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Abstract

Very often scientists are faced with the task of locating appropriate solution software
for their problems and then selecting from among many alternatives. In [Houstis
et al. 1991] we had proposed an approach for dealing with this task by “processing”
performance data of the targeted software. The validation of the approach is de-
scribed in [Weerawarana et al. 1997] and realized by a customized implementation
referred to as PYTHIA. This experience made us realize the high level of com-
plexity involved in the algorithmic discovery of knowledge from performance data
and the management of these data together with the discovered knowledge. To ad-
dress this issue, we present in this paper PYTHIA-II — a system which combines
a general knowledge discovery in databases (KDD) methodology and recommender
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system technologies to provide advice about scientific software/hardware artifacts.
The functionality and effectiveness of the system is demonstrated for two existing
performance studies using subsets of software from the PELLPACK library [Houstis
et al. 1998]. From the end-user perspective, PYTHIA-II allows users to specify the
problem to be solved and their computational objectives. In turn, the system (i)
selects the software resources available for the user’s problem, (ii) suggests param-
eter values, and (iii) provides phenomenological assessment of the recommendation
provided. For the development of “testing” software repositories, PYTHIA-II pro-
vides all the necessary facilities to set up database schemas for testing suites and
associated performance data. Moreover, it allows the easy interfacing of alternative
data mining and recommendation facilities. PYTHIA-IT is an open-ended system
implemented on public domain software and can be easily applied to any software
domain.

1. INTRODUCTION

Complex problems, whether scientific, engineering or societal, are most often solved
today by utilizing public domain or commercial libraries or some form of problem
solving environments (PSEs). Existing software modules are characterized by a
significant number of parameters affecting its efficiency and applicability that must
be specified by the user. This complexity is significantly increased by the num-
ber of parameters associated with the execution environment. Furthermore, one
can create many alternative solutions of the same problem by selecting different
software that implement the various phases of the computation. Thus, the task of
selecting the best software and the associated algorithmic/hardware parameters for
a particular problem or computation is often difficult and sometimes even impossi-
ble. In [Houstis et al. 1991] we proposed an approach for dealing with this task by
“processing” performance data obtained from “testing” software. The validation of
the approach is described in [Weerawarana et al. 1997] and realized by an imple-
mentation (referred to as PYTHIA) restricted to a specific performance evaluation
study. This experience made us realize the high level of complexity involved in the
algorithmic discovery of knowledge from performance data and the management of
these data together with the discovered knowledge. To address the complexity issue
together with scalability and portability of this approach, we present a knowledge
discovery in databases (KDD) methodology [Fayyad et al. 1996] for testing and
recommending scientific software. PYTHIA-II is a system with an open software
architecture implementing the KDD methodology, which can be used to build a
Recommender System (RS) for specific domains of scientific software/hardware ar-
tifacts. In this paper, we describe the PYTHIA-II architecture and an instance of
an RS for PDE software which utilizes the PYTHIA-II infrastructure.

Given a problem description from a known class of problems, along with some
performance criteria, PYTHIA-II provides a knowledge based technology for the
selection of the most efficient software/machine pair and estimates values for the as-
sociated parameters involved. It has the ability to make recommendations by com-
bining attribute-based elicitation of specified problems and matching them against
those of predefined “dense” population of similar types of problems. We describe
two case studies that cover software for elliptic partial differential equations found
in the problem solving environment PELLPACK [Houstis et al. 1998]. The ini-
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Fig. 1: The recommender component of PYTHIA-IT implemented as a web server providing advice
to users.

tial version of PYTHIA-II is built as a foundational system that can be enlarged
into a national software recommender service for the entire scientific community by
making it available as a network server.

We now describe a sample PYTHIA-IT session (Figure 1). Suppose that a sci-
entist or engineer uses PYTHIA-II to find software that solves an elliptic partial
differential equation (PDE). The system uses this broad categorization (and more
subdivisions such as linear, first order, if necessary) to direct the user to a form-
based interface that requests more specific information about features of the prob-
lem and the user’s performance constraints. Figure 1 illustrates a portion of this
scenario where the user provides features about the operator, right side, domain,
and boundary conditions - integral parts of a PDE - and specifies a time constraint
(measured on a Sun SPARCstation 20, for instance) and an error requirement to
be satisfied. As shown, the recommender interface contacts the PYTHIA-II (web)
server on the user’s behalf which, in turn, interfaces with a domain specific RS.
The RS uses the knowledge acquired by the learning methodology presented in this
paper to perform software selection. Having determined a good algorithm, the RS
consults databases of performance data to determine the solver parameters, such as
grid lines to use with a PDE discretizer. Estimates of the time and accuracy with
the recommended algorithm are also presented. Note that the recommender does
not involve the larger databases used in the KDD process, it only accesses special,
smaller databases of knowledge distilled from the KDD process.

The paper is organized as follows. Section 2 describes a general methodology
for selecting and recommending scientific software implemented in the PYTHIA-II
system. A fundamental software architecture for an RS based on the PYTHIA-II
approach is presented in Section 3. For clarity of the presentation only, the func-
tionality of PYTHIA-II is sometimes described in terms of specific targeted PDE
software. Towards this end, we include in Section 4 a database schema appropriate
for building an RS for elliptic PDE software from the PELLPACK library. The
description of the data management subsystem of PYTHIA-II is presented in Sec-
tion 5. Section 6 outlines the knowledge discovery components of PYTHIA-II. The
data flow in PYTHIA-II is illustrated in Section 7. The results of a validation of
PYTHIA-II system for two case studies can be found in Sections 8 and 9.
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| Phases Description
Determine Identify the computational objectives for which the performance
evaluation evaluation of the selected scientific software is carried out.
objectives
Data preparation (1) Identify the evaluation benchmark, its problem features, experiments
(1) selection (i.e., population of scientific problems for the generation of performance
data).

