurred in June 2013 and November 2013, respectively. We demonstrate how our
framework captures both qualitative and quantitative aspects of how these uprisings mani-
fest through the lens of tweet volume on Twitter social media.

1 Introduction

Online social networks, such as Twitter, are open platforms for rapidly transmitting informa-
tion about events observed by user populations. These networks are a rich source of data with
potential explanatory and forecasting power. Examples of such studies using social media
include financial interests [1, 2], disease spreading [3, 4], and protest activity (civil unrest) [5-
7]. Our study builds on protest event-based diffusion models having foundations laid by Oliver
and Myers [8]. There are a number of recent large-scale protests with events leaving footprints
in social media. The Arab Spring, Brazilian Spring, and Venezuela online protest movements
have been used as a canvas by many researchers to model civil unrest evolving in social media
[9-11], along with studies of other high impact movements [12, 13]. Our focus is information
propagation cascades [14] on Twitter for protest events occurring in Brazil and Venezuela. The
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Brazilian protests [15] (e.g. “Brazilian Spring”) in June, 2013 originated in the city of Sad Paolo.
These protests started by disputing the increase in public transportation fares, but quickly
expanded to address other facets of governmental corruption. The Venezuelan protests were in
opposition to their President in November, 2013 (e.g. see [16] for events leading up to his rule
by decree). These were a precursor to the “Venezuelan Spring” protests that encompassed
broader economic issues between February and June, 2014.

The dynamics of cascade growth is a complex problem characterized by many variables on
multiple scales. A simple model of information diffusion is the Susceptible-Infected-Recovered
(SIR) model [17] where each interaction is independent. Goel et al. [18] show deviations from
the SIR structure in real networks containing many small cascades and few large cascades.
Thresholding models such as [19, 20] have been developed to address the strength of network
connections as a parameter for transmission. Analyses of the underlying network structure [21,
22] and temporal complexity [23] have resulted in numerical and analytic growth models of
diffusion. However, forecasting cascade growth on social media using machine learning tech-
niques adds further challenges. Many studies employ a traditional approach such as regression
[24, 25] or classification [26, 27]. There are also a number of forecasting measures to consider
such as popularity [28] in Digg, re-tweeting on the Twitter network [29], and user interests in
microblogs [30, 31]. We use the recent work by Cheng et al. [32] of predicting photo reshare
cascade sizes on Facebook as a template for our analysis.

The Twitter dataset we analyze consists of over 40 million tweets and 2 million users in
South America. We filtered the tweets using a multi-lingual list of 961 protest related keywords
such as “protesta”, “vigilantes”, and “vandalismo” and formed the cascades using a follower-
network. Conventional network analysis (see [33]) has primarily considered structural and
temporal (dynamic) properties of cascades. Structural features such as degree distribution and
connectivity do tend to perform well on our data, but are not trivial to compute. The Twitter
follower-graph used in this work has a node order of millions and edge order of billions. The
dynamic nature of the cascades presents significant challenges in recomputing the structural
features of this magnitude. A single computation of the Brazil Twitter graph’s structural fea-
tures requires around half a terabyte of memory, and takes on the order of days to accomplish.
In contrast, temporal features on the same data set can be stored and computed on an ordinary
machine with 4 gigabytes on the order of hours. We improve on vanilla temporal features by
representing Twitter cascade behavior in terms of a finite number of parameter sets. This
parameter model draws heavily from game theory [34], especially the differential games frame-
work proposed by Rufus Isaacs and Antony Merz [35, 36] that accounts for temporal evolution
in decisions or choices [37]. A differential game models rational maximizing and minimizing
agents optimizing over the same cost (payoff) function at each point in time. Although ratio-
nality is not guaranteed in a population, modeling it as such serves as a good measure of the
degree to which behavior is rational with respect to a specific cost. Reluga [38] uses a differen-
tial game theoretic approach to study social distancing during an epidemic by modeling the
cost associated with such distancing. We adopt a similar approach wherein we model a user’s
interaction with a protest information cascade using a similarly conceived cost of participation.
The assumption is that individuals will experience a cost associated with joining a Twitter cas-
cade, and that this cost can be used to classify the behavior of the cascade as it evolves in time.

Our work adds a new wrinkle to such prediction problems by studying the notion of cost of
participation with a differential game model. However, this work is not blind to the challenges
that face forecasting cascade growth. There are multiple ways to evaluate a forecasting algorithm.
Our method seeks to identify groupings of behavior, which perform very well given the cost
model. Applying this to a more event specific metric, such as the number of tweets without the
grouping, will likely result in decreased fidelity. However, the advantage of this approach is two-
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fold, because it is not resource consuming to extract the features, and the paradigm is general
enough in its approach to represent cascades as data-driven behavioral classes. Additionally, the
complex and interwoven consequences of actions can result in rather counter-intuitive results
(i.e. [39]). Twitter is an expedient and uncertain environment with respect to human actions.
Forecasting methods become plagued with high sensitivity to antecedent features, if known, sub-
ject to high levels of noise. Consequent forecasting where no prior information is known becomes
intractable, time varying, and sensitive to external factors not captured in our temporal feature
set. The scope of this work focuses on the more tractable approach of using a temporal differen-
tial game model to improve the classification of a cascade given a library of behaviors.

