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Abstract

Very often scientists are faced with the task of locating appropriate solution soft-
ware for their problems and then selecting from among many alternatives. Issues
related to how someone specifies problems, extracts content information, builds
knowledge bases, infers answers, and identifies software resources are crucial to any
scientific computing development today. In [Houstis et al. 1991] we had proposed an
approach for dealing with these issues by “processing” performance data obtained
from “testing” software. Reliable testing requires identification of “dense” bench-
marks that cover many of the application domain “features”, systematic testing
procedures and automatic ways to collect and analyze the results of this process.
Testing constitutes a significant investment of effort and expertise that cannot be
duplicated easily by an average scientific or engineering group. In this paper, we
present the architecture and implementation of a knowledge/data base system that
makes software recommendations based on problem specifications and computa-
tional objectives such as accuracy, cost or time, and memory requirements. The
system is referred to as PYTHIA II, and is designed to (i) identify and select the
software/hardware resources available for a user’s problem, (ii) locate these re-
sources and provide information about their usage, availability, cost and related
information, (iii) suggest parameter values, and (iv) provide an assessment of the
recommendation. In addition, PYTHIA II can be used to generate “testing” soft-
ware repositories, since it provides all the necessary facilities to set up database
schemas for testing benchmarks and associated performance data, with a number
of tools for visualization, statistical ranking, data mining, knowledge representa-
tion, and recommendation generation.
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1. INTRODUCTION

Complex problems, whether scientific or engineering, are most often solved today
by utilizing public domain or commercial libraries or some form of problem solving
environments (PSEs) [Gallopoulos et al. 1994]. Most extant software systems are
characterized by a significant number of parameters affecting efficiency and applica-
bility which must be specified by the user. This complexity is significantly increased
by the number of parameters associated with the execution environment. Further-
more, one can create many alternative solutions of the same problem by selecting
different software that implements the various phases of the computation. Thus,
the task of selecting the best software for a particular problem or computation
is often difficult and sometimes even intractable. In [Houstis et al. 1991] we had
proposed an approach for dealing with these issues by “processing” performance
data obtained from “testing” software. Reliable testing requires systematic testing
procedures and automatic ways to collect and analyze the results of this process.
Testing constitutes a significant investment of effort and expertise that cannot be
duplicated easily by an average scientific or engineering group.

In this paper, we present the architecture and implementation of a knowledge/data
base (K/DB) system, referred to throughout as PYTHIA II', whose design objec-
tives attempt to address most of the above issues. Specifically, from the end-user
perspective, PYTHIA II will allow users to specify the problem to be solved and
their computational objectives such as accuracy, cost or time, memory require-
ments. The system will (i) identify and select the software/hardware resources
available for the user’s problem, (ii) locate these resources and provide information
about their usage, availability, cost and related information, (iii) suggest parameter
values, and (iv) provide an assessment of the recommendation. To support the
development of the “testing” software repositories, PYTHIA II provides a highly
extensible database schema for testing suites and associated performance data, with
a number of tools for visualization, statistical ranking, data mining, knowledge rep-
resentation, and recommendation generation.

The realization of PYTHIA II requires us to

(1) develop and analyze methodologies and tools for generating knowledge of spe-
cific domains (e.g. linear solvers, linear elliptic PDEs, mesh decomposition) of
scientific software (algorithms),

(2) address the issue of intelligent integration and presentation of information,

(3) devise a software architecture for PYTHIA II, and

(4) integrate methodologies to provide advice for solving classes of scientific prob-
lems and indicate the available software/hardware resources, including an esti-
mation of the parameters involved.

Given a problem description from a known class of problems, along with some per-
formance criteria, PYTHIA II provides a knowledge based technology for the selec-
tion of the most efficient software/machine pair and estimation of software/hardware
parameters involved. Due to its ability to make recommendations by combin-
ing attribute-based elicitation of a specified problem features and matching them

IPYTHIA Ilis a successor to the PYTHIA system [Weerawarana et al. 1997] for selecting scientific
algorithms using exemplar based reasoning.
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Fig. 1. Schematic of a sample interaction with the PYTHIA II web server.

against those of a predefined “dense” population of similar type of problems; we
classify PYTHIA II as a recommender system [Ramakrishnan et al. 1998]. We de-
scribe an operational recommender system with a case study that covers software
for elliptic partial differential equations found in the problem solving environment
PELLPACK [Houstis et al. 1998]. The initial version of PYTHIA II is built as a
foundational system that will be enlarged into a national software recommender
service for the entire scientific community by making it available as a network
server.

One of the core research issues in building PYTHIA 1I is understanding the
fundamental processes by which knowledge about scientific problems and their so-
lutions is created, validated, accumulated, and communicated. Some of this knowl-
edge will come directly from experts-scientists and engineers-in-the-field. Other
knowledge will be mined from experimental data. Yet further knowledge will be
learned from the experience gained by the system itself as it extracts performance
knowledge about software components running on various platform and applied
to various problems. The methodology employed for extracting knowledge from
performance data is implemented as a knowledge/database (K/DB) process which
utilizes database, statistical, data mining, and rule generation technologies.

We now describe a sample PYTHIA II session. Suppose that a scientist or en-
gineer uses PYTHIA 1II to find software that solves an elliptic partial differential
equation (PDE). The system uses this broad categorization (and more subdivisions
such as linear, first order, if necessary) to direct the user to a form-based inter-
face that requests more specific information about features of the problem and the
user’s performance constrains. Figure 1 illustrates a portion of this scenario where
the user provides features about the operator, right side, domain, and boundary
conditions - integral parts of a PDE - and specifies a time constraint (measured
on a Sun SPARCstation 20, for instance) and an error requirement to be satisfied.
As shown, the interface contacts the PYTHIA II (web) server on the user’s behalf
which, in turn, interfaces with a domain specific recommender. The recommender
uses the knowledge acquired by the learning methodology presented in [Houstis
et al. 1991; Ramakrishnan 1997; Ramakrishnan et al. 1998] to perform the soft-
ware selection. Having determined a good algorithm, the recommender consults
databases of performance data to determine the solver parameters, such as grid
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lines to use with a PDE discretizer. Estimates of the time and accuracy with the
recommended algorithm are also presented.

The rest of the paper is organized as follows: The motivation for and a general
methodology of building recommender systems is introduced in Section 2. The
system architecture of a recommender system is also presented in this section.
Section 3 concretizes these ideas further by addressing these issues with specific
reference to the PYTHIA II system. A case study with the prototype system for a
benchmark suite of test problems and algorithms is outlined in Section 4. Section
5 concludes by providing pointers for future research and development.

2. RECOMMENDER SYSTEMS FOR SCIENTIFIC SOFTWARE: METHODOLOGY

In the context of human artifacts, a recommender system (RS) can be viewed as an
intelligent system that uses stored user preferences for a given class of artifacts to
locate and suggest artifacts that will be of interest to associated users. Throughout
this paper we define a recommender system for software/hardware artifacts as a
system that uses stored artifact “performance data” on a population of predefined
problems and machines to locate and suggest “efficient” artifacts that will be com-
patible with the solution of “similar” problems. Recommendation becomes neces-
sary when user’s requests or objectives cannot be properly represented as database
queries. In this paper we attempt to design and implement a RS that assists sci-
entists in selecting suitable software for the problem at hand, in the presence of
practical constraints on accuracy, time and cost. In other words, it is necessary to
adaptively select, recommend and locate software to conform to the performance
requirements set by the user [Rice 1969]. We refer to this as the algorithm/software
recommendation problem. Following, we describe the complexity of this problem,
the research issues that must be addressed, and a methodology for resolving them.

Awareness of the algorithm selection problem has its origins in an early paper by
Rice [Rice 1976]. Given a task in scientific computation, with performance criteria
constraints on its solution (such as accuracy, time, cost, etc.), it is necessary to
decide on an algorithm to achieve the desired objectives. Even for routine tasks
in computational science, this problem is ill-posed and quite complicated. The
difficulty in algorithm selection is primarily due to:

—The space of applicable algorithms for specific problem subclasses is inherently
large, complex, ill-understood and often intractable to explore by brute-force
means. Approximating the problem space by a representation (feature) space
also introduces an intrinsic error in the modeling sense.

—Depending on the way the problem is (re)presented, the space of applicable algo-
rithms changes; some of the better algorithms sacrifice generality for performance
and have specially customized data structures and routines fine tuned for partic-
ular problems or their reformulations.

—Both specific features of the given problem and algorithm performance infor-
mation need to be taken into account when deciding on the algorithm selection
strategy.

—A mapping from the problem space to the good software in the algorithm space is
not the only useful measure of success - one should also be able to obtain useful



| Phases Description
Determine Identify the computational objectives for which the performance
evaluation evaluation of the selected scientific software is carried out.
objectives
Data preparation (1) Identify the evaluation benchmark, its problem features, experiments
(1) selection (i.e., population of scientific problems for the generation of performance
data).

(2) pre-processing | (2) Identify the performance indicators to be measured.

(3) Identify the actual software to be tested, along with the numerical
values of their parameters.

(4) Generate performance data.

Data Mining (1) Transform the data into an analytic or summary form.

(2) Model the data to suit the intended analysis and data format
required by the data mining algorithms.

(3) Mine the transformed data to identify patterns or fit models to the
data; this is the heart of the process, and is entirely automated.