(2) pre-processing | (2) Identify the performance indicators to be measured.

(3) Identify the actual software to be tested, along with the numerical
values of their parameters.

(4) Generate performance data.

Data mining (1) Transform the data into an analytic or summary form.

(2) Model the data to suit the intended analysis and data format
required by the data mining algorithms.

(3) Mine the transformed data to identify patterns or fit models to the
data; this is the heart of the process, and is entirely automated.

Analysis of results | This is a post-processing phase done by knowledge engineers and
domain experts to ensure correctness of the results.

Assimilation of Create an intelligent interface to utilize the knowledge and to
knowledge identify the scientific software (with parameters) for user’s

problems and computational objectives.

Table I: A methodology for building an RS. This layered methodology is very similar to procedures
adopted in the performance evaluation of scientific software.

2. A RECOMMENDER METHODOLOGY FOR SCIENTIFIC SOFTWARE

An RS can be viewed as an intelligent system that uses stored information (user
preferences, performance data, artifact characteristics, cost, size, ...) of a given
class of artifacts (software, music, can openers, ...) to locate and suggest artifacts
that will be of interest [Ramakrishnan 1997; Ramakrishnan et al. 1998; Resnik
and Varian 1997]. We define an RS for software/hardware artifacts as a system
that uses stored artifact performance data on a population of predefined problems
and machines to locate and suggest efficient artifacts for the solution of ‘similar’
problems. Recommendation becomes necessary when user requests or objectives
cannot be properly represented as ordinary database queries. In this paper we
present an RS, PYTHIA-II, that assists scientists in selecting suitable software for
the problem at hand, in the presence of practical constraints on accuracy, time and
cost. Following, we describe the complexity of this problem, the research issues
that must be addressed, and a methodology for resolving them.

Awareness of the algorithm selection problem has its origins in an early paper by
Rice [Rice 1976]. Even for routine tasks in computational science, this problem is
ill-posed and quite complicated. The difficulty in algorithm selection is primarily
due to the following factors:

—The space of applicable algorithms for specific problem subclasses is inherently
large, complex, ill-understood and often intractable to explore by brute-force
means. Approximating the problem space by a representation (feature) space
also introduces an intrinsic error in the modeling sense.

—Depending on the way the problem is (re)presented, the space of applicable algo-
rithms changes; some of the better algorithms sacrifice generality for performance



-- table no 1
create table FEATURE (

name text, -- record name (primary key)

nfeatures integer, -- no. of attributes identifying this feature
features text[], -- numeric/symbolic/textual identification

forfile text -- file-based feature information

)

Fig. 2. Schema for the feature record.

-- table no 3

create table EQUATION_FEATURE (

name text, -- relation record name (primary key)

equation  text, -- name of equation with these features (foreign key)
feature text -- name of record identifying features (foreign key)
)

Fig. 3: Schema for an example feature relation record; foreign keys identify the relation between
an equation (PDE problem definition object) and its features

and have specially customized data structures and routines fine tuned for partic-
ular problems or their reformulations.

—Both specific features of the given problem and algorithm performance infor-
mation need to be taken into account when deciding on the algorithm selection
strategy.

—A mapping from the problem space to the good software in the algorithm space
is not the only useful measure of success; one should also be able to obtain useful
indicators of domain complexity and behavior, such as high level qualitative
information about the relative efficacies of algorithms.

—There is an inherent uncertainty in interpreting and assessing the performance
measures of a particular algorithm for a particular problem. Minor differences
in algorithm implementations can produce large differences in performance mea-
sures that render relying on purely analytic estimates impractical.

—Distribution and evolution of the knowledge corpus for problem domains makes
it difficult to assimilate relevant information; techniques are required that allow
distributed recommender systems to coexist and cooperate together.

A methodology for building an RS for scientific artifacts which uses a knowledge
discovery in databases (KDD) process is defined in Table I. Its implementation,
PYTHIA-II, is discussed in Section 3. Assuming a “densely” distributed set of
benchmark problems from the targeted application domain, this methodology uses
a three-pronged strategy: feature determination of problem instances, performance
evaluation of scientific software, and the automatic generation relevant knowledge
for an RS from such data. Following, we address each of these aspects.

2.1 Problem Features



Field | Value Field | Value

name | opLaplace name | opLaplace pde #3
nfeatures| 1 equation | pde #3

features | {"Uxx + Uyy (+Uzz) = £"} feature | opLaplace

Fig. 4: Instances of a feature record (left) and a relation record (right) showing the correspondence
between the equation pde #3 and its feature opLaplace.

The applicability and efficiency of algorithms/software depends significantly on
the features of the targeted problem domain. Identifying and characterizing prob-
lem features of the problem domain is a fundamental problem in software selection.
Even if problem features are known, difficulties arise because the overall factors
influencing the applicability (or lack) of an algorithm in a certain context are not
very well understood. The way problem features affect methods is complex, and
algorithm selection might depend in an unstable way on the features. Even when
a simple structure exists, the actual features specified might not properly reflect
the simplicity. For example, if a good structure is based on a simple linear com-
bination of two features f1 and f2, the use of features such as f1 * cos(f2) and
2 * cos(f1) might not reflect the underlying mapping well. Furthermore, a good
selection methodology might fail because the features are given an attribute-value
meaning and assigned measures of cardinality in a space where such interpretations
are not appropriate. Many attribute-value approaches (such as neural networks)
routinely assign value-interpretations to numeric features (such as 1 and 5), when
such values can only be interpreted in an ordinal/symbolic sense. In the current
implementation of PYTHIA-II, this phase is implemented by the knowledge engi-
neer.