2 Analysis and Methods
The Model

The proposed framework models activity cascades [14], one of many possible ways to define
cascades in Twitter. When an individual posts a relevant tweet at time ¢ and within a short
duration, A, a few of their followers post a relevant tweet, we add these tweets to the cascade. A
relevant tweet is one containing keywords from the keyword list given in the supplementary
data. This process repeats until the cascade cannot be expanded any further. Note that the fol-
lower network for the users must be known to complete this process. We use the susceptible-
infected-recovered (SIR) model to capture this intuition of cascade growth wherein individuals
of a fixed population (of tweets or users) are believed to be in one of three states:

o Susceptible, x,: individuals that have not joined the cascade, but could potentially do so

o Infected, x;: individuals that have joined the cascade and are capable of influencing the sus-
ceptible individuals

o Recovered, x,: individuals that have left the cascade (e.g. now participate in another cascade)

Shown in Fig 1 are two parameters governing the rate at which individuals join one of the
three states. The transmission rate, f3, is the ratio of susceptible individuals that join the cascade
by contact with members of the infected state. The recovery rate, ¥, is the ratio of infected indi-
viduals that leave the cascade. The complete SIR model dynamics are a set of coupled nonlinear
differential equations,

).Cs = 7ﬁxsxi (1)
x; = Pxx, — yx (2)
)'Cr = yxi (3)

Lsly Ly

Fig 1. The state diagram for the SIR model. The nodes, xs, X;, and x, represent counts within a population to
the susceptible, infected, and recovered states, respectively. The transmission rate, 8, controls the flow of
susceptible individuals to infected. The recovery rate, y, controls the flow of individuals out of the cascade.

doi:10.1371/journal.pone.0139911.g001
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with initial conditions subject to the constraint, x,(ty) + x(t;) + x,(to) = N. The parameter, N, is
the population count of individuals, and the constraint holds for all t. The cumulative cascade
population, s, that has joined the cascade by time ¢ is given by the individuals that have left the
susceptible state, and are either currently infected or recovered.

s(t) =N — x,(¢) (4)

Cost considerations wherein the dynamics at the population level can deviate from SIR
dynamics Eq (3) are formed in the general framework where the states, x € X C R’, evolve as

x = f(x,d) = for(x) + fp(x, d) (5)

where x = [x,, x;, x,]*. We assume that the SIR dynamics, fr, are subject to a population level
disturbance, fp(x, d). The separability of the disturbance term implies that the SIR model is
always present to some degree. Examples of disturbances related to protests include portions of
the population distancing themselves from the cascade by reducing their social networking
time or bowing to societal pressure not to comment on a particular event. The SIR model of
protest dynamics, Eq (3), is inserted into Eq (5), and the disturbance is given a yet unknown

function o
).Cs B‘xs'xi
X | = |Bxx;,—yx | +o(xd) (6)
N——
. o
‘xr ’yxi
fSlR

where d is the population control input for fp = o(x, d). The only requirement placed on the
disturbance function is o(x, d) € C'. The infinite horizon cost functional by which a population
chooses d has the form,

J(x,t,d) = /mgg(x, d)dt (7)

where g, is the running cost. Eq (7) is the accrued penalty of disturbing the cascade with d sub-
ject to the o function at a given state. The population minimizes Eq (7).

As shown in Fig 2, the solution to this equation consists of finding an optimal disturbance
control, %, and a corresponding value function, V(x(t)), such that V(x(t)) = J(x, t, d*). The
value function represents the “cost-to-go” for reaching the target set, 7 using control, 4*. The
target set and boundary conditions are identified as,

VxeT CX,V(x)=¢, (8)

where 7is a set of target states that are assigned the terminal cost, ¢o. In the case of information
spreading in a social network, the target set for a population trying to reach the most number
of users is 7= {x € X|x, = 0}, shown in Fig 2. From Eq (4), this terminal condition assigns the
target as reaching the entire N count population. Implicit in the preceding analysis are assump-
tions of (i) no finite end time of the cascade or outside intervention on the population level
(i.e., individual participation only) and (ii) agents operating rationally with full knowledge per
the cost structure. The first assumption is addressed by setting ¢y, so the state remains in the
target set upon entry. The second assumption differentiates between cascades displaying differ-
ent cost features given below.
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Fig 2. The x5, x; phase plane showing a trajectory. The box on the left of the diagram is the target set, 7, to
which the state is directed. The function, V(x), measures the cost to go from any x to 7. V(x) is decreasing
along trajectories as t increases. The disturbance control, d, needed to guide the trajectory to 7can be found
using these functions.

doi:10.1371/journal.pone.0139911.9002

We solve for d using the Hamilton-Jacobi-Bellman (HJB) equation [40],

0 = min [g,(x,d) + V,V()f (x )] + V() o)

This is a continuous version of the equation, and the control, d, is found by,

d* = arg min [V, V(x)f (x,d)] (10)

deD

To solve numerically using the Fast Marching Semi-Lagrangian (FMSL) method [41], a discre-
tized version of the HJB equation is given as,

V(e) = min (Vs + f(5,d0) + g, (5.} (1)

where x; € X is a discretization over X, h is the discrete fixed time interval, and d, € D is the

discretized control set. The FMSL solution yields the value function, V, and an associated
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control sequence

d’(x;) = arg min [V, V(x)f (x,, d,)] (12)

dpeD

There is an optimal control, d*, at every state in the grid lattice, and it depends on g,,.