Analysis of results | This is a post-processing phase done by knowledge engineers and
domain experts to ensure correctness of the results.

Assimilation of Create an intelligent interface to utilize the knowledge and to
knowledge identify the scientific software (with parameters) for user’s
problems and computational objectives.

Table I: A Methodology for Buidling Recommender Systems. This layered methodology is very
similar to procedures adopted in the performance evaluation of scientific software.

indicators of domain complexity and behavior, such as high level qualitative
information about the relative efficacies of algorithms.

—There is an inherent uncertainty in interpreting and assessing the performance
measures of a particular algorithm for a particular problem. Different implemen-
tations of an algorithm produce substantially large variations in performance
measures that render relying on purely analytic estimates impractical.

—Distribution and evolution of the knowledge corpus for problem domains makes
it difficult to assimilate and network relevant information; techniques are re-
quired that will allow distributed recommender systems to coexist and cooperate
together.

A methodology for generating an RS for scientific artifacts is defined in Table I.
The layered approach suggested by this methodology is akin to similar strategies
put forth for the performance evaluation of scientific software. Its implementation,
illustrated by PYTHIA 11, is discussed in Section 3. Assuming a ‘dense’ benchmark
of problems from the targeted application domain, this methodology is based on a
three-pronged strategy: the feature determination of problem domain, performance
evaluation of scientific software, and the automatic generation of recommender
systems from such data. Following, we described each of these in more detail.

2.1 Problem Features

The applicability and efficiency of algorithms/software depends significantly on
the features of the targeted problem domain. Identifying and characterizing prob-
lem features of the problem domain is a fundamental problem in software selection.
Even if problem features are known, difficulties arise because the overall factors
influencing the applicability (or lack) of an algorithm in a certain context are not



-- table no 1
create table FEATURE (
name text, -- record name (primary key)
nfeatures integer, -- no. of attributes identifying this feature
features text[], -- numeric/symbolic/textual identification
forfile text -- file-based feature information
)
Fig. 2. Schema for the feature record.
-- table no 3
create table EQUATION_FEATURE (
name text, -- relation record name (primary key)
equation  text, -- name of equation with these features (foreign key)
feature text -- name of record identifying features (foreign key)
)

Fig. 3: Schema for an example feature relation record; foreign keys identify the relation between
an equation (PDE problem definition object) and its features

very well understood. The way problem features affect methods is complex, and
algorithm selection might depend in an unstable way on the features. Even when
a simple structure exists, the actual features specified might not properly reflect
the simplicity. For example, if a good structure is based on a simple linear com-
bination of two features f1 and fa, the use of features such as fi * cos(f2) and
fa * cos(f1) might not reflect the underlying mapping succinctly. A good selection
methodology might fail because the features are given an attribute-value meaning
and assigned measures of cardinality in a space where such interpretations are not
appropriate. Many attribute-value approaches (such as neural networks) routinely
base comparisons on features values (such as 1 and 5), erroneously concluding that
the magnitude of the latter is five times that of the former. Comparing features, on
the other hand, might not be possible, or it may be that their values can only be in-
terpreted in an ordinal/symbolic sense. In the current implementation of PYTHIA
II, this phase is implemented by the knowledge engineer.

Figures 2 and 3 show the data base schema for a feature and a feature relation,
respectively. The relation record shows how PYTHIA II represents the correspon-
dence between problem definition entities (e.g., PDE equations) and their features.
Some instances of these records for the PDE case study are shown in Figure 4.

2.2 Performance Evaluation

The performance evaluation phase implemented in PYTHIA 1II is based on well
established methodologies for scientific software [Rice 1969; Boisvert et al. 1979;
Casaletto et al. 1969; Dodson et al. 1968; Dyksen et al. 1984; Houstis et al. 1978;
James and Rice 1967; Konig and Ullrich 1990; Moore et al. 1990; Rice 1983; Rice
1990]. While there are many important factors that contribute to the quality of
numerical software, we illustrate our ideas using speed and accuracy. Even though
more important (and more difficult to characterize) attributes such as reliability,



Field | Value Field | Value

name | opLaplace name | opLaplace pde #3
nfeatures| 1 equation | pde #3

features | {"Uxx + Uyy (+Uzz) = £"} feature | opLaplace

Fig. 4: Instances of a feature record (left) and a relation record (right) showing the correspondence
between the equation pde #3& and its feature opLaplace.

portability, documentation, etc., are ignored in this discussion, our methodology
represents these aspects as well. Other claseses of performance objectives for soft-
ware are handled more simply, e.g., code language, public or proprietary, licensing
availability, or member of library X.

Accuracy may be measured by several means; we chose either a function of the
norm of the difference between the computed solution and the true solution or an
estimate of the error guaranteed by an approximation algorithm. Speed is normally
measured by the time required to execute the appropriate software/routines in a
particular execution environment. The PYTHIA II problem evaluation environ-
ment ensures that all performance evaluations are made in a consistent manner;
their outputs are automatically coded in the form of predicate logic formulas. We
deliberately resort to attribute-value encodings when the situation demands it; for
instance, the representation of linearized performance profiles for solvers is useful
to obtain interpolated values of grid and mesh parameters for PDE problems. Di-
agnostic information like error reports, fail codes, etc., is also provided in the form
of logic formulas so that they may influence the algorithm selection methodology.
Some of the most important performance measures appear to be - and are - quite
hardware and systems infrastructure dependent. Our philosophy is that a recom-
mendation should be made that is close to best. If one wants to be sure about
the best, one has to generate data for the particular computing environment to be
used, and this almost always involves more computation than using a close to best
algorithm.

How can performance data from many different machines be used to make a rec-
ommendation for a new, unknown, machine? We use machine specific performance
factors and feature matching to compare execution times on different machines
[Houstis and Rice 1980]. Although these are approximate, we believe our compari-
son mechanism is valid.

2.3 Reasoning and Learning Techniques in PYTHIA |l

There are many approaches to generate recommendations for artifacts. For software
selection, we have adopted one that is based on a multi-modal learning approach.
Multimodal reasoning methods integrate different Al approaches to leverage their
individual strengths. The PYTHIA II system is a general framework enabling the
integration of a range of reasoning and learning techniques. Specifically, it provides
the following three broad learning strategies:

—Case Based Reasoning (CBR): A case based reasoning system [Kolodner 1993;
Riesbeck 1996; Riesbeck and Schank 1989; Watson 1977] records ‘cases’ of past

experience and uses them to guide problem solving in future analogous situations.



These cases might reflect a useful solution approach, a bad strategy or estima-
tions of the likely outcomes in a state-based environment. The original PYTHIA
system [Weerawarana et al. 1997] utilized a rudimentary form of case based rea-
soning where the cases correspond to characteristic-vector descriptions of PDE
problems and algorithms. Such systems are advantageous for their ‘stored library’
paradigm, where it is assumed that a case library can be constructed that covers
the actual problems and situations encountered. In addition, case based reason-
ing can be used to ‘evolve’ new cases (in environments where data is scarce),
suggest directions for continued exploration (in an unknown and large environ-
ment) and form the basis for recommender systems via the case bank. CBR
has been successfully applied in previous advisory systems such as the SQUAD
system at NEC, a system using approximately 30,000 cases to provide advice to
software quality control engineers [Kitano and Shimazu 1996].

—Inductive Logic Programming (ILP): ILP systems [Bratko and Muggleton 1995;
Dzeroski 1996; Muggleton and Raedt 1994], on the other hand, attempt to con-
struct a predicate logic formula so that all positive examples of good recommen-
dations provided can be logically derived from the background knowledge, and no
negative example can be logically derived. The advantages of this approach lie in
the generality of the representation of background knowledge. ILP techniques are
also useful in distinguishing between the various features of the problem domain
as being suitable for representation vs. discrimination. Formally, the task in
algorithm selection is: given a set of positive exemplars and negative exemplars
of the selection mapping and a set of background knowledge, induce a definition
of the selection mapping so that every positive example can be derived and no
negative example can be reproduced. While the strict use of this definition is
impractical, an approximate characterization, called the cover, is utilized which
places greater emphasis on not representing the negative exemplars as opposed
to representing the positive exemplars. Techniques such as relative least general
generalization and inverse resolution can then be applied to induce clausal defi-
nitions of the algorithm selection methodology. This forms the basis for building
recommender procedures using banks of selection rules. This methodology has
been adopted in [Ramakrishnan 1997].

— Decision-Tree Induction: Decision trees are a precursor to ILP systems and while
limited in their representation capabilities, are advantegous for their ability to
handle noise, outliers and use attribute-value based comparisons to influence deci-
sion making. The ID3 [Quinlan 1986] is one such system that we have investigated
for inclusion in the PYTHIA II system. ID3J is a supervised learning system for
top-down induction of decision trees using a greedy algorithm. This algorithm
is based on a simple information-theoretic consideration of the classifiability of
a given training set with respect to several of its attributes. The result of this
process is a tree-like knowledge representation structure where: (a) every internal
node (including the root) bases its decision on the value of some attribute; (b) ev-
ery leaf node identifies a specific class. It is very advantegeous in domains where
attributes have a mixed symbolic-numeric flavor and the underlying structure is
simple enough to be accomodated in a tree-based representation.
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Fig. 5. System architecture of PYTHIA II.