Figures 2 and 3 show the database schema for a feature and a feature relation,
respectively. The relation record shows how PYTHIA-II represents the connection
between problem definition entities (e.g., PDE equations) and their features. Some
instances of these records for the PDE case study are shown in Figure 4.

2.2 Performance Evaluation

The performance evaluation phase implemented in PYTHIA-II is based on well
established methodologies for scientific software [Rice 1969; Boisvert et al. 1979;
Casaletto et al. 1969; Dodson et al. 1968; Dyksen et al. 1984; Houstis et al. 1978;
James and Rice 1967; Konig and Ullrich 1990; Moore et al. 1990; Rice 1983; Rice
1990]. While there are many important factors that contribute to the quality of
numerical software, we illustrate our ideas using speed and accuracy. Even though
more important (and more difficult to characterize) attributes such as reliability,
portability, documentation, etc., are ignored in this discussion, our methodology can
handle such features as well by utilizing the data storage scheme used in PYTHIA-
II.

Accuracy may be measured by several means; we chose either a function of the
norm of the difference between the computed solution and the true solution or an
estimate of the error guaranteed by an approximation algorithm. Speed is normally
measured by the time required to execute the appropriate software/routines in some



execution environment. The PYTHIA-II problem evaluation environment ensures
that all performance evaluations are made in a consistent manner; their outputs
are automatically coded in the form of predicate logic formulas. We deliberately
resort to attribute-value encodings when the situation demands it; for instance,
the representation of linearized performance profiles for solvers is useful to obtain
interpolated values of grid and mesh parameters for PDE problems.

2.3 Reasoning and Learning Techniques for Generating Software Recommendations

There are many approaches to generate recommendations for artifacts. For software
selection, we have adopted one that is based on a multi-modal learning approach.
Multimodal reasoning methods integrate different Al approaches to leverage their
individual strengths. The PYTHIA-II system is a general framework enabling the
integration of a range of reasoning and learning techniques. We have explored and
implemented two such strategies: Case-Based Reasoning (CBR) [Joshi et al. 1996]
and inductive logic programming (ILP) [Bratko and Muggleton 1995; Dzeroski
1996; Muggleton and Raedt 1994]. In the remainder of this section, we describe
the CBR and ILP approaches and explain their use. Such learning and reasoning
systems can typically be characterized as either ‘lazy learning’ or ‘eager learning’
paradigms.

CBR systems obey a ‘lazy-learning’ paradigm in that learning consists solely of
recording data from past experiments to help in future problem solving sessions.
(This gain in simplicity of learning is offset by a more complicated process that
occurs in the actual recommendation stage.) A wealth of evidence from psychology
suggests that people compare new problems to ones they have seen before, using
some metric of similarity to make judgements. They use the experience gained in
solving ‘similar’ problems to devise a strategy for solving the present one. This
strategy might involve a simple retrieval of a strategy (that has worked well in
the past), tailoring a stored case to the situation at hand, and/or predictions of
the likely outcome if a certain selection is followed. In addition, CBR systems can
exploit a prior: domain knowledge to perform more sophisticated analyses even if
pertinent data is not present. The original PYTHIA system utilized a rudimentary
form of case-based reasoning using a characteristic-vector representation for the
problem population. Instance-based approaches such as statistical nearest neighbor
selection also form part of the CBR landscape.

ILP systems, on the other hand, are an ‘eager mechanism’ in that they attempt
to construct a predicate logic formula so that all positive examples of good recom-
mendations provided can be logically derived from the background knowledge, and
no negative example can be logically derived. The advantages of this approach lie
in the generality of the representation of background knowledge. ILP techniques
are also useful in distinguishing between the various features of the problem do-
main as being suitable for representation vs. discrimination. Formally, the task in
algorithm selection is: given a set of positive exemplars and negative exemplars of
the selection mapping and a set of background knowledge, induce a definition of
the selection mapping so that every positive example can be derived and no nega-
tive example can be derived. While the strict use of this definition is impractical,
an approximate characterization, called the cover, is utilized which places greater
emphasis on not representing the negative exemplars as opposed to representing



the positive exemplars. Techniques such as relative least general generalization and
inverse resolution can then be applied to induce clausal definitions of the algorithm
selection methodology. This forms the basis for building RS procedures using banks
of selection rules.

ILP is often prohibitively expensive and the standard practice is to restrict the
hypothesis space to a proper subset of first order predicate logic. A first restric-
tion to function free horn clauses makes the problem decidable. Most commercial
systems (like Golem and PROGOL [Muggleton 1995]) further require that back-
ground knowledge be ground; meaning that only base facts can be provided as
opposed to intensional information. This still renders the overall complexity expo-
nential. In PYTHIA-II, we investigate the effect of domain specific restrictions on
the induction of hypotheses and analyze several strategies. First, we make use of
syntactic and semantic restrictions on the nature of the induced methodology. An
example of a syntactic restriction would be that a PDE solver should first activate
a discretizer before a linear system solver (a different order of PDE solver parts
does not make sense). An example of a semantic restriction is consistency checks
between algorithms and their inputs. Second, we incorporate a generality ordering
to guide the induction of rules. This ordering is used to prune the search space for
generating plausible hypotheses and to aid in abduction. Finally, since the software
architecture of the domain specific RS is augmented with a natural database query
interface, we utilize this aspect to provide meta-level patterns for rule generation.