We now incorporate the propensity of individual actions into the SIR framework using a
Markov probability model. An individual is a member of the population, i € {1,2, 3, ..., N}.
The dynamics applied to the individual are uncertain transitions of i being a member of the
susceptible, infected, or recovered populations at a given time. Using the proposed formulation
in [38], the individual stochastic model is

p=Q(t;d)p (13)

where d is the individual disturbance term and p = [ps pi» p,] " are probabilities of the individual
belonging to a particular state. The transition-rate matrix is given by

—n(x,d)fx, 0 0
Qt;d) = | n(x,d)px, —y 0 (14)
0 y 0

where the SIR parameters, 8 and y follow from Eq (3). The function, 7(x, d), is a multiplicative
adjustment to the transmission ratio. Combining the population and individual dynamics, the

Bellman equation for finding the Nash equilibrium of an individual control d with population

control d is shown [42] to be

—V =(Q"—hI)V +g, (15)

where V is the individual value function, / is the discount factor, and g, is the running cost

defined initially in Eq (7). The individual optimal strategy for cascade participation, d, mini-
mizes the individual contribution to the cost. In this framework, the individual observes the

population dynamics in Eq (6), chooses d, which subsequently adjusts the population level dis-
turbance, d, until a Nash equilibrium is reached. No individual can do better by deviating from
the population strategy, d = d.

To solve the game, we show that an individual using d = d* with no cost discounting will
not deviate from the population optimal control, d*, in Eq (12). Furthermore, we can simplify
the solution of the game when the population control d* is guaranteed to be a Nash equilibrium
if 3d s.t. Vx € X, |o(x, d)| > |Bx; x|. To show this, we only need to find when Eqs (15) and (9)
are equivalent under these conditions. This can be done in two steps. First, a variable transfor-
mation from x to p is performed by simply dividing by the population, N,

X
== 16
P=y (16)
Then, recognizing that o(x, d) must be strictly greater than Bx;x; over the entire state space, we
have
o(x,d)
d)=1- 17
) =1~ %00 (17)

Substituting Eqs (16) and (17) into Eq (14) results in Q = V, f(x, d). With this equality, Eqs
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(15) and (9) are equivalent and solve for the same control, *. When d = d = d*, the popula-
tion disturbance is optimal and the individual will do no better by deviating. This result is use-
ful, because it enables solving the game using only Bellman optimality.

It remains to specify the objective functions in the Bellman equation. We propose two objec-
tive functions to model activity cascade participation:

1. Zero constant: Assume no running cost, and cascade growth is governed by a static trans-
mission ratio, S.
g(xd) = 0
o(x,d) = 0
This is the trivial case where d has no influence on the SIR dynamics, and the cascade is left
to grow (and eventually decay) exponentially depending solely on parameters, § and y. For

completeness, the value function associated with this objective function is Vx € X, V(x) = 0.
This objective function captures cascade growth with minimal interference.

2. Expectation driven: The cost objective is governed by a plan of an expected outcome in the

cascade.
&xd) = [lx—y) |
o(x,d) = (—pPxx, + dmax{sign(x,),0})¢&
= [1 -1 0]

where & is used as a placement term and v is a state map. In this work, many of the cascades
exhibit a macro-level linear fit such that this choice of o(x, d) yields a uniformly distanced
¥(x) sequence over x. When solving for d using FMSL methods, y is implemented as a
sequence of desired target points obtained empirically from data.

The optimal disturbance function over a normalized population for candidate function (2)
is obtained using the FMSL algorithm [41]. The result is shown in Fig 3, where the recovered
state is removed from the phase portrait because of its zero control impact in the £ matrix. This
phase plot of o over x, and x; shows a steep increase in the disturbance term as the number of
susceptible and infected individuals increase. This makes intuitive sense for protest cascades,
because it should require more effort to grow a cascade with fewer current participants, or
when the pool of potential new participants is small.

To use this result as a practical feature for cascade growth forecasting, we create a new com-
bined o function

a(x,n,v) = (—Pnxx, + max {nvsign(x,),0})& (18)

where 7 is a parameter describing the degree to which a population behaves using running cost
candidate functions (1) or (2). In this combined form, d = nv. This we term the cost of the cas-
cade, because it represents the amount of effort that a population must enact through o in
order to deviate from the SIR dynamic model, f5;r and accruing cost based on the objective
function in Eq (7).

Estimating Cost Parameters from Data

Having formulated the objective function and derived the cost term, d, we now describe how
the cost feature for cascade growth can be calculated from data. A cascade is a time series
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Fig 3. This is the optimal disturbance, a(x, d), over the state space, X. In this diagram, the state space and output have been normalized between 0 and
1. The shape of the control corresponds to increased control effort when the value of either xs or x; approaches 0. If this control is used by the modeled
population, then the state will eventually reach the target set, 7.

doi:10.1371/journal.pone.0139911.g003

sequence of tweets,
§:{s" s 8 (19)

where §' is the empirical measurement of cumulative totals Eq (4) of the number of tweets in
the cascade since inception. Each point in the sequence represents the cumulative total number
of tweets §', i < I that have participated in the cascade at time ¢, i < I. The length of the
sequence is I with index i. The associated time sequence,

t {0, ) (20)

represents the posting times of each tweet.
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Using the SIR model with cost disturbance introduced in Eq (5), the sequence approximat-
ing the cascade is given by

Srmx/f(ti) =x,0) — /[lfsm +a(x,n,v)dt (21)

where fsiz has the form of Eq (3) and fp = o(x, i, v), respectively. The initial condition, x,(0) is
approximated from data (i.e. cumulative user degree). The term, s,, ,, g, signifies that this
sequence approximates s numerically with parameters 7, v, and S. In practice, numerically inte-
grating Eq (21) with Eq (18), induces a high frequency noise component in the system that is
not actually present because of the signum function. A scaling term, ¢, ,(x), is incorporated

0(61,9) = 5 6,4(6) (~ Pz, + ma {nvsign(), 0))2 (22)

and dampens the oscillations as x; — 0 using the logistic function,

1

¢a,b (xs) = W

where the parameters a and b are specific to the numerical solver used.
We want to minimize the error between the empirical cascade, § and the numerically
approximated cascade, s for i < I with the error function,

-3 [Eet] -

i=1
The best estimate of the cost parameter is

cost=d =nv (25)
where the parameters n”* and v* are from the minimization

v, n*, 7 = arg min e, (sm‘,ﬁ) (26)
nv.B
To implement the minimization in Eq (26) we use the L-BFGS-B optimizing routine. Using the
entire cascade is not always best for a longer term analysis, because of the daily periodic nature
of the cascade volume. We use periodic sampling, and select points when the approximate
derivative is 0. This is shown in Fig 4, where the markers indicate points of optimization.