2.4 Domain Specific Recommender Systems: Architecture

In this section we detail the software architecture of a domain specific recommender
system based on the recommendation methodology and its components discussed
above. The design objectives of a RS for scientific software includes (i) modeling
domain specific data into a structured representation as expressed by a database
schema, (ii) providing facilities for the generation of system specific performance
data by using simulation techniques, (iii) automatically collecting and storing this
data, (iv) summarizing, generalizing, and discovering hidden patterns/rules that
capture the behavior of the scientific software system that generates the perfor-
mance data by expressing them in a high level logic based representation language,
and finally (v) incorporating them into the intensional/deductive part of the un-
derlying relational DBMS in the form of relation views. An instance of these oper-
ational components of the PYTHIA II system is depicted in Figure 5.

Two of the basic components of a recommender system are the stored rule base
and an inference engine to support its deduction capabilities. The rule base con-
tains rules generated using one of automated learning process described above. In
the recommender system production framework we envision having a highly inte-
grated software system for knowledge acquisition and maintenance that spans the
domains of databases, statistical analysis, inductive learning and a deductive-like
approach, coupled with a high level user interface that facilitates easy access and
reasonable learning curves for the knowledge engineer that plans to update and
maintain a domain specific recommender system. We propose a fully automated
system for generation and maintenance of domain specific recommender systems,
but do not neglect human intervention throughout the process, especially when the
generalization accuracy attained by the machine learning system is of low quality.
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Domain experts apply their feedback/evaluation (i.e., sanity check) to the induced
rules, since it is easy for them to judge the general applicability and reasonable-
ness of rules, even as it is beyond human capability to identify rules by searching
through very large databases. We propose a modularized approach for building
recommender system cores (e.g., Figure 5) with the interfaces between the various
modules as points where human support or iteration can easily take place.

By modeling and collecting all the information related to a specific scientific com-
puting domain in a database system, our integrated approach easily synthesizes
input programs on demand. All the required information exists in a structured way
in the database which transforms the programs to the input format required by
the execution environment. The database system then executes them in an auto-
matic, possibly batch manner. Simulation techniques applied to the appropriately
transformed programs will generate performance data to be collected, cleaned and
converted to a format suitable to the performance schema defined beforehand for
storage in the database. A statistical analysis phase can be applied to some suites
of performance data to summarize the data and to extract information about the
various trends or patterns that are known to exist. The objective of such a sta-
tistical analysis might be some ranking, or a discretization of continuous variables
(since we know where percentiles are located we can reasonably split a continuous
variable if required by the system using the data) and so on. At this point, the
core of the inductive rule generation and case based reasoning processes begins.
Appropriately selected data are retrieved from the database and are fed into the
knowledge discovery system that attempts to mine novel patterns hidden in the
data, expressing the results in a high level representation language. We expect
that different methods will be applicable to different problem domains. At the
termination of the rule generation process, the domain expert decides whether the
knowledge generated in the form of rules is satisfactory (the sanity check), or else
the process is repeated.

The intensional part of the underlying DBMS includes capabilities to define rules
(those automatically generated by the learning process), which can deduce or infer
additional information from the facts that are stored in the database. Rules in
our case are relational views. They specify virtual relations that are not actually
stored but can be formed from the facts by applying inference mechanisms based
on the rule specification. An SQL (the standard for database query and modifi-
cation) interface at this stage is enough to provide the user with domain specific
recommendations. A user of the recommender system can use the SQL engine of
the DBMS to retrieve data and recommendations either from facts stored as sim-
ple relations or from the relational views that consist of a simple encoding of the
discovered knowledge. A simple text based or graphical SQL based form interface
can be used by an end user to access the services of a recommender system.

Our recommender system requires the support of an object-oriented, relational
database to provide storage, retrieval and processing for atomic entities, experi-
ments, performance data, knowledge-related data and derived data. Atomic en-
tities are domain specific since they represent the problem definition objects of a
targeted domain, but the performance and knowledge-related data schema extend
easily to other problem domains. Following we describe the data base schema spec-
ification used for producing a recommender system for elliptic PDE software. Their
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create table EQUATION (

name text, -- record name (primary key)

system text, -- software that solves equations of this type
nequations integer, -- number of equations

equations text[], -- text describing equations to solve

forfile text -- source code file (used in equation definition)

)5

Fig. 6: Equation records list the equations; terms are defined using the syntax of the scientific
software.

create table SEQUENCES (

name text, -- record name (primary key)

system text, -- software that provides the solver modules

nmod integer, -- number of modules in the solution scheme

types text[], -- array of record types (e.g., grid, discr, solver)
names text[], -- array of record names (foreign key)

parms text[] -- array of module parameters (foreign key)

)5

Fig. 7: A solver sequence record lists the order of module processing to solve a PDE problem; the
sequence is translated to library calls from software associated with the named system.

modification for other domains of scientific software can be easily derived. They
are presented in itemized form.

—Problem Population. The (atomic) entities which describe the PDE problems
include equation, domain, boundary_conditions and initial_conditions. Field at-
tributes for these entities must be defined in a manner consistent with the syntax
of the targeted scientific software. Solution algorithms are defined by calls to
library modules of the software; the modules are represented by entities which
include grid, mesh, decompose, discretizer, indexer, linear_system_solver, and
triple. In addition, a sequences entity was defined to contain an ordered listing
of all modules used in the solution process of a PDE problem. Miscellaneous enti-
ties required for the benchmark include output, options and fortran_code. Figures
6 and 7 show the schema for the equation and sequences records, respectively.
Instances of an equation and sequence record for the PDE population are shown
in Figure 8. The equation field attribute in the equation record uses the syntax
of the PELLPACK PSE [Houstis et al. 1998]. The &b in the specification allows
for parameter replacement and the forfile attribute allows for additional source
code to be attached to the equation definition. The sequences record shows an
ordered listing of the module calls used to solve a particular PDE problem. For
each module call in the list, the sequence identifies the module type, name and
parameters.

—Features. An explanation of the features and their database representation was
given in section 2.1.

— Ezperiments. The experiment is a derived entity which identifies a specific PDE
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Field | Value
name | pde #39
system | pellpack

nequations| 1
equations | {"uxx + uyy + ((1.-h(x)**2*u(x,y)**2)/(&b))u = 0"}
forfile | /p/pses/projects/kbas/data-files/fortran/pde39.eq

Field | Value

name | uniform 950x950 proc 2 jacobi cg

system| pellpack

nmod | 6

types | {"grid","machine",'dec","discr","indx","solver"}

names | {"950x950 rect","machine_2","runtime grid 1x2",
"6-point star",'"red black","itpack-jacobi cg"}

parms | {rr, e e v e i tmax 20000}

Fig. 8. Instances of equation and sequence records from the PDE benchmark study.

problem and lists a collection of sequences to use in solving it. Generally, the
experiment covers a range of solution algorithms with varied parameters; it is
translated to a collection of driver programs which are executed to produce per-
formance data corresponding to the solution algorithms and execution platform.
See Figure 9 for the schema definition.

—Rundata. The rundata schema specifies the targeted hardware platforms, their
characteristics (operating system, communication libraries, etc) and execution
parameters. The rundata and experiment record fully specify an instantiation of
performance data.

—Performance Data. The performance schema is a very general, extensible rep-
resentation of data generated by experiments. An instance of performance data
generated by the PDE benchmark is shown in Figure 10.

—Knowledge-related Data. Processing for the knowledge-related components of
PYTHIA 1II is driven by the profile and predicate records. These schema rep-
resent the set of experiments, problems, methods and features which should be
considered for analysis. An instance of the predicate schema is given in Figure
11.

—Derived Data. Data resulting from the data mining of the performance database
is stored back into the profile and predicate records. This data is processed by
visualization and knowledge generation tools.

3. PYTHIA II: A REALIZATION OF THE RECOMMENDER METHODOLOGY
3.1 System Design

Specifically, we describe the realization of the proposed architecture of a kernel RS
system for scientific software in terms of the database and programming infrastruc-
ture used to implement it.

3.1.1 Architecture. The modular design of PYTHIA II is shown in Figure 5. The
hierarchical architecture of the system consists of four layers:
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create table EXPERIMENT (

name text, -- record name (primary key)

system text, -- software identification used for program generation
nopt integer, -- number of options

options text[], -- array of option record names (foreign key)

noptparm integer, -- number of parameter specific options

optparm text[], -- array of option record names

equation  text, -- equation record which defines the equation
neqnparm integer, -- number of equation parameters

eqnparm text[], -- array of equation parameter names

domain text, -- domain record on which the equation is defined
ndomparm  integer, -- number of domain parameters

domparm text[], -- array of domain parameter names

bcond text, -- boundary condition record

nbcparm integer, -- number of bcond parameters

bcparm text[], -- array of bcond parameter names

nparm integer, -- number of parameters applied across all definitions
parm text[], -- array of problem-wide parameters (no. of programs)
sequences text[], -- names of the sequence records containing soln. schemes
nout integer, -- number of output records

output text[], -- array of output record names

nfor integer, -- number of source code files to include

fortran text[] -- names of the files to include

)

Fig. 9: The experiment record specifies the components of a PDE problem and identifies the
collection of sequences to use in solving it.