PYTHIA-II also employs more restricted forms of eager-learning paradigms, such
as the ID3 (Induction of Decision Trees) [Quinlan 1986] system. It is a supervised
learning system for top-down induction of decision trees from a set of examples.
Algorithms for inducing decision trees follow a greedy divide-and-conquer approach
and are outlined as follows:

—Begin with a set of examples called the training set, T. If all examples in T belong
to one class, then stop.

—Consider all tests that divide T into two or more subsets. Score each test accord-
ing to how well it splits up the examples.

—Choose “greedily” the test that scores the highest.

—Divide the examples into subsets and run this procedure recursively on each
subset.

A decision tree is a tree-like knowledge representation structure where: (a) every
internal node is labeled with the name of one of the predicting attributes; (b)
the branches coming out from an internal node are labeled with values of the
attribute in that node; (c) every leaf node is labeled with a class (i.e., the value of
the goal attribute). The training examples are tuples, where the domain of each
attribute is limited to a small number of values, either symbolic or numerical. The
ID3 system uses a top-down irrevocable strategy that searches only part of the
search space, guaranteeing that a simple — but not necessarily the simplest — tree
is found. A simple tree can be generated by a suitable selection of attributes. In
ID3, an information-based heuristic is used to select these attributes. The heuristic
selects the attribute providing the highest information gain, i.e., the attribute which
minimizes the information needed in the resulting subtrees to classify the elements.
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Fig. 5: The system architecture of PYTHIA-II. The recommender component consists primarily
of the recommender system interface and the inference engine subsystems. The KDD component
consists of the remaining subsystems (knowledge engineer interface down to the database layer).

3. PYTHIA-1I: A RECOMMENDER SYSTEM FOR SCIENTIFIC SOFTWARE

In this section we detail the software architecture of a domain specific RS, PYTHIA-
IT (see Figure 5) based on the recommendation methodology and its components
discussed above. Its design objectives include (i) modeling domain specific data
into a structured representation as expressed by a database schema, (ii) providing
facilities for the generation of system specific performance data by using simulation
techniques, (iii) automatically collecting and storing this data, (iv) summarizing,
generalizing, and discovering hidden patterns/rules that capture the behavior of
the scientific software system by expressing them in a high-level logic-based repre-
sentation language, and finally (v) incorporating them into the selected inference
engine system.
The hierarchical architecture of the system consists of four layers:

—user interface layer
—data generation, data mining, and inference engine layer
—relational engine layer, and

—database layer.

The database layer provides permanent storage for the problem population, the
performance data and problem features, and the computed statistical data. The
next layer is the relational engine which supports an extended version of the SQL
database query language and provides the required functionality for the stored data
to be accessible to the upper layers. The third layer consists of three subsystems:
the data generation system, the data mining system, and the inference engine.
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create table EQUATION (

name text, -- record name (primary key)

system text, -- software that solves equations of this type
nequations integer, -- number of equations

equations text[], -- text describing equations to solve

forfile text -- source code file (used in equation definition)

)5

Fig. 6: Equation records list the equations; terms are defined using the syntax of the scientific
software.

The data generation system accesses the records defining the problem population
and procesess them within the problem execution environment, invoking integrated
scientific software for solving the problem and generating performance data. The
statistical data analysis module and the pattern extraction module comprise the
data mining subsystem. The statistical analysis module is a prototype software
implementation of a non-parametric statistical method applied to the generated
performance data. PYTHIA-II integrates a variety of publicly available pattern
extraction tools adhering to the different paradigms implemented by various soft-
ware packages, such as relational learning, attribute value-based learning, as well
as instance based learning techniques. This design allows for pattern finding in
diverse domains of features like nominal, ordinal, numerical, etc.

In the highest layer, a graphical user interface allows the knowledge engineer to
exploit the capabilities of the system for generating knowledge as well as query the
system for facts stored in the database layer. The recommenderis the RS (end-user)
interface, and includes the inference engine. This component of the RS uses the
knowledge generated by the lower layers, encoding it appropriately as a knowledge
base for an expert system. The facts generated by the knowledge discovery process
and stored in the database drive the inference process, allowing the recommender to
answer domain specific questions posed by end users. The architecture of PYTHIA-
IT is extensible, with well defined interfaces among the components of the various
layers.

4. SAMPLE PYTHIA-1I INSTANTIATION

For a better understanding of the functionality and implementation of PYTHIA-IT
components and the data flow among them, we describe a database schema spec-
ification used for producing a RS for elliptic PDE software from the PELLPACK
library. The components can easily be modified for other domains of scientific
software.

—Problem Population. The (atomic) entities which describe the PDE problems
include equation, domain, boundary_conditions and initial_conditions. Field at-
tributes for these entities must be defined in a manner consistent with the syntax
of the targeted scientific software. Solution algorithms are defined by calls to
library modules of the software; the modules are represented by entities which
include grid, mesh, decompose, discretizer, indexer, linear_system_solver, and
triple. In addition, the sequences entity contains an ordered listing of all modules
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create table SEQUENCES (

name text, -- record name (primary key)

system text, -- software that provides the solver modules

nmod integer, -- number of modules in the solution scheme

types text[], -- array of record types (e.g., grid, discr, solver)
names text[], -- array of record names (foreign key)

parms text[] -- array of module parameters (foreign key)

)

Fig. 7: A solver sequence record lists the order of module processing to solve a PDE problem; the
sequence is translated to library calls from software associated with the named system.