3 Results and Discussion

We apply our methods to protests occurring in both Brazil and Venezuela in June and Novem-
ber of 2013. Our overall dataset from Twitter consists of over 2 million users and 40 million
tweets originating from South America. Using Datasift’s streaming API, we filtered the tweets
using a protest language vocabulary from [5]. The complete word list is given in the supple-
mentary data, and contains words such as “vandalismo” and “protesta”. The geocoding compo-
nent in [5] ensured that the tweets originated from the intended countries. Only tweets
timestamped in June 2013 and November 2013 were included for the respective countries. To
cull the activity cascades, we superimposed the tweets on the follower network obtained by
querying the Twitter API. Tweets were added to the cascade only when users on the same fol-
lower network tweeted using a keyword within a duration, A. We set A = 4hrs, because this
experimentally showed to be the best interval for observing information propagation for events
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Fig 4. An example the optimization points chosen from an empirical sampling of a protest cascade. The green line shows the empirical cascade. The
red markers indicate the measured points used in the approximation. The blue line shows the cascade approximation that minimizes Eq (26). The blue
markers indicate the points used for the minimization.

doi:10.1371/journal.pone.0139911.9004

related to the protests. This process resulted in a Brazilian protest data set containing 7291 cas-
cades, and a Venezuelan protest data set containing 4885 cascades.

We only consider cascades with tweet volumes in excess of 500 tweets. The distributions for
both the Brazil and Venezuela protests are shown in Figs 5 and 6 respectively. Roughly 25% of
the cascades from Brazil have below 2500 tweets, or 10% of the largest tweet volume recorded.
The remaining tweet volumes reach counts of around 100. In the Venezuelan dataset, roughly
75% of the cascades have below 6500 tweets or 50% of the largest tweet volume recorded. Both
data sets exhibit right skewing that shows prevailing numbers of smaller cascades. However, in
the Brazilian data, a given cascade is less likely to mature to the largest size. Another aspect to
the skewness is that many of the cascades can be subgraphs of each other. For both protest data
sets, many of the smaller cascades represent the early temporal dynamics of the larger cascades.
This property of our data set is advantageous, because it enables the capture of all portions of
cascade growth.

Our theoretical analysis is evaluated with the following questions:

1. Is the more generalized cost feature parameter able to discriminate between different
modes of growth, (i.e., identify behavior )?

2. How many initial tweets are needed to classify cascade growth and behavior?

PLOS ONE | DOI:10.1371/journal.pone.0139911 October 6, 2015 10/25
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Brazil Protest Cascades, total count = 4138

600

500

400

count
w
o
S]

200

100

0
0 5000 10000 15000 20000 25000
# of tweets in a cascade

Fig 5. The frequency distribution shows the size ordering of Brazilian protest cascades by number of tweets used in the analysis. There are large
numbers of smaller cascades followed by fewer numbers of larger cascades as indicated by the right skewing.

doi:10.1371/journal.pone.0139911.g005

Clustering Protest Cascades to Identify Behavior

We answer the first question by clustering different cascade behaviors. The cost feature repre-
sents the propensity of individuals to participate in joining information chains through social
networking channels. Lower cost is representative of a more epidemic style of spreading behav-
ior, and a higher cost is indicative of more effort (outside interference) in the process. To show
the relationship between cost and final cascade volume, clusters of individual cascade proper-
ties are identified on the tweet cost-volume plane. Beginning with the Brazilian protests, k-
means clustering was used to form the clusters shown in Fig 7. Each color identifies one of the
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Venezuela Protest Cascades, total count = 4885
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Fig 6. The frequency distribution shows the Venezuelan protest cascades used in this analysis ordered by the number of tweets. Compared to the
Brazilian protest cascades, the relative drop in sizes between the shorter cascades and longer cascades lasts further into the median of the data set.

doi:10.1371/journal.pone.0139911.g006

six clusters, where the choice of k was validated using the silhouette score and mean distance
metrics.

The results show a mostly positive linear relationship between the cost and number of
tweets. Clusters representing increased levels of cost indicate an increased cascade tweet vol-
ume. For the Brazilian protests, more outside intervention and deviation from epidemic
spreading shows more cascade growth. The larger subgraphs of protest cascades did not favor
dynamics of the epidemic model as much as the smaller subgraphs. However, given that many
of the cascades are subgraphs of a larger cascade graph indicates an initial prevalence among

PLOS ONE | DOI:10.1371/journal.pone.0139911 October 6, 2015 12/25
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Fig 7. These are the clusters formed for the Brazilian protest dataset. With this dataset, the regions show a direct correlation to the number of tweets.
Here, the higher cost cascades appear to result in more tweets. The apparent uncorrelated cluster of points with varying tweet counts and cost is due to
random effects of the optimization algorithm used to determine the cost value for the cascades.

doi:10.1371/journal.pone.0139911.g007

all cascades for the lower cost behaviors. The data also show a less dense and noisy cluster
located in the upper left corner that results from the increased generality of the cost feature.