—user interface layer
—data generation, data mining, and inference engine layer
—relational engine layer, and

—database layer.

The database layer provides permanent storage for the problem population, the
performance data and problem features, and the computed statistical data. The
next layer is occupied by the relational engine, which supports an extended version
of the SQL database query language and provides the required functionality for the
stored data to be accessible to the upper layers. The third layer consists of three
subsystems: the data generation system, the data mining system, and the inference
engine. The data generation system accesses the records defining the problem pop-
ulation and procesess them within the problem execution environment, invoking
integrated scientific software for solving the problem and generating performance
data. The statistical data analysis module and the pattern extraction module com-
prise the data mining subsystem. The statistical analysis module is a prototype
software implementation of a non-parametric statistical method applied to the gen-
erated performance data. PYTHIA II integrates a variety of publicly available
pattern extraction tools adhering to the different paradigms implemented by var-
ious software packages, such as relational learning, attribute-value based learning,
as well as instance based learning techniques. This design allows for pattern finding
in diverse domains of features like nominal, ordinal, numerical, etc.



Field | Value
name | pde54 dom02 fd-itpack-rscg SP2-17
system | pellpack
comp_db | linearalgebra
composite_id | pde54 domain 02 fd-itpack-rscg
perfind_set | pellpack-std-par-grd
pid | 1432
sequence_no | 17
eqparms | pde #54 parameter set 5
solverseq | 950x950 proc 4 reduced system cg
rundata | IBM SP2 with 18 compute nodes
nfeature | 6
featurenames | {"matrix symmetric", 'domain type",'boundary points",
"boundary pieces'", '"problem type"}
featurevals | {"no", "non-rectangular","3800","8", "FD"}
nperf |1
perfnames | {"number of iterations"}
perfvals | {"830"}
nproc | 4
nperfproc | o
nperfproc2 | o
nmod | 6
modnames | {"domain processor",'"decomposer",
"discretizer","indexer","solver"}
ntimeslice | 2
timeslice | {"elapsed","communication"}
time | {{{"3.1600001","0"},{"2.3499999","0"},{"4.1900001" ,"0"},
{"0.11","0"}, {"135.0400043","1.2499995"}},
{{"3.1300001","0"},{"2.46","0"},{"3.8900001","0"},
{"0.09","0"},{"135.4500024" ,"36.74049"}},
{{"3.1300001","0"},{"2.47","0"},{"3.9100001","0"},
{"0.08","0"},{"135.5499933" ,"37.1304893"}},
{{"3.1700001","0"},{"2.03","0"},{"4.1399999" ,"0"},
{"0.04","0"},{"136.1499939","88.7300339"}}}
ntotal | 4
total | {"150.1600037",'149.9700012","150.0200043",'149.6300049"}
nmemory | 4
memorynames | {'"number of equations",
"x grid size","y grid size","problem size"}
memoryvals | {"224676","950","950","902500"}
nerror | 3
errornames | {"max abs error","L1 error","L2 error"}
errorvals | {"0.0022063255","0.00011032778","0.00022281437"}

Fig. 10. An instance of performance data from the PDE benchmark

In the highest layer, a graphical user interface allows the knowledge engineer to
exploit the capabilities of the system for generating knowledge as well as query
the system for facts stored in the database layer. The recommender also resides
in the top layer. It uses the knowledge generated by the lower layers, encoding it
appropriately as a knowledge base for an expert system. The facts generated by the
knowledge discovery process and stored in the database drive the inference process
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Field | Value

name | PELLPACK Solution Methods Study
reference | pellpack

num_rankings | 1

max_num_blocks| 37

prof_recs | {{""pde3-1","pde3-2","pde7","pde8-1","pde8-2" ' pde8-4",
"pde9-1", "pde9-2'", "pde9-3", 'pdel0-2", "pdel0-3"}}

best | method

nbest | 7

bestlist {"fft 9pt order 2" ,"fft 9pt order 4","fft 9pt order 6",
"5point star & bandge', '"herm coll & bandge",

"dyakanov-cg'", ''dyakanov-cg 4"}
featurelist | {"operator","right-hand-side",'domain","bconds","matrix"}

possiblevalues| {{"opLaplace",'"opPoisson",'"opHelmholtz","opGeneral"},
{"rhsEntire","rhsConstCoeff", "rhsSingular", "rhsAnalytic"}}
recordlist | {"equation",'"equation",'domain","bcond",'"perfdata'"}

indexlist | {"featurevals[1]","featurevals[5]"}

Fig. 11. Partial listing of a predicate from the PDE benchmark.

for answering domain specific questions posed by end users. The architecture of
PYTHIA II is extensible, with well defined interfaces among the components of the
various layers. The interfaces of these components are discussed in Section 3.1.2,
and their functionality and implementation are described in Section 3.2.

For storage and database management, we selected the POSTGRES95 relational
database and used PgTcl as the front-end interface between PYTHIA II and the
POSTGRES95 back-end. Using Tecl/Tk as the basic programming environment
for the implementation of PYTHIA II allows the database to be accessed in a
transparent and intuitive way. PgTcl is extremely efficient for database access, since
it communicates with the back-end directly via the front-end-back-end protocol,
without the need for intermediate C libraries (similar to Oracle Pro*C). It also
handles multiple back-end connections from a single front-end application. The
implementation code can either use library calls for connecting/selecting/reading
from the database, or can execute embedded SQL statements, making the data
access simple and flexible.

3.1.2 Data Flow. The PYTHIA II design presented in Section 3.1.1 supports two
different user interfaces, one for the knowledge engineer and the other for end users
who query the recommender for domain specific advice about the problems they
want to solve. This section describes the data flow and I/O interfaces between
the main components of the PYTHIA II system from the perspective of these two
interfaces.

Knowledge engineer perspective: The data flow is depicted graphically in Figure
12, where the boxes represent stored entities, the edges represent operations re-
lated to the underlying database, and the self-edges represent operations related
to various external programs such as statistical analysis, transformations and data
filtering.

The automated knowledge discovery process begins with populating the problem
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Fig. 12. Data flow and I/O Interfaces.

specific database tables. In PYTHIA II, the underlying database schema is fixed,
but extensible and dynamic. Supporting an extensible and dynamic schema is possi-
ble based on some unique features of the POSTGRES95 system, i.e., POSTGRES95
does not have the restriction imposed by the relational model that the attributes of
a relation are atomic, since attributes are allowed to contain sub-values that can be
accessed from the query language. In particular, POSTGRES95 allows attributes
of an instance to be defined as fixed-length or variable-length multi-dimensional
arrays. The knowledge engineer has to specify his understanding of the domain
in terms of the relational data model to match PYTHIA II’ s database schema.
The front-end interface for populating the database includes a full-fledged graph-
ical environment with menus, editors and database specific forms for presentation
purposes, very much like those supported by Oracle’s SQL*Forms.

An experiment database record combines problem records into classes of prob-
lems, and a high level problem specification is generated by a program-based trans-
formation of the experiment record into a complete and correct input file specifi-
cation. These files are passed to the problem execution environment which invokes
the appropriate scientific software for problem execution. Currently, PYTHIA 1T’ s
execution environment consists of the PELLPACK system which can solve a variety
of simulation PDE problems, applying multiple methods for discretization, index-
ing, domain partitioning and solution, in various sequential and parallel machines.
After executing each one of the input files, a corresponding number of output files
is generated, each containing information related to the solution of the problem,
such as error, memory utilization, execution time per processor (in case of a parallel
execution), program traces, etc. Although the variability of the input specification
is dealt with by the specific schema of the problem record, the variations in the
output format for the files generated during execution are handled by specifying
a system specific and user selected file template. The template lists, among other
things, the full specification for the program to be called for the collection of the
“important” data contained in the output files. This data is automatically collected
by the program, and stored in the performance data records for further processing,
while all the output files are deleted. These records keep logical references to the
problem records in the form of foreign keys. In this manner, performance data can
be matched with problem features by executing n-way joins, which is necessary for
pattern extraction.

By combining data from a number of performance records, while maintaining



18

select perfdata.nproc, ’ 7,
perfdata.time[1:perfdata.nproc][4:4][1:1]
from perfdata, sequences
where
perfdata.solverseq = sequences.name
and composite_id = ’pde03’
and rundata = ’IBM SP2’
and perfdata.memoryvals[2] = ’950x950°
and sequences.names[6] = >itpack-jacobi cg’;

Fig. 13. Example analyzer query for retrieving performance data identified by a profile.

all but one of the experimental variables constant (discretizer, indexer, partitioner,
solver, problem size, machine size), we can generate a profile that characterizes the
behavior of a certain parameter with respect to other parameters. The statistical
analyzer uses the instructions for extracting performance data contained in a profile
database table, which contains the number of experiments deemed necessary by the
knowledge engineer for the analyzer to produce rankings of the solver profiles with
the required statistical significance. The analyzer submits “canned” SQL queries
(Figure 13) to retrieve the data to use for further processing.

After the performance data has been retrieved and combined, it is provided to
the statistical analyzer for ranking based on the domain parameter selected by the
user for evaluation. The ranking produces an ordering of these parameters which is
statistically significant (i.e., if the performance data shows no significant difference
between parameters then they are shown as tied in rank). The ranking can be
used in a number of different ways to drive the pattern extraction process. Before
the data is handed over to this process however, yet another abstraction level is
used. A predicate record defines the collection of profile records to be used in
pattern extraction. This means that the knowledge engineer can change the set of
input profile records as easily as updating a database record. The predicate also
contains all the required information used by the program that creates input for
the algorithms used in pattern extraction.