Field | Value
name | pde #39
system | pellpack

nequations| 1
equations | {"uxx + uyy + ((1.-h(x)#**2*u(x,y)**2)/(&b))u = 0"}
forfile | /p/pses/projects/kbas/data-files/fortran/pde39.eq

Field | Value

name | uniform 950x950 proc 2 jacobi cg

system| pellpack

nmod | 6

types | {"grid","machine","dec","discr","indx","solver"}

names | {"950x950 rect","machine_2","runtime grid 1x2",
"6-point star",'"red black","itpack-jacobi cg"}

parms | L', e e vn e i tmax 20000}

Fig. 8. Instances of equation and sequence records from the PDE benchmark study.

used in the solution process of a PDE problem. Miscellaneous entities required
for the benchmark include output, options and fortran_code. Figures 6 and 7
show the schema for the equation and sequences records, respectively. Instances
of an equation and sequence record for the PDE population are shown in Figure
8. The equation field attribute in the equation record uses the syntax of the
PELLPACK PSE. The &b in the specification is for parameter replacement and
the forfile attribute provides for additional source code to be attached to the
equation definition. The sequences record shows an ordered listing of the module
calls used to solve a particular PDE problem. For each module call in the list,
the sequence identifies the module type, name and parameters.

—Features. An explanation of the features and their database representation is
given in Section 2.1.

— Ezperiments. The experiment is a derived entity which identifies a specific PDE
problem and lists a collection of sequences to use in solving it. Generally, the
experiment covers a range of solution algorithms with varied parameters; it is
translated to a collection of driver programs which are executed to produce per-
formance data corresponding to the solution algorithms and execution platform.
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create table EXPERIMENT (

name text, -- record name (primary key)

system text, -- software identification used for program generation
nopt integer, -- number of options

options text[], -- array of option record names (foreign key)

noptparm integer, -- number of parameter specific options

optparm text[], -- array of option record names

equation  text, -- equation record which defines the equation
neqnparm integer, -- number of equation parameters

eqnparm text[], -- array of equation parameter names

domain text, -- domain record on which the equation is defined
ndomparm  integer, -- number of domain parameters

domparm text[], -- array of domain parameter names

bcond text, -- boundary condition record

nbcparm integer, -- number of bcond parameters

bcparm text[], -- array of bcond parameter names

nparm integer, -- number of parameters applied across all definitions
parm text[], -- array of problem-wide parameters (no. of programs)
sequences text[], -- names of the sequence records containing soln. schemes
nout integer, -- number of output records

output text[], -- array of output record names

nfor integer, -- number of source code files to include

fortran text[] -- names of the files to include

)

Fig. 9: The experiment record specifies the components of a PDE problem and identifies the
collection of sequences to use in solving it.

See Figure 9 for the schema definition.

—Rundata. The rundata schema specifies the targeted hardware platforms, their
characteristics (operating system, communication libraries, etc) and execution
parameters. The rundata and experiment record fully specify an instantiation of
performance data.

—Performance Data. The performance schema is a very general, extensible rep-
resentation of data generated by experiments. An instance of performance data
generated by the PDE benchmark is shown in Figure 10.

—Knowledge-related Data. Processing for the knowledge-related components of
PYTHIA-II is driven by the profile and predicate records. These schema rep-
resent the set of experiments, problems, methods and features which should be
considered for analysis. An instance of the predicate schema is given in Figure
11.

—Derived Data. Data resulting from the data mining of the performance database
is stored back into the profile and predicate records. This data is processed by
visualization and knowledge generation tools.

5. DATA MODELING AND MANAGEMENT COMPONENTS OF PYTHIA-II

The quantity of information generated and manipulated by PYTHIA-II calls for a
powerful and adaptable database and database management system with an open



Field Value

name pde54 dom02 fd-itpack-rscg SP2-17
system pellpack

comp_db linearalgebra

composite_id pde54 domain 02 fd-itpack-rscg
pid 1432

17

|
|
|
|
|
perfind_set | pellpack-std-par-grd
|
sequence_no
|
|
|
|

eqparms pde #54 parameter set 5

solverseq 950x950 proc 4 reduced system cg

rundata IBM SP2 with 18 compute nodes

nfeature 5

featurenames | {"matrix symmetric", 'domain type",
"boundary points', "boundary pieces",

"problem type"}

featurevals | {"no", "non-rectangular",'3800","8", "FD"}

nperf |1

perfnames | {"number of iterations"}

perfvals | {"830"}

nproc | 4

nperfproc | o

nperfproc2 | o

nmod | 6

modnames | {"domain processor",'decomposer",
"discretizer',"indexer'","solver"}

ntimeslice | 2

timeslice | {"elapsed","communication"}

time | {{{"3.1600001","0"},{"2.3499999" ,"0"},{"'4.1900001" ,"0"},

{"0.11","0"}, {"135.0400043","1.2499995"}},

{{"3.1300001","0"},{"2.46","0"},{"3.8900001" ,"0"},
{"0.09","0"},{"135.4500024" ,"36.74049"}},