Similarly for the Venezuelan protests, clusters were formed on the cost-volume plane. The
results in Fig 8 show four clusters emerging from the data where k = 4 was validated using both
the silhouette and mean distance metrics. Unlike the Brazilian protests, the clusters seen for
Venezuela do not show the same level of correlation between tweet volume and cost. The Vene-
zuelan protest cascades exhibit a much wider variety of initial behavior that converges toward a
neutral range cost value as the cascades mature to the larger tweet values. This is seen in the
top cluster appearing with a red color label.

PLOS ONE | DOI:10.1371/journal.pone.0139911 October 6, 2015 13/25



D)
@ : PLOS | ONE Forecasting the Dynamics of Civil Unrest Activity in Social Media

12000
10000 °
L 8000 ,
® >
(]
2 !
@© [
(@]
£ 6000 i
2 »
S )
Q )
2 4000 :
# ; S
2000
0
0 1 2 3 4 5 6 7 8 9

cost

Fig 8. A visual inspection of the resulting clusters shows that the Venezuelan protests behave remarkably different than in Brazil. Most notably, the
higher tweet count cascades appear in the lower cost ranges. Because the lower cost extends to the larger cascades in terms of tweet volume, these
cascades exhibit more of the SIR dynamic behavior associated with information spreading.

doi:10.1371/journal.pone.0139911.g008

The cluster results show unique differences between the cascade behaviors of the two pro-
tests. A random sampling of cascades from both protests are shown in Fig 9 for Brazil and Fig
10 for Venezuela. The color scheme of the cascades corresponds to the representative clusters
in Figs 7 and 8. The behavior emerging in the clusters is verified by the shape of the resulting
cascade time series. For Brazil, the clusters show varying degrees of tweet volume, but each
instance shows an initial behavior with epidemic growth in tweet volume. These cascades then
decrease accruing tweet volume as their growth progresses. The Venezuelan data set shows
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Fig 9. Five randomly selected cascades were chosen from each cluster to illustrate their appearance and behavior. One of the reasons we see that
high linear correlation in the cluster diagram is that many of the clusters exhibit similar behavior. For protest cascades in Brazil, this means that the cascades
start strong and weaken as time increases, exhibiting less SIR growth dynamics. As the cascades grow, less SIR dynamics are seen, giving them a higher
cost and strong linear relationship to tweet size.

doi:10.1371/journal.pone.0139911.g009

more similarity in tweet volume, but differences in behavior are seen in the rates at which the
cascades accrue volume.

Clustering the data shows that there are behavioral differences that provide distinguishing
characteristics for each protest dataset on the tweet cost-volume plane. The growth behavior
seen in the cascades, and represented by cost, is intrinsic to many common structural and tem-
poral features for cascade analysis. Characterizing this behavior as a cost feature and clustering
similar attributes provides a measure for identifying similar trends in the activity cascade data.
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Fig 10. Five randomly selected cascades were chosen from each of the Venezuelan protest cascade clusters. These cascades, as opposed to the
Brazilian cascades, exhibit fairly similar behavior throughout the duration of the cascade. In this protest we see more evidence of SIR dynamics, except in the

cascades that make such an immediate initial rise.

doi:10.1371/journal.pone.0139911.g010

Forecasting Cascade Growth and Behavior

We build on the framework in [26, 27, 32], and now cast our forecasting question as a classifi-
cation problem. Namely, if we observe an early portion of the cascade, can we forecast if it will
garner significant recruits, and how will this growth behavior manifest? It is well known that
information propagation on the Twitter network is significantly affected by two components:
the underlying network structure around the participants of a cascade and the temporal
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Table 1. Table showing features used for cascade forecasting. Structural and temporal features are con-
ventional methods with which to conduct cascade forecasting. We propose the addition of the cost features
listed at the bottom of the table. Here, the cost has been separated out into its constituent components, v and
n. The other parameters governing the epidemic curve, and are estimated with the fit of the cascade model
are included as Band y.

Structural
S Degree # connections of the i tweet
S.2 Induced Degree # connections of the i tweet from the first k tweets
S.3 Active Nodes # total tweets reachable from the first k tweets
S4 Original Connections # neighbors of the k tweets who are not part of the cascade
S5 Subgraph # edges on the induced sub-graph of the first k participants
S.6 Border Nodes # nodes immediately reachable from the participating nodes
S.7 User Left # of the first k tweets not neighbors of the root

Temporal
TA # Views Number of users who saw the first k tweets
T.2 Avg. Reshare First Average time between posts for the first k/2 tweets
T.3 Avg. Reshare Last Average time between posts for the last /2 tweets
T.4 Elapsed Time Change in times between the orig. tweet and i < k tweets
T.5 Change dt Change in time between tweets

Cost

CA B—transmission rate From the SIR epidemiological model
Cc.2 y—recovery rate From SIR epidemiological model
C.3 v—participation percentage % users participating in the forced cascade
C.4 n—cost estimate Number of users attained per unit time