A filter program is called for the selected predicate record to collect and transform
the information to the input format required by the pattern extraction programs.
For example, our system currently supports, among others, the input formats for
GOLEM/PROGOL, MLC++ (Machine Learning Library in C++) library. After
the input data is prepared, the programs generate output in the form of “logic”
rules, “if-then” rules or decision trees/graphs for categorization purposes. In this
process there is open-ended extensibility regarding the integration of tools like neu-
ral networks, genetic algorithms, fuzzy logic tool-boxes, rough set systems, etc.
It is only the support for the recommender system that restricts the automatic
transformation of the knowledge structures provided by each one of these tools,
since building a knowledge base for the recommender requires that the knowledge
induced by the mining process be comprehensible and structured.

End user perspective: The front-end for a recommender must be configurable and
adaptable for satisfying a variety of user needs. It is well understood that end users
of a recommender for scientific computing are most interested in questions regarding
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accuracy of a solution method, performance of a hardware system, optimal number
of processors to be used in a parallel machine, how to achieve certain accuracy by
keeping the execution time under some user specified limit, etc. The PYTHIA II
recommender interface allows users to specify the characteristics of the problems
to solve, as well as the performance objectives or constraints. The system that
supports this functionality is CLIPS, an expert system shell tool-box, which uses
the induced knowledge, even background knowledge, and facts from the problem,
feature, performance, profile and predicate tables to provide the user with the best
inferred solution to the problem that was presented. It is also possible that the
user’s objective cannot be satisfied. In that case, the user can specify weights
for the various objectives, and then the system will try to satisfy the objectives
(e.g., accuracy first, then memory constraints) based on the ordering implied by
the weights.

3.1.3 Data Modeling and Management. The quantity of information generated
and manipulated by PYTHIA 1II calls for a powerful and adaptable database and
database management system (DBMS) with an open architecture. PYTHIA I’ s
operational strength relies on the data modeling that supports the data generation,
data analysis, automatic knowledge acquisition and inference process. The func-
tionality to be provided by the two lower level layers of the system’s architecture
is summarized as follows:

—to provide storage for the problem population input data to the execution en-
vironment in a structured way, and to keep track of constraints implied by the
specification language of the execution environment, and even the physical char-
acteristics of the application,

—to support seamless data access by the user through a graphical interface or by
a programming system like a scripting language,

—to support fully extensible functionality for an environment that keeps changing
not only in the size of the data but also in the schema.

The selected system, POSTGRES95 [Stonebraker and Rowe 1986], is an Object
Oriented and Relational DBMS (ORDBMS) which supports complex objects and
is easily extensible by providing new data types, new operators, and new access
methods to the user so that it can be used in new application domains. It also
provides facilities for active databases (i.e., alerters can send a message to a user
calling for his attention to a problem, and triggers can propagate updates in the
database to maintain consistency) and inferencing capabilities including forward
and backward chaining. It supports the standard SQL language with a number of
extensions, and programming interfaces for C, Perl, Python, and Tcl.

PYTHIA II’ s database is designed so its relational data model offers an abstrac-
tion of the structure of the problem population. This abstraction is (and must
be) domain dependent, since the relational model defines benchmark applications
from a selected domain which will be executed to produce performance data. The
abstraction of a standard PDE problem includes the PDE system, the boundary
conditions, the physical domain and its approximation in a grid or mesh format, a
possible decomposition of the discrete or continuous domain for parallel execution,
various solution modules (e.g., a discretizer or linear system solver), output mod-
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ules, as well as parameter sets for any of the problem components. Each of the PDE
problem specification components constitutes a separate entity. In the relational
model, each entity is mapped into a separate table or relation. Apart from these
tables, a number of interesting static or dynamic interactions among entities can
also be modeled in the relational model by tables representing relationships.

In a higher level of abstraction, we introduce an explicit hierarchy of flat tables
to cope with batch execution of experiments and performance data collection, ag-
gregate statistical analysis, and data mining. The ezperiment table is introduced
as an intermediate virtual entity that represents a large number of problems in the
form of sequences of problem components to be processed at one time by the ex-
ecution environment for generating performance data. A profile table collects sets
of performance data records and profile specification information required by the
analyzer. A predicate table is another virtual entity that identifies a collection of
profile and feature records needed for data mining.

The current problem population is defined by 13 problem specification tables
(equation, domain, bcond, grid, mesh, dec, discr, indx, solver, triple, output, pa-
rameter, option) and 21 relationship tables (including equation-discr, mesh-domain,
parameter-solver, etc). Additional tables define problem features and execution re-
lated information (machine and rundata tables). In all, 44 table definitions were
used to configure the database for PYTHIA II. Section 4 gives some examples of
these tables definitions within the context of the case study.

3.2 System Components

This section describes the functionality of the components of PYTHIA II contained
in the top two layers of Figure 5.

3.2.1 Data Generation. Information in the performance database drives PYTHIA
IT" s data analysis and rule generation. The performance database may be a pre-
existing store of performance measures or the data may be produced by executing
scientific software within the problem execution environment. PYTHIA II does not
need to understand the characteristics and functionality of the software, and it im-
poses no requirements or restrictions on the internal operation of the software. In
fact, it allows the scientific software to operate entirely as a black box. There are,
however, three I/O requirements that must be met by any software that is a can-
didate for integration into PYTHIA II. This section describes these requirements
and demonstrates how the PELLPACK software satisfies them. PELLPACK is cur-
rently the only scientific software available through the execution environment; it
has been used successfully to generate many thousands of performance data records.

First, it must be possible to define the input to the scientific software, (i.e., the
problem definition) using only the information contained in an experiment record.
The translation of an experiment into an executable program should be handled by
a front-end converter written specifically for the software. Its task is to extract the
necessary information from the experiment record, and generate the files or drivers
required by this software. In the case of PELLPACK, the experiment record was
translated to a .e file, which is the PELLPACK language definition of the PDE
problem, the solution scheme, and the output requirements. The converter was
written in Tcl and consists of about 250 lines of code. After the .e file was generated,
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the standard PELLPACK preprocessing programs took over, converting the .e file to
a FORTRAN driver and linking the appropriate libraries to produce an executable
program.

The second requirement is that the scientific software should be able to operate
in a “batch” mode when executing PDE programs. In the PELLPACK case, Perl
scripts were used to execute PELLPACK programs, both sequential and parallel,
on any of the supported platforms. Whatever the number of “programs” defined
by a single experiment, that number of programs must be processed and executed
without manual intervention.

Finally, the scientific software must produce output files containing values for
performance measures that can be used by PYTHIA II to evaluate the perfor-
mance of the program. PYTHIA II does not require any special format since a
post-processing program must written specifically for the software and must handle
the conversion of the generated output into performance records. Each program
execution should result in the insertion of one performance record into the per-
formance database. The PELLPACK data collection program was written in Tcl
(350 lines of code) and Perl (300 lines of code), and was responsible for creating
performance records that represented the data produced by PELLPACK program
executions.

The execution environment has been implemented in a modular and flexible way,
allowing any or all of the data generation phases (program generation, program
execution, data collection) to take place inside or outside of PYTHIA II. This pro-
cess is domain dependent since it accesses the domain dependent problem definition
records, executes programs by invoking domain specific software and collects data
by processesing domain specific output files.

3.2.2 Data Mining. Data mining encompasses the process of extracting and fil-
tering performance data for statistical analysis, generating solver profiles and rank-
ing them, selecting and filtering data for pattern extraction, and generating the
knowledge base. The two components involved in this process are the statistical
analysis module and the pattern extraction module.

PYTHIA II runs the analyzer as a separate process, sending it an input file
and a set of parameters for output specification. Since the call to the analyzer is
configurable, data analyzers can easily be integrated into the system. The statistical
analyzer is independent of the problem domain since it operates on the fixed schema
of the performance records. The current analyzer was developed in-house.

The task of the statistical analyzer is to assign a ranking to a set of algorithms
for a selected problem population based on a priori determined performance crite-
ria. The analyzer assumes that the algorithms have been executed on the selected
problems, and that the resulting performance measures for each execution have
been collected and inserted in the database. The analyzer accesses the database
to extract the performance data based on the specification of a selected predicate
record.

A predicate record defines the complete set of analyzer runs which are to be
used as input for a single invocation of the rules generator. The predicate fields
of interest to the analyzer are (1) the list of algorithms to rank, and (2) a profile
matrix, where each row represents a single analyzer run and the columns identify
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Algorithm 1 [ Algorithm 2 [ --- | Algorithm k
Problem 1 X11 X12 Xlk
Problem 2 Xo1 Xoo | Xok
Problem n Xn1 X0 | Xk
Rank Rl R2 e Rk
Average Rank Re1 Reo coo | Rek

Table II. Algorithm ranking table based on Friedman Rank Sums using the two-way layout.

the profile records to be accessed for that run. Each profile record specifies how
the analyzer should gather and assess the performance measures produced by one
problem execution. Table II shows how the analyzer interprets one row of the
predicate’ s profile matrix. The table columns are the specified algorithms, and the
table rows are the problems represented by the profiles specified in a single row of
the predicate’ s profile matrix. The X;; are values computed by the analyzer based
on the profile record specification for Problem ¢. The computation of the X;; will
be covered later in this section, but for the sake of the following discussion, assume
these values exist.