{{"3.1300001","0"},{"2.47","0"},{"3.9100001" ,"0"},
{"0.08","0"},{"135.5499933" ,"37.1304893"}},

{{"3.1700001","0"},{"2.03","0"},{"4.1399999" ,"0"},
{"0.04","0"},{"136.1499939","88.7300339"}}}

ntotal | 4

total | {"150.1600037","149.9700012","150.0200043",'149.6300049"}
nmemory | 4

memorynames | {"number of equations", "x grid size","y grid size",
"problem size"}

memoryvals | {"224676","950","950","902500"}

nerror | 3

errornames | {"max abs error","L1 error","L2 error"}

errorvals | {"0.0022063255","0.00011032778","0.00022281437"}

Fig. 10. An instance of performance data from the PDE benchmark.

architecture. PYTHIA-II’s operational strength relies on the data modeling that
supports the data generation, data analysis, automatic knowledge acquisition and
inference process. The design requirements of the two lower level layers of the
system’s architecture can be summarized as follows:
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Field | Value

name | PELLPACK Solution Methods Study
reference | pellpack

num_rankings | 1

max_num_blocks| 37

prof_recs | {{""pde3-1","pde3-2","pde7","pde8-1","pde8-2" ' pde8-4",
"pde9-1", "pde9-2'", "pde9-3", 'pdel0-2", "pdel0-3"}}

best | method

nbest | 7

bestlist {"fft 9pt order 2" ,"fft 9pt order 4","fft 9pt order 6",
"5point star & bandge', '"herm coll & bandge",

"dyakanov-cg'", ''dyakanov-cg 4"}
featurelist | {"operator","right-hand-side",'domain","bconds","matrix"}
possiblevalues| {{"opLaplace",'"opPoisson",'"opHelmholtz","opGeneral"},
{"rhsEntire","rhsConstCoeff", "rhsSingular", "rhsAnalytic"}}
recordlist | {"equation",'"equation",'domain","bcond",'"perfdata'"}

indexlist | {"featurevals[1]","featurevals[5]"}

Fig. 11. Predicate record from the PDE benchmark.

—to provide storage for the problem population (input data to the execution envi-
ronment) in a structured way, and to keep track of the population parameters,
features and constraints,

—to support seamless data access by the user through a graphical interface or by
a scripting language,

—to support fully extensible functionality for an environment that keeps changing
not only in the size of the data but also in the schema.

The selected system, POSTGRES95 [Stonebraker and Rowe 1986], is an object-
oriented, relational DBMS which supports complex objects and which can easily be
extended to new application domains by providing new data types, new operators,
and new access methods to the user. It also provides facilities for active databases
(i.e., alerters can send a message to a user calling for attention to a problem,
and triggers can propagate updates in the database to maintain consistency) and
inferencing capabilities including forward and backward chaining. It supports the
standard SQL language with a number of extensions, and programming interfaces
for C, Perl, Python, and Tcl.

PYTHIA-II’s database is designed so its relational data model offers an abstrac-
tion of the structure of the problem population. This abstraction is (and must
be) domain dependent, since the relational model defines benchmark applications
from a selected domain which are executed to produce performance data. The
abstraction of a standard PDE problem includes the PDE system, the boundary
conditions, the physical domain and its approximation in a grid or mesh format,
a possible decomposition of the discrete or continuous domain for parallel execu-
tion, various solution modules (e.g., a discretizer or linear system solver), output
modules, as well as parameter sets for any of these problem components. Each of
the PDE problem specification components constitutes a separate entity set. In
the relational model, each entity set is mapped into a separate table or relation.
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Apart from these tables; a number of interesting static or dynamic interactions
among entities can also be modeled in the relational model by tables representing
relationships.

In a higher level of abstraction, we use an explicit hierarchy of flat tables to cope
with batch execution of experiments and performance data collection, aggregate
statistical analysis, and data mining. The ezperiment table is introduced as an
intermediate virtual entity that represents a large number of problems in the form
of sequences of problem components to be processed at one time by the execution
environment for generating performance data. A profile table collects sets of perfor-
mance data records and profile specification information required by the analyzer.
A predicate table is another virtual entity that identifies a collection of profile and
feature records needed for data mining.

In case of the RS for elliptic PDE software considered in the previous section,
the current problem population is defined by 13 problem specification tables (equa-
tion, domain, bcond, grid, mesh, dec, discr, indx, solver, triple, output, param-
eter, option) and 21 relationship tables (including equation-discr, mesh-domain,
parameter-solver, etc). Additional tables define problem features and execution
related information (machine and rundata tables). In all, 44 table definitions are
used to configure the database for PYTHIA-II. Sections 8 and 9 give some examples
of these tables definitions within the context of the two case studies considered.

6. KNOWLEDGE DISCOVERY COMPONENTS OF PYTHIA-II

This section describes the functionality of the components of PYTHIA-II contained
in the top two layers of Figure 5.

6.1 Data Generation

Information in the performance database drives PYTHIA-II’s data analysis and rule
generation. The performance database may be a pre-existing store of performance
measures or the data may be produced by executing scientific software within the
problem execution environment. PYTHIA-II is independent of the characteristics
and functionality of the software, and it imposes no requirements or restrictions
on the internal operation of the software. In fact, it allows the scientific software
to operate entirely as a black box. There are, however, three 1/O requirements
that must be met by software to be integrated into PYTHIA-II. This section de-
scribes these requirements and demonstrates how the PELLPACK software satisfies
them. PELLPACK is currently the only scientific software available through the
execution environment; it has been used successfully to generate many thousands
of performance data records.