doi:10.1371/journal.pone.0139911.t001

properties of the information. Common structural and temporal features, as well as those asso-
ciated with the new cost feature are shown in Table 1. We use these features in a support vector
machine (SVM) classification algorithm [43] to answer the forecasting question posed above.
From our initial studies in trying to forecast only tweet volume doubling, we indeed found
corroborating evidence that the structural and temporal properties of the protest cascades per-
form with higher precision and recall than a base rate as initially shown in [32]. Our study dif-
fers, because it includes cost attributes identifying the behavioral cluster describing cascade
growth. Cost as a cascade feature is a more generalized parameter version of the temporal fea-
tures which include the elapsed time of every tweet, i < k, Vk < I, for the first k tweets in a cas-
cade. Therefore, we limit our cost feature comparison between elapsed temporal and cost
features. We also note the added benefit of achieving reasonable performance with only tempo-
ral features, because expensive structural feature calculations can be avoided. For comparison,
calculating the structural features consumed up to 500GB of memory and took on the order of
days to accomplish. In contrast, the temporal feature calculations took place in hours on a con-
sumer level machine with only 4GB of memory. The difference lies in the number of data
points used for each calculation. The structural features require iteration over the follower
graph with nodes on the order of millions and edges on the order of billions that scale with the
size of the cascade. Temporal features only include a point for each timestamp in the cascade.
The dataset for the Brazilian protests is analyzed for varying lengths, k, of the cascades start-
ing from the initial tweet. The precision, shown in Fig 11, shows increases from k = 1000 to
k =11000. We see similar results for both recall and the weighted F1 score shown in Figs 12
and 13 respectively. These metrics show substantial improvement over both the sample
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Fig 11. Precision for the Brazilian data set is given as a function of k. As expected, the more observations available for a given cascade, the better
forecasting ability as seen by an increasing average across each of the clusters. Convergence is seen toward 80% precision.

doi:10.1371/journal.pone.0139911.g011

frequency base rate and temporal features. One of the primary reasons that the temporal fea-
tures do not forecast membership of a cascade to a particular cluster as well is that the elapsed
time temporal feature over-fits the cascades. When only a portion of the cascades are seen, the
clusters become indistinguishable. The cost captures more of the cascade dynamics, and dis-
criminates at an earlier stage of cascade growth. This effect only becomes more exaggerated as
kis increased to include more cascade volume in the forecast.

PLOS ONE | DOI:10.1371/journal.pone.0139911  October 6, 2015 18/25



el e
@ : PLOS | ONE Forecasting the Dynamics of Civil Unrest Activity in Social Media

Brazil: recall
0.9
— Base Rate
= Cost
0.8 — Temporal
0.7
0.6
T
O
o
0.5
0.4
0.3
0.2
2000 4000 6000 8000 10000 12000 14000
k

Fig 12. The weighted average of recall for the Brazilian data set as a function of k is shown. More initial observations result in better forecasting ability,
and convergence is seen with increasing k toward 80%.

doi:10.1371/journal.pone.0139911.g012

The forecasting results for Venezuela appear similar to those of the Brazilian protest data,
except with overall less precision and recall as shown in Figs 14 and 15, respectively. The reason
for less overall accuracy in forecasting ability, even with a higher k, is that the distinction
between cascade volume and cost is not as well defined for Venezuela as it is for Brazil. How-
ever, as shown in Fig 16, the overall performance of cost features to temporal features is supe-
rior for all values of k.
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Fig 13. F1 score for Brazil. The cost features perform better than the base rate or temporal features, because cost includes more of they dynamic attributes
of the protest cascade in the parameter set.

doi:10.1371/journal.pone.0139911.g013

These results are significant for two reasons. First, the cost feature is able to identify mem-
bership of a cascade to clusters of different growth behavior better than the base rate or tempo-
ral features. It is able to do this for both the Brazilian and Venezuelan datasets which provide
supporting evidence for its ability to discriminate among different cascade growths. Second,
the cost feature does not require the extensive computational resources like the structural fea-
tures. The advantage here is that the cost feature information size does not need to scale with k,
because a cascade of any length is described by the same number of cost parameters.
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Fig 14. The precision scores for the Venezuelan protests are similar to that of the Brazilian protests, with an increasing precision with cost
features. The base rate and temporal features do not exhibit an increase with an increase in k with respect to cluster identification ability.

doi:10.1371/journal.pone.0139911.g014

4 Conclusions

A cost feature capturing protest cascade growth in Twitter was developed using a differential
game model. This cost represents the deviation an individual may take from what would be the
exponential cascade growth modeled as an SIR epidemic curve. The differential game is solved
by showing that an individual can do no better than the population dynamics, and then fitting
this approximate model to empirical data from both Brazilian and Venezuelan protest cas-
cades. We found that using cost as a forecasting feature shows distinct cluster profiles for both
protest events. Furthermore, we are able to forecast cascade growth dynamics and volume by
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Fig 15. Recall scores also behave similarly to the Brazilian protests, with the exception of a higher recall than would be expected. This is an artifact
of the cluster topology where the temporal features tend to forecast cascades in the lower volume cluster, which is where most of the cascades reside.

doi:10.1371/journal.pone.0139911.g015

identifying the cluster a cascade most likely belongs to using a support vector machine. Despite
these results, cascade growth is still subject to sensitivity in the antecedents and a wide range of
fluctuations in the consequents making it subject to noise and time dependencies.

Toward future research, there are a number of ways to characterize cascade growth. This
cost model approach is just one way to parameterize cascade growth behavior for better inter-
pretation. Using it in the context of transfer learning with tools such as Dirichlet processes (i.e.
[44]) could potentially improve the performance of these methods for producing an even more
general approach to forecasting Twitter cascade behavior for protests. Despite any other num-
ber of possible improvements or extensions, the crux of the problem remains that of finding
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Fig 16. The F1 score for Venezuela forecasting shows similar results to Brazil with respect to an increasing score with increased k, when the other

features exhibit no increase. The clustering approach increases in forecasting ability as the number of points increases, because it is able to discern more
of the trajectory family that belongs to particular clusters.

doi:10.1371/journal.pone.0139911.g016

the invariant set of features from which to understand cascade growth across multiple
domains.

Acknowledgments

The authors would like to thank Jose Cadena for help in obtaining the underlying activity
cascades.

Author Contributions

Conceived and designed the experiments: BJG SK NR. Performed the experiments: BJG SK.
Analyzed the data: BJG SK. Contributed reagents/materials/analysis tools: BJG SK. Wrote the
paper: BJG SK MR NR.