The process for ranking the algorithms was developed from an analysis for multi-
ple comparisons and contrast estimators using procedures based on Friedman rank
sums. The two-way layout associated with distribution-free testing is shown in
Table II, which assumes nk data values from each of k algorithms for n problems.
This assumption is not strictly necessary; the analyzer can “fill in” missing values
using various methods, for example, averaging values in the algorithm column. The
ranking proceeds as follows:

—VFor each problem ¢ rank the algorithms. Let r;; denote the rank of X;; in the
joint rankings of X;1,...X;; and compute R; = E?:l ij-

—Let R,; = % where R; is the sum over all problems of the ranks for algorithms
J, and IR,; is the average rank for algorithms j. Use R,; to rank the algorithms
over all problems.

—Compute @ = ¢(«, k,oo)\/% where ¢(a, k,00) is the critical value for k
independent algorithms for experimental error «. | R, — R, |> @ implies that
algorithms u and v differ significantly for the given threshold «.

The R,;’s are the desired algorithm ranks.

It remains to discuss the methods used to compute the X;;. The assignment of
a single value to represent the performance of algorithm j for problem 2, which can
then be compared to other performance values in the framework of the two-way
layout, is not a simple matter. Even when comparing elapsed execution time, there
are many parameters which should be varied for a serious evaluation of algorithm
speed : problem size, execution platform, number of processors (for parallel code),
etc. To accommodate these variances in the algorithm execution, the analyzer uses
the method of least squares approximation for a collection of observed data over a
given variation of problem executions.

A profile is the set of all lines created by a least square approximation to the
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raw performance data for a given problem over all methods. The analyzer accesses
the profile records named by the predicate to identify exactly which performance
measures are to be used for a given problem. This record lists the choices for
the x and y axis, and defines which invariants to use in the selection process. In
addition, the record identifies where these values are stored in the performance
records generated by the execution of the problem. This information produces
an analyzer query such as the one in Figure 13 for problem pde03 executed using
algorithm jacobi cg on an IBM SP2 machine. The query retrieves observed data for
time vs num processors where the grid size is held invariant.

The goal of the pattern-extraction module is to support the automatic knowledge
acquisition process and to extract patterns/models from the data that will be used
by a recommender system to provide advice to end users for efficient use of the
scientific software. This process is independent of the problem domain. PYTHIA
IT is an extension of the PYTHIA methodology used to address the algorithm
selection problem by applying various neuro-fuzzy, semantic networks, instance-
based learning and clustering techniques. The idea of this methodology is to use a
feature vector of numerical features for each problem and some pre-defined classes
of problems in order to find a “closest” problem or the “closest” class of problems
to an unseen problem. Having determined a ranking of solution methods for the
matching problem or class of problems, the system could induce the best method
for the unseen problem. The main limitations of this methodology was that it was
mostly a manual process and it could not scale to larger sets of performance data
because of its file-based approach and the low level representation of the induced
knowledge.

The relational model we use completely solves the book-keeping of the raw data
and offers a unique opportunity for easily generating and storing any amount of
raw performance data as well as manipulating them. In order for us to test various
learning methodologies, we have decided to support a specific format for the data
that will be used by the pattern extraction process, and write filters that transform
this format (on the fly) to the format required by the various integrated data mining
tools. Since the idea behind knowledge acquisition was to support a recommender
system with as few changes to the automatically generated knowledge as possible,
we have integrated mostly systems that generate comprehensible knowledge in the
form of logic rules, if-then-else rules or even decision trees.

The first system we integrated and for which we will present some results later
on, was GOLEM [Muggleton and Feng 1990], which has been classified in [Dzeroski
1996] as an empirical single predicate Inductive Logic Programming (ILP) learning
system. It is a batch non-interactive system with noise handling capabilities that
implements the relative least general generalization principle that can be considered
as careful generalization in the search space of possible concept descriptions. The
task of empirical single predicate learning in ILP can be formulated as follows:

Given a set of training examples &, consisting of true £t ground facts (examples
of correct recommendations), false £~ ground facts (corresponding to ‘bad’ rec-
ommendations), a concept description language £, specifying syntactic restrictions
on the definitions of the predicate (say p) to be mined (in this case, the predicate
that relates problem features to the best method recommendation), background
knowledge B (identifying problem features and performance criteria), the task for
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ILP is to find a definition of p that is both complete and consistent. Completeness
refers to the property of the mined rule to conform to the positive examples and
consistency refers to its ability to exclude negative examples from its cover.

Such rules generated by GOLEM can be processed in a language like first order
predicate logic. These rules can be easily utilized by an expert system and constitute
its rule base, as we will describe below. In addition to GOLEM, we have already
written filter programs to integrate the following systems: PROGOL, MLC++
library, CN2, PEBLS, OCI1.

3.2.3 Inference Engine. The recommender is a form of a decision support system,
and is the only module in PYTHIA II that is case study dependent as well as domain
dependent. We will describe how a recommender system has been generated as an
interface for the knowledge generated by GOLEM.

GOLEM, as described in the previous section, is a relational learning system that
uses positive examples for generalization and negative examples for specialization.
Each logical rule generated by GOLEM is associated with an information compres-
sion factor which is related to the generalization accuracy of the rule. The formula
for this metric is simple: f = p — (¢ + n + h) where p and n are the number of
positive and negative examples respectively covered by a specific rule, while ¢ and A
are information that is related to the form of the rule. The information compression
factor will be used for ordering the rules in the rule base in a decreasing order.

Each rule selected by GOLEM covers a number of positive and negative examples.
The set of positive examples covered for each rule along with the rules, is one part
of the input given to the recommender. The recommender asks the user to specify
the characteristics of the problem he wants to solve in the form of problem features.
The recommender, using the CLIPS inference engine, checks its rule base to find a
rule that matches its left-hand side which specifies the problem features. Every rule
that is found to match the problem features specified by the user is selected and
is placed into the agenda. Because the rules have been sorted in decreasing order
based on their significance (number of examples they cover), it is only the very
first rule placed into the agenda that will be fired to determine the best algorithm
for the problem the user specifies. Since each rule provided by GOLEM to the
recommender is associated with a set of positive examples that are covered by the
rule, the recommender goes through the list of positive examples associated with
the fired rule and retrieves the example that has the most common features with
the user specified problem. This step aids in subsequent parameter estimation.

After the example/problem has been selected, the fact base of the recommender
is processed in order to provide the user with any required set of parameters for
which the user asks advice. The fact base consists of all the raw performance
data that are stored in the database. The recommender accesses this information
by submitting queries generated on the fly, based on the user’s objectives and
selections. If the user specified objectives cannot be met, then the system has to
decide what “best” answer to give the user. In order for the recommender to be able
to decide upon this issue, the user has to specify the weight to be placed on each
performance criteria when selecting the best method. Valid performance criteria
for the recommender are, among others, the accuracy, total or communication time,
efficiency and speedup. The user can a specify a set of weights for each of the above
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Fig. 14. PYTHIA II's top level window.

parameters in such a way that their sum equals one. For the recommender used in
the case study presented in the next section, the final step is the recommendation
of a certain method, machine, or number of processors, as the best method to use
to satisfy the given conditions. It also indicates what problem size should be used
to achieve the specified the accuracy within the time limitations imposed by the
user.

3.2.4 User Interface. The modular implementation of PYTHIA II has made it
possible to accomplish much of the work involved in knowledge discovery without
resorting to the graphical interface, and in some cases this is the preferred way of
completing a given task. For example,

(1) Creating database records for the problem population and experiments: the
SQL commands can be given directly inside the POSTGRES95 environment.

(2) Generating executable programs from the experiments: the program generator
is a separate process called from the problem execution environment which is
specific to the scientific software used to solve the problems. The process is
invoked with an argument list describing the I/O for the program generation,
and it may be called outside of PYTHIA II.

(3) Executing programs: the execution process is controlled by scripts invoked
by PYTHIA II. These scripts can also be called outside of PYTHIA II since
they simply operate on the generated program files which reside in a particular
directory.

(4) Collecting data: the data collector is called by PYTHIA II as a separate process,
and it is specific to the scientic software. Asin (2) above, this process is invoked
with an argument list describing its I/0.

With respect to the above items, the graphical interfaces that assist in those
tasks are most useful for knowledge engineers who are unfamiliar either with the
structure of PYTHIA II or with the SQL language used by POSTGRES95. In this
case, the interfaces provided by PYTHIA II'’s dbEdit and dataGEN are invaluable.

The graphical interface to the POSTGRES95 database is dbEdit. Each PYTHIA
IT record has a corresponding form which is presented to the user when records of
that type are selected for editing. The fields are tagged for error checking, and
every attempt is made to facilitate data specification. For example, many fields
require references to primary records, such as the experiment record which requires
the name of an equation, domain, boundary condition and associated parameter
records. In dbEdit, the specification of these fields is handled by selection boxes
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whose contents are determined by field typing. If the field type is equation, a
selection box displaying the current list of available equation records is presented,
allowing the user to choose an equation by point and click. This method of edit-
ing ensures the correctness of the specification and eliminates costly errors during
program generation.