First, it must be possible to define the input to the scientific software, (i.e.,
the problem definition) using only the information contained in an experiment
record. The translation of an experiment into an executable program should be
handled by a front-end converter written specifically for the software. Its task is
to extract the necessary information from the experiment record, and generate the
files or drivers required by this software. In the case of PELLPACK, the experiment
record is translated to a .e file, which is the PELLPACK language definition of the
PDE problem, the solution scheme, and the output requirements. The converter is
written in Tcl and consists of about 250 lines of code. After the .e file is generated,
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the standard PELLPACK preprocessing programs convert the .e file to a Fortran
driver and link the appropriate libraries to produce an executable program.

The second requirement is that the scientific software be able to operate in a
“batch” mode when executing PDE programs. In the PELLPACK case, Perl scripts
are used to execute PELLPACK programs, both sequential and parallel, on any of
the supported platforms. Whatever the number of “programs” defined by a single
experiment, that number of programs must be processed and executed without
manual intervention.

Finally, the scientific software must produce output files containing values for
performance measures that can be used by PYTHIA-II to evaluate the perfor-
mance of the program. PYTHIA-IT does not require any special format since a
post-processing program must be written specifically for the software to handle the
conversion of the generated output into performance records. Each program execu-
tion should result in the insertion of one performance record into the performance
database. The PELLPACK data collection program is written in Tel (350 lines
of code) and Perl (300 lines of code), and is responsible for creating performance
records that represent the data produced by PELLPACK program executions.

The execution environment is implemented in a modular and flexible way, allow-
ing any or all of the data generation phases (program generation, program execu-
tion, data collection) to take place inside or outside of PYTHIA-II. This process
is domain dependent since it accesses the domain dependent problem definition
records, executes programs by invoking domain specific software and collects data
by processing domain specific output files.

6.2 Data Mining

Data mining is the key part of KDD and encompasses the process of extracting
and filtering performance data for statistical analysis, generating solver profiles and
ranking them, selecting and filtering data for pattern extraction, and generating the
knowledge base. The two components involved in this process are the statistical
analysis module (analyzer) and the pattern extraction module.

PYTHIA-II runs the analyzer as a separate process, sending it an input file
and a set of parameters for output specification. Since the call to the analyzer is
configurable, data analyzers can easily be integrated into the system. The statistical
analyzer is independent of the problem domain since it operates on the fixed schema
of the performance records. The current analyzer was developed in-house.

The task of the statistical analyzer is to assign a ranking to a set of algorithms for
a selected problem population based on a priori determined performance criteria.
It assumes that the algorithms are executed on the selected problems, and that
the resulting performance measures for each execution are collected and inserted in
the database. The analyzer accesses the database to extract the performance data
based on the specification of a selected predicate record.

A predicate record defines the complete set of analyzer runs which are to be
used as input for a single invocation of the rules generator. The predicate fields
of interest to the analyzer are (1) the list of algorithms to rank, and (2) a profile
matrix, where each row represents a single analyzer run and the columns identify
the profile records to be accessed for that run. Each profile record specifies how
the analyzer should gather and assess the performance measures produced by one
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Algorithm 1 [ Algorithm 2 [ --- | Algorithm k
Problem 1 X11 X12 Xlk
Problem 2 Xo1 Xoo | Xok
Problem n Xn1 X0 | Xk
Rank Rl R2 e Rk
Average Rank Re1 Reo coo | Rek

Table II: Algorithm ranking table based on Friedman Rank Sums using the two-way layout. X
is the performance of algorithm j on problem ¢ and R; and R,; are the rank measures.

problem execution. Table II shows how the analyzer interprets one row of the
predicate’s profile matrix. The table columns are the specified algorithms, and
the table rows are the problems represented by the profiles specified in a single
row of the predicate’ s profile matrix. The X;; are performance values (see below)
computed by the analyzer based on the profile record specification for problem i
and algorithm j.

The process for ranking the algorithms uses an analysis for multiple compar-
isons and contrast estimators based on Friedman rank sums. The two-way layout
associated with distribution-free testing is shown in Table II, which assumes nk
data values from each of k algorithms for n problems. This assumption is not
strictly necessary; the analyzer can “fill in” missing values using various methods,
for example, averaging values in the algorithm column. The ranking proceeds as
follows:

—VFor each problem 7 rank the algorithms’ performances. Let r;; denote the rank
of Xj; in the joint rankings of Xj1,...X;; and compute R; = 2?21 Tij.

—Let R,; = % where R; is the sum over all problems of the ranks for algorithms
J, and then R,; is the average rank for algorithm j. Use the R,; to rank the

algorithms over all problems.

—Compute @ = ¢(a, k,00) uklgi) where ¢(a, k,00) is the critical value for k
independent algorithms for experimental error «. | R, — R, |> @ implies that
algorithms u and v differ significantly for the given «.

The R,; are the desired algorithm ranks.

It remains to discuss the methods used to compute the X;;. The assignment of
a single value to represent the performance of algorithm j for problem 2, which can
then be compared to other performance values in the framework of the two-way
layout, is not a simple matter. Even when comparing elapsed execution time, there
are many parameters which should be varied for a serious evaluation of algorithm
speed : problem size, execution platform, number of processors (for parallel code),
etc. To accommodate these variances in the algorithm execution, the analyzer uses
the method of least squares approximation for a collection of observed data over a
given variation of problem executions.