PLOS ONE | DOI:10.1371/journal.pone.0139911  October 6, 2015 23/25



@’PLOS ‘ ONE

Forecasting the Dynamics of Civil Unrest Activity in Social Media

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

Mao H, Counts S, Bollen J (2011) Predicting financial markets: Comparing survey, news, twitter and
search engine data. arXiv preprint arXiv:11121051.

Ruiz EJ, Hristidis V, Castillo C, Gionis A, Jaimes A (2012) Correlating financial time series with micro-
blogging activity. In: Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining. New York, NY, USA: ACM, WSDM’12, pp. 513-522. URL http://doi.acm.org/10.1145/2124295.
2124358

Lee K, Agrawal A, Choudhary A (2013) Real-time disease surveillance using twitter data: demonstra-
tion on flu and cancer. In: Proceedings of the KDD’13. pp. 1474—1477.

Achrekar H, Gandhe A, Lazarus R, Yu SH, Liu B (2011) Predicting flu trends using twitter data. In: Com-
puter Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. pp. 702-707.

Ramakrishnan N, Butler P, Muthiah S, Self N, Khandpur R, et al. (2014)’beating the news’ with embers:
Forecasting civil unrest using open source indicators. In: Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM,

KDD’14, pp. 1799-1808. URL http://doi.acm.org/10.1145/2623330.2623373

Hua T, Lu CT, Ramakrishnan N, Chen F, Arredondo J, et al. (2013) Analyzing civil unrest through social
media. IEEE Computer 46: 80-84. doi: 10.1109/MC.2013.442

Braha D (2012) Global civil unrest: Contagion, self-organization, and prediction. PLoS ONE 7: e48596.
doi: 10.1371/journal.pone.0048596 PMID: 23119067

Oliver PE, Myers DJ (1998) Diffusion models of cycles of protest as a theory of social movements. Pre-
sented at the Congress of the International Sociological Association.

Gonzlez-Bailn S, Borge-Holthoefer J, Rivero A, Moreno Y (2011) The dynamics of protest recruitment
through an online network. Scientific Reports 1.

Saad-Filho A (2013) Mass protests under left neoliberalism: Brazil, june-july 2013. Critical Sociology
39: 657-669. doi: 10.1177/0896920513501906

Morales A, Borondo J, Losada J, Benito R (2014) Efficiency of human activity on information spreading
on twitter. Social Networks 39: 1-11. doi: 10.1016/j.socnet.2014.03.007

Bond RM, Fariss CJ, Jones JJ, Kramer ADI, Marlow C, et al. (2012) A 61-million-person experiment in
social influence and political mobilization. Nature 489: 295-298. doi: 10.1038/nature11421 PMID:
22972300

Conover MD, Ferrara E, Menczer F, Flammini A (2013) The digital evolution of occupy wall street.
PLoS ONE 8: e64679. doi: 10.1371/journal.pone.0064679 PMID: 23734215

Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W (2010) Outtweeting the twitterers—pre-
dicting information cascades in microblogs. In: Proceedings of the 3rd Wonference on Online Social
Networks. Berkeley, CA, USA: USENIX Association, WOSN'10, pp. 3-3. URL http://dl.acm.org/
citation.cfm?id=1863190.1863193

Winters M, Weitz-Shapiro R (2014) Partisan protesters and nonpartisan protests in brazil. Journal of
Politics in Latin America 6: 137—150.

Hidalgo M (2014) The 2012 and 2013 presidential elections in venezuela. Electoral Studies 34: 315—
321. doi: 10.1016/j.electstud.2013.12.007

Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 115: 700-
721. doi: 10.1098/rspa.1927.0118

Goel S, Watts DJ, Goldstein DG (2012) The structure of online diffusion networks. In: Proceedings of
the 13th ACM Conference on Electronic Commerce. New York, NY, USA: ACM, EC’12, pp. 623-638.
URL http://doi.acm.org/10.1145/2229012.2229058

Kimura M, Saito K, Nakano R, Motoda H (2010) Extracting influential nodes on a social network for
information diffusion. Data Mining and Knowledge Discovery 20: 70-97. doi: 10.1007/s10618-009-
0150-5

Guille A, Hacid H (2012) A predictive model for the temporal dynamics of information diffusion in online
social networks. In: Proceedings of the 21st International Conference on World Wide Web. New York,
NY, USA: ACM, WWW’12 Companion, pp. 1145—-1152. URL http://doi.acm.org/10.1145/2187980.
2188254

Hackett A, Melnik S, Gleeson JP (2011) Cascades on a class of clustered random networks. Phys Rev
E 83:056107. doi: 10.1103/PhysRevE.83.056107

Nematzadeh A, Ferrara E, Flammini A, Ahn YY (2014) Optimal network modularity for information diffu-
sion. Phys Rev Lett 113:088701. doi: 10.1103/PhysRevLett.113.088701 PMID: 25192129

West BJ, Grigolini P (2011) Complex Webs. Cambridge: Cambridge University Press.