Similarly, dataGEN facilitates the tasks involved in the data generation process,
and frees the user from worrying about details such as : where are the generated
programs stored, which scripts are available for the selected scientific software,
where is the raw output data generated by program execution located, what input
is required for invoking the data collection process, and so on. Users familiar with
the implementation of the system may prefer to call these processes on their own,
but when many users are involved in the (lengthy) data generation process, the
graphical interface is most useful.

dataMINE encompasses the statistical analysis of data in selected performance
records and the pattern matching process. Even for the most experienced users, it
is not possible to attempt either of these tasks outside of PYTHIA II. A template
query is used to extract the performance data of interest in order to generate in-
put for the statistical analyzer. This is accomplished within the graphical interface
by choosing the predicate records, and allowing dataMINE to build the query, ac-
cess perhaps hundreds of performance records to extract the identified fields, and
then build the required input file. The input specification for pattern matching is
equally difficult to build; it retrieves and matches scores of features across hundreds
of performance records, and filters ranking data from the statistical analyzer out-
put. In addition to carrying out essential data preparation tasks that cannot be
handled outside of the gui, dataMINE presents a simple menu system that walks the
user through the process of selecting the predicate, calling the statistical analyzer,
generating graphical profiles of the ranked methods, and calling the knowledge gen-
erator. As a bonus, dataMINE is integrated with DataSplash [Olston et al. 1998]
an easy-to-use integrated environment for navigating, creating, and querying visual
representations of data. DataSplash is a visualization system that has been built
on top of POSTGRES95, therefore interaction with PYTHIA II’'s DBMS was built
into it. The top level window of the PYTHIA II system is shown in Figure 14.

4. CASE STUDY : A RECOMMENDER FOR ELLIPTIC PDE SOFTWARE

To validate the design and implementation of PYTHIA II, a knowledge base was
generated for evaluating PELLPACK [Houstis et al. 1998] solvers based on perfor-
mance data produced by a population of 2-dimensional, singular, steady state PDE
problems. The algorithm recommendation problem for this domain can be formally
stated as follows:

Select an algorithm to solve
Lu=f on Q
Bu=g¢ on 09
so that relative error ¢, <  and time t, < T

where L is a second order, linear elliptic operator, B is a differential operator
involving up to first order partial derivatives of u, Q is a bounded open region in 2—
dimensional space, and @, T" are performance criteria constraints. In this study, we
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Problem Component | Generalized Forms | Parameterization |
Equation coefl(z,y) * Uzz + coef2(z,y) x Uyy | operator coefficients are
coef3(z,y) * Uy + coefd(z,y) * Uy specified in the database
coef5(z,y) * U = f(z,y) as parameter records and

right-hand-sides are specified
as Fortran routines in data
files referenced by the
database equation records.

Domain unit square, endpoints are specified in the
square [—1,1] x [—1,1] database as parameter
rectangle [0,.5] X [0,.75] records

rectangle [a,b] X [c, d]
rectangle [a,b] X [a + ¢, b+ ¢]
Boundary Conditions u = 0 on outer boundary true(x,y) is specified as

u = true(z, y) on outer boundary Fortran routines in data files
referenced by database
equation records

Table III. Required problem population for the case study.

| Module Type Module Names Performance Criteria
Grid 5x5,9x9,17x 17,33 x 33, 65 x 65
Discretizer 5-point star, hermite collocation
Indexer as is, red-black
Linear System Solver band ge, itpack-jacobi cg
Triple fft 9 point, dyakanov-cg, dyakanov-cg4
Solver sequence grid, 5-point star, as is, band ge error, elapsed time

grid, fit 9 point (orders 2,4,6)
grid, hermite collocation, as is, band ge
grid, dyakanov-cg

grid, dyakanov-cg 4

Table IV. Available methods and solver sequences for the case study.

restrict ourselves to rectangular domains. Accuracy is measured as the maximum
absolute error on the rectangular mesh divided by the maximum absolute value
of the PDE solution. Performance studies are conducted and the amount of time
required to obtain three levels of accuracy — 1073, 10~* and 10~® — are collected
by the PYTHIA II system.

Table IIT shows the general form of the problems which were included in the
study. In Table IV, the solver modules and solver sequences which were applied to
the problems are listed. Table V identifies the features of the problem components
used to drive the rules generation and form the basis for user inquiries to the
recommender. Table VI uses the “raw data” descriptions in Tables III and IV to
demonstrate how the recommender methodology was applied to the PELLPACK
case study.

Defining the PDE population and experiments required 21 equation records with
up to 10 parameter sets each, 3 rectangle domain records of differing dimensions,
5 sets of boundary conditions records, 10 grid records defining uniform grids from
coarse to fine, several discretizer, indexing, linear solver and triple records with
corresponding parameters, and a set of 40 solver sequence records defining the
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| Problem Component | Features

Equation first tier operator: Laplace, Poisson, Helmholtz, self-adjoint, general
second tier operator: analytic, entire, constant coefficients,

operator smoothness tier: constant, entire, analytic

right-hand-side tier : entire, analytic, singular(infinite),

singular derivatives, constant coefficients, nearly singular,

peaked, oscillatory, homogeneous, computationally complex
right-hand-side smoothness tier: constant, entire, analytic,
computationally complex, singular, oscillatory, peaked

Domain unit square,
[a,b] X [a 4+ z,b + z], where x can vary
[a,b] X [a 4 ¢, b+ c], where c is a constant

Boundary Conditions | U = 0 on all boundaries

AU = f on all boundaries

BU,, = f on some boundaries

AU + BU,, = f on some boundaries

constant coefficients, non-constant coefficients

Table V. Features for the problem population of the case study.

Phases Description Implementation
Determine Evaluate the efficiency and accuracy of a set of Manual
evaluation solution methods and their associated parameters
objectives with respect to elapsed time, error and problem size.
Data preparation (1) problem population: Table III POSTGRES95
(1) selection (2) measures: elapsed solver time, discretization error. SQL
(3) methods: Table IV Tcl/Tk
(2) pre-processing | (4) Generate performance data. PERL
Data Mining (1) Collect the data for error and time across all TCL/Tk
solvers, grid sizes PERL
(2) Use the method of least squares to develop linear In-house
approximations of time vs error across all grid sizes. statistical
Develop profiles of the methods for all problems, and software
rank the methods.
(3) Use the rankings and the problem features to GOLEM
identify patterns and generate rules.
Analysis of results | Domain experts ensure correctness of the results. Manual
Assimilation of Create an intelligent interface to utilize the knowledge CLIPS
knowledge to identify the “best method” with associated parameters

for user’s problems and computational objectives.

Table VI. Building a Recommender for the PELLPACK case study.

solution schemes. Using these components, 37 experiments were specified, each
defining a collection of PDE programs involving up to 35 solver sequences for a
given PDE problem.

The 37 experiments were executed sequentially on a SPARCstationb with 32MB
memory running Solaris 2.5.1 from within PYTHIA II’ s execution environment. All
37 test cases executed successfully, resulting in the insertion of over 500 performance
records into the database. The analyzer evaluated the solver performance based
on generated measures for time vs problem size and time vs error. The analyzer
rankings and problem features were passed to the rules generator which produced
logic-based rules governing method selection for PELLPACK solvers. The recom-
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Fig. 15: The pde 9-1 experiment record defines a class of 35 PDE programs. The selection
mechanism for experiment definition fields is shown for the equation specification.

mender was then used to predict the best method and estimate the corresponding
parameters for user specified features and performance criteria. Specifically, if an
end-user identified a problem with features such as “Poisson equation” with “com-
putationally complex” right-hand-side on a unit square having “mixed boundary
conditions”, and specified that the error should not exceed “10~*” with execution
time less than .5 CPU seconds, the recommender predicted the best grid size and
solver which satisfied the performance criteria for a problem with those features.
It also listed the expected error and execution time, and identified the “closest”
matching problem from the rules base.

The advantage of this demonstrator was that it corresponded to existing stud-
ies [Rice et al. 1981; Weerawarana et al. 1997; Houstis and Rice 1982], allowing
validation of the rules and predictions.

The POSTGRES95 database was populated with 44 records defining problems,
features, methods, and experiments. Each record had a corresponding form in the
PYTHIA II graphical interface which was used to create and edit the records. Three
record definitions are shown in Figures 6, 7, and 9. The dbEdit gui is the interface
to the database for editing problem, method and experiment records. A dbEdit
form corresponding to the experiment record in Figure 9 is shown in Figure 15.

The experiment record in Figure 15 defines 35 solver sequences for pde09 with
parameter set 1 on the unit square. The sequences cover five different grid sizes for
each of three triples (fft, dyakanov-cg and dyakanov-cg 4) and two discretizer-
solvers (5 point star and hermite collocation,paired with the direct band-ge
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Profiles for Pellpack Solvers

dyakanov-cg
T H Jptorder 6

el _fft 9pt order 4

T~ ferm collg bandge

log(error nodes)
N
s
y

2 15 -1 05 0 05 1 15 2 25 3
log(solver time)

Fig. 16. Solver profile graph for experiment pdel0-3 from the case study.

solver). Specification of equations, domains, parameters, solver sequences, etc for
experiment record editing is facilitated by the field typing mechanism described
earlier. Figure 15 demonstrates this with the selection of the equation and solver
sequences from the selection boxes as they appeared during the definition of exper-
iment 9-1.