A profile is the set of all lines created by a least square approximation to the
raw performance data for a given problem over all methods. The analyzer accesses
the profile records named by the predicate to identify exactly which performance
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select perfdata.nproc, ’ 7,
perfdata.time[1:perfdata.nproc][4:4]1[1:1] from perfdata, sequences
where

perfdata.solverseq = sequences.name

and composite_id = ’pde03’

and rundata = ’IBM SP2’

and perfdata.memoryvals[2] = ’950x950°

and sequences.names[6] = ’itpack-jacobi cg’;

Fig. 12. Example analyzer query for retrieving performance data identified by a profile.

measures are to be used for a given problem. This record lists the choices for
the x and y axis, and defines which invariants to use in the selection process. In
addition, the record identifies where these values are stored in the performance
records generated by the execution of the problem. This information produces an
analyzer query such as the one in Figure 12 for problem pde03 executed using
algorithm jacobi cg on an IBM SP2 machine. The query retrieves observed data
for ‘time vs num processors’ where the grid size is held invariant.

The goal of the pattern-extraction module is to support the automatic knowl-
edge acquisition process and to extract patterns/models from the data that will
be used by a recommender system to provide advice to end users. This process is
independent of the problem domain. PYTHIA-II extends the PYTHIA method-
ology to address the algorithm selection problem by applying various neuro-fuzzy,
instance-based learning and clustering techniques. The original PYTHIA method-
ology presented in [Weerawarana et al. 1997] used a feature vector of numerical
features for each problem and some pre-defined classes of problems in order to find
a “closest” problem in the knowledge base or the “closest” class of problems to an
unseen problem. Having determined a ranking of solution methods for the match-
ing problem or class of problems, the system induced the best method for the new
problem. The main limitations of this methodology are that it is mostly a manual
process and that it does not scale to larger sets of performance data because of its
file-based approach and the low level representation of the induced knowledge.

The relational model of PYTHIA-II, on the other hand, automatically handles
the book-keeping of the raw data and offers a unique opportunity for easily gen-
erating and storing any amount of raw performance data as well as manipulating
them. In order for us to test various learning methodologies, we chose to sup-
port a specific format for the data used by the pattern extraction process, and
then write filters that transform this format (on the fly) to the format required by
the various data mining tools integrated into PYTHIA-II. Since the idea behind
knowledge acquisition is to support an RS with as few changes to the automatically
generated knowledge as possible, we have integrated mostly systems that generate
comprehensible knowledge in the form of logic rules, if-then-else rules or decision
trees.

The first learning system we integrated (we present some results using it later on),
was GOLEM [Muggleton and Feng 1990], which is classified in [Dzeroski 1996] as an
empirical single predicate Inductive Logic Programming (ILP) learning system. It
is a batch non-interactive system with noise handling capabilities that implements
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the relative least general generalization principle that can be considered as careful
generalization in the search space of possible concept descriptions.

GOLEM generates knowledge in the form of logical rules which one can model in
a language like first order predicate logic. These rules can then be easily utilized by
an expert system and constitute its rule base, as we will describe below. In addition
to GOLEM, we also integrated the following systems: PROGOL [Muggleton 1995],
CN2, PEBLS, OC1 (the latter three are available in the MLC++ library [Kohavi
1996]).

6.3 Inference Engine

The recommender is the end-user component of PYTHIA-II. It answers the user’s
domain specific questions using an inference engine and facts generated by the
knowledge discovery process. The recommender is a form of a decision support
system, and is the only component in PYTHIA-II that is both domain dependent
and case study dependent. We describe how the recommender has been generated
as an interface to the knowledge generated by GOLEM.

GOLEM is a relational learning system that uses positive examples for gener-
alization and negative examples for specialization. Each logical rule generated by
GOLEM is associated with an information compression factor f measuring the gen-
eralization accuracy of the rule. Its simple formulais f = p — (¢ +n + h) where p
and n are the number of positive and negative examples respectively covered by a
specific rule, while ¢ and h are information that is related to the form of the rule.
The information compression factor is used for ordering the rules in the rule base
in a decreasing order.

Each rule selected by GOLEM covers a number of positive and negative examples.
The rules and the set of positive examples covered for each rule are passed to the
recommender. The recommender then asks the user to specify the problem features.
It uses the CLIPS inference engine to check the rule base for rules that match the
specified features. Every rule that is found to match a problem features is selected
and is placed into the agenda. Rules are sorted in decreasing order based on their
generality (number of examples they cover), so the very first rule placed into the
agenda will fire at the end of the inference process. This rule determines the best
algorithm for the problem the user specifies. Since each rule provided by GOLEM
to the recommender is associated with a set of positive examples that are covered
by the rule, the recommender goes through the list of positive examples associated
with the fired rule and retrieves the example that has the most common features
with the user specified problem.

After this example/problem is selected, the fact base of the recommender is
processed in order to provide the user with any required parameters for which the
user needs advice. The fact base consists of all the raw performance data stored
in the database. The recommender accesses this information by submitting queries
generated on the fly, based on the user’s objectives and selections. If the user
objectives cannot be met, then the system decides what “best” answer to give, using
weights specified by the user for each performance criterion. Valid performance
criteria are, among others, the accuracy, total or communication time, efficiency
and speedup. The sum of the weights applied to the criteria equals one. For the
case study presented in the next section, the final step is the recommendation of
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Fig. 13. PYTHIA-II'’s top level window.

the best numerical method to use, given the problem features specified by the user.
It also identifies the grid parameter which satisfies objective