PLOS ONE | DOI:10.1371/journal.pone.0139911

October 6,2015 24/25


http://doi.acm.org/10.1145/2124295.2124358
http://doi.acm.org/10.1145/2124295.2124358
http://doi.acm.org/10.1145/2623330.2623373
http://dx.doi.org/10.1109/MC.2013.442
http://dx.doi.org/10.1371/journal.pone.0048596
http://www.ncbi.nlm.nih.gov/pubmed/23119067
http://dx.doi.org/10.1177/0896920513501906
http://dx.doi.org/10.1016/j.socnet.2014.03.007
http://dx.doi.org/10.1038/nature11421
http://www.ncbi.nlm.nih.gov/pubmed/22972300
http://dx.doi.org/10.1371/journal.pone.0064679
http://www.ncbi.nlm.nih.gov/pubmed/23734215
http://dl.acm.org/citation.cfm?id=1863190.1863193
http://dl.acm.org/citation.cfm?id=1863190.1863193
http://dx.doi.org/10.1016/j.electstud.2013.12.007
http://dx.doi.org/10.1098/rspa.1927.0118
http://doi.acm.org/10.1145/2229012.2229058
http://dx.doi.org/10.1007/s10618-009-0150-5
http://dx.doi.org/10.1007/s10618-009-0150-5
http://doi.acm.org/10.1145/2187980.2188254
http://doi.acm.org/10.1145/2187980.2188254
http://dx.doi.org/10.1103/PhysRevE.83.056107
http://dx.doi.org/10.1103/PhysRevLett.113.088701
http://www.ncbi.nlm.nih.gov/pubmed/25192129

@’PLOS ‘ ONE

Forecasting the Dynamics of Civil Unrest Activity in Social Media

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In:
Proceedings of the 10th ACM Conference on Electronic Commerce. New York, NY, USA: ACM,
EC’09, pp. 325-334. URL http://doi.acm.org/10.1145/1566374.1566421

Tsur O, Rappoport A (2012) What's in a hashtag?: Content based prediction of the spread of ideas in
microblogging communities. In: Proceedings of the Fifth ACM International Conference on Web Search
and Data Mining. New York, NY, USA: ACM, WSDM’12, pp. 643-652. URL http://doi.acm.org/10.1145/
2124295.2124320

Hong L, Dan O, Davison BD (2011) Predicting popular messages in twitter. In: Proceedings of the 20th
International Conference Companion on World Wide Web. New York, NY, USA: ACM,
WWW’11, pp. 57-58. URL http://doi.acm.org/10.1145/1963192.1963222

Jenders M, Kasneci G, Naumann F (2013) Analyzing and predicting viral tweets. In: Proceedings of the
22nd International Conference on World Wide Web Companion. Republic and Canton of Geneva, Swit-
zerland: International World Wide Web Conferences Steering Committee, WWW’13
Companion, pp. 657—664. URL hitp://dl.acm.org/citation.cfm?id=2487788.2488017

Szabo G, Huberman BA (2010) Predicting the popularity of online content. Commun ACM 53: 80—-88.
doi: 10.1145/1787234.1787254

Osborne M, Lavrenko V (2011) RT to Win! Predicting Message Propagation in Twitter. Artificial Intelli-
gence: 586-589.

Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks:
Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, KDD’06, pp. 44—-54. URL
http://doi.acm.org/10.1145/1150402.1150412

Romero DM, Tan C, Ugander J (2013) On the interplay between social and topical structure. In: Pro-
ceedings of the Seventh International Conference on Weblogs and Social Media.

Cheng J, Adamic LA, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Pro-
ceedings of he International Conference of WWW. URL http://arxiv.org/abs/1403.4608

Easley D, Kleinberg J (2010) Networks, Crowds, and Markets: Reasoning about a Highly Connected
World. Cambridge University Press.

von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University
Press.

Isaacs R (1965) Differential Games. New York, NY: John Wiley and Sons, Inc.

Merz A (1972) The game of two identical cars. Journal of Optimization Theory and Applications 9: 324—
343. doi: 10.1007/BF00932932

Basar T, Olsder GJ (1999) Dynamic Noncooperative Game Theory. Number 23 in Classics in Applied
Mathematics. SIAM, 2 edition.

Reluga TC (2010) Game theory of social distancing in response to an epidemic. PLoS Comput Biol 6:
€1000793. doi: 10.1371/journal.pcbi.1000793 PMID: 20523740

Koku PS, Akhigbe A, Springer TM (1997) The financial impact of boycotts and threats of boycott. Jour-
nal of Business Research 40: 15-20. doi: 10.1016/S0148-2963(96)00279-2

Bertsekas DP (2001) Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 2
edition.

Cristiani E, Falcone M (2006) A fast marching method for pursuit-evasion games. Communications to
SIMAI Congress 1.

Reluga TC (2009) An sis epidemiology game with two subpopulations. Journal of Biological Dynamics
3:515-531. doi: 10.1080/17513750802638399 PMID: 22880898

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. (2011) Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12:2825-2830.

Nsoesie E, Leman S, Marathe M (2014) A dirichlet process model for classifying and forecasting epi-
demic curves. BMC Infectious Diseases 14: 12. doi: 10.1186/1471-2334-14-12 PMID: 24405642

PLOS ONE | DOI:10.1371/journal.pone.0139911

October 6,2015 25/25


http://doi.acm.org/10.1145/1566374.1566421
http://doi.acm.org/10.1145/2124295.2124320
http://doi.acm.org/10.1145/2124295.2124320
http://doi.acm.org/10.1145/1963192.1963222
http://dl.acm.org/citation.cfm?id=2487788.2488017
http://dx.doi.org/10.1145/1787234.1787254
http://doi.acm.org/10.1145/1150402.1150412
http://arxiv.org/abs/1403.4608
http://dx.doi.org/10.1007/BF00932932
http://dx.doi.org/10.1371/journal.pcbi.1000793
http://www.ncbi.nlm.nih.gov/pubmed/20523740
http://dx.doi.org/10.1016/S0148-2963(96)00279-2
http://dx.doi.org/10.1080/17513750802638399
http://www.ncbi.nlm.nih.gov/pubmed/22880898
http://dx.doi.org/10.1186/1471-2334-14-12
http://www.ncbi.nlm.nih.gov/pubmed/24405642