After the experiment records were defined, dataGEN was used to select them
from the database and execute them. Each experiment represented up to 35 PDE
programs. When program execution was complete, the raw performance output was
located in a specified target directory, and the data collection facility was invoked
to extract data from the output and trace files and insert it in the performance
database. The dataMINE gui accessed the performance data according to the
specification of the predicate and profile records created for the case study. A
portion of the predicate record is shown in Figure 11. The predicate specified all
problems and methods so that the data available to the recommender for making
inferences based on user inquiries was as broad as possible. The analyzer used
this predicate to generate profiles and rankings for the seven PELLPACK solvers.
Figure 16 shows a profile graph of the seven solvers for pde10-7, and Figure 17 lists
the ranking produced by the analyzer for all solvers over all methods. The rankings
and features were used by GOLEM to define rules.

Example of rules mined by this process include:

R1: best (A,FFT6) :- dom_us(A), op_laplace(4).
R2: best(A4,P3C1C) :- rs_s(A), op_general(4).
R3: best(A,PS5) :- rs_s(A), smo_cc(A).
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The rank analysis produces the following comparison
listed in order from ’best’ to ’worst’:

The Linear Solver Ranks
(avg rank in parenthesis)

5pt star & bdge : 60 (1.67)
herm coll & bdge : 60 (1.67)
fft 9pt order 2 : 132 (3.67)
dyakanov-cg : 132 (3.67)
fft 9pt order 6 : 186 (5.17)
dyakanov-cg 4 : 192 (5.33)
fft 9pt order 4 : 246 (6.83)

Distribution of slopes for each Linear Solver

Linear Solver Average Minimum 1st Quart Median 3rd Quart Maximum
fft 9pt order 2 -1.896 -2.541 -1.896 -1.896 -1.529 -1.423
fft 9pt order 4 -3.958 -5.216 -3.958 -3.958 -3.095 -2.952
fft 9pt order 6 -2.944 -5.549 -2.944 -2.944 -1.701 -1.436
5pt star & bdge -1.007 -1.613 -0.989 -0.8025 -0.779 -0.5201
herm coll & bdge -0.9616 -1.098 -0.9885 -0.9015 -0.8858 -0.8327
dyakanov-cg -1.878 -2.021 -1.878 -1.878 -1.771  -1.721
dyakanov-cg 4 -2.534 -3.004 -2.534 -2.534 -2.405 -2.075

Fig. 17. Rankings for the PELLPACK solver case study.

The first rule R1, for instance, indicates that the method FFT6 is good for a
certain problem if the problem has a Laplacian operator and the domain under
consideration is a unit square?.

When the rules generation process was complete, we placed high-level inquiries to
the recommender regarding problem features and performance criteria. Figure 18
shows the recommender interface where users specify problem characteristics and
performance objectives. Fig. 19 details the recommendations made for a specific
problem instance and performance objectives. It can be seen that the recommen-

dation satisfies the desired criteria set by the user.

4.1 Knowledge Discovery

The rules discovered confirm the statistically discovered conclusion in [Houstis and
Rice 1982] that higher order methods are better for elliptic PDEs with singularities
(which was a subset of the population used in our study). They also confirm the
general hypothesis that there is a strong correlation between the order of a method
and its efficiency. More importantly, the rules impose an ordering of the various
solvers for each of the problems considered in this study. Interestingly, this ranking

2While these rules appear to use a hard-wired absolute ranking encoded by the best predicate,
they can be easily updated to reflect new data, via the cover heuristic detailed in Section 2.3. The
exact algorithm for effecting this ‘online’ capability is beyond the scope of this paper.
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No. | PDE First Method First Method Second Method Second Method
(from [Houstis and Rice 1982]) | (from PYTHIA II) | (from [Houstis and Rice 1982]) | (from PYTHIA II)
1 3-1 FFT6 FFT6 FFT2 FFT4
2 3-2 FFT6 FFT6 FFT4 FFT4
3 7-1 FFT6, FFT4 FFT6 — FFT4
4 8-2 FFT6 FFT6 FFT2 FFT4
5 9-1 FFT4 FFT4 FFT2 FFT2
6 9-2 FFT4 FFT4 FFT2 FFT2
7 9-3 FFT4 FFT4 FFT2 FFT2
8 10-2 FFT6 FFT6 FFT4 FFT4
9 10-3 FFT6 FFT6 FFT4 FFT4
10 10-4 FFT6 FFT6 FFT4 FFT4
11 10-7 FFT6 FFT6 FFT4 FFT4
12 11-2 FFT6 FFT6 FFT4 FFT4
13 11-3 FFT6 FFT6 FFT4 FFT4
14 11-4 FFT6 FFT6 FFT4 FFT4
15 11-5 FFT6 FFT6 FFT4 FFT4
16 13-1 DCG4, DCG DCG — DCG4
17 15-1 P3C1C P3C1C PS5 PS5
18 15-2 P3C1C P3C1C PS5 PS5
19 17-1 FFT6 FFT6 FFT4 FFT4
20 17-2 FFT6 FFT6 FFT4 FFT4
21 17-3 FFT6 FFT6 FFT4 FFT4
22 20-1 PS5 PS5 P3C1C P3C1C
23 20-2 PS5 PS5 P3C1C P3C1C
24 28-2 DCG DCG PS5, DCG4 PS5
25 30-4 PS5 P3C1C P3C1C P3C1C
26 30-8 P3C1C P3C1C PS5 P3C1C
27 34-1 DCG4 DCG4 DCG2, P3C1C DCG4
28 35-1 DCG4 DCG4 DCG2, P3C1C DCG4
29 36-2 PS5,P3C1C P3C1C — P3C1C
30 39-2 PS5 PS5 DCG4, DCG2 P3C1C
31 39-4 P3C1C PS5 PS5, DCG4, DCG2 P3C1C
32 44-2 P3C1C P3C1C PS5 P3C1C
33 44-3 P3C1C P3C1C PS5, DCG4, DCG2 P3C1C
34 47-2 FFT6 FFT6 FFT4 FFT4
35 49-3 P3C1C P3C1C PS5 PS5
36 51-1 PS5 PS5 P3C1C P3C1C
37 54-1 PS5 PS5 P3C1C P3C1C

Table VII: A comparison betwen two different rankings of problem solving modules for elliptic
PDEs. The third and fifth columns depict the subjective rankings made in an earlier study. The
fourth and sixth columns depict those inferred by our knowledge methodology. The correspondence
between these rankings is readily seen.
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Fig. 18. End-user interface for the Recommender in the PELLPACK solver study.

corresponds almost exactly with the subjective rankings published in [Houstis and
Rice 1982]. This shows that these simple rules capture much of the complexity of
algorithm selection in this domain. Table VII compares these results. There were
several other interesting inferences drawn. Whenever the DCG method is best, so
is DCG4. The rule that had the maximum cover from the data was the one which
stated that FFT6 is best for a PDE if the PDE has a Laplacian operator, homoge-
neous and Dirichlet boundary conditions and discontinuous derivatives on the right
side. This can also be seen from rule R1, which recognizes the significant presence
of a Laplace operator in a majority of the PDE population. Other rules also indi-
cated when a certain method is inappropriate for a problem. The FFT6 module,
for example is a ‘bad’ method whenever the problem has boundary conditions with
variable coefficients. There are many more such interesting observations and we
mention only the most interesting here. Finally, an approximate ordering was re-
quested for the overall population. This gave rise to the ordering — FFT6, FFT4,
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Fig. 19: A sample recommendation obtained from PYTHIA II. Notice that in addition to the
recommendation, PYTHIA II provides estimates of relevant criteria and also the closest matching
problem from the database.

FFT2, DCG4, DCG2, PS5. This is pertinent because this ranking corresponds
most closely to that for Poisson problems which formed the bulk of our population.
Furthermore, all the selections made by PYTHIA II are ‘valid’ (a selection is con-
sidered ‘invalid’ if the method is inappropriate for the given problem or if any of
the parameters do not apply correctly to the method). In prior research, accuracy
of algorithm selection was measured as the fraction of the valid selections that are
also correct (a correct selection is one where the selected method and parameters
does result in solutions satisfying the requested criteria). In overall, the rules from
this study performed best algorithm recommendation for 100% of the cases.

5. CONCLUSION

The PYTHIA II recommender system, modeled after a systematic performance
evaluation and testing methodology, facilitates the KDD process for manipulating
performance data related to scientific computing applications. Its architecture is
both flexible (allowing extension to newer domains) and scalable (providing a vari-
ety of options to the knowledge engineer for mining data, while storage and retrieval
issues are handled by an integrated DBMS). The modular approach subsumed by
the system maximizes the ability of an end-user to visualize the entire KDD process,
either in parts or as a whole. The high extensibility of the system is facilitated by
the large number of alternative paths available at every stage of the KDD process.

In future, we plan to augment the functionality of the system to support incre-
mental learning, distributed data mining techniques and mediating between mul-
tiple recommenders for the same problem. Some first steps in this direction are
presented in [Joshi et al. 1998]. In addition, we plan to explore recommendations
made using incomplete, uncertain and continually varying information.
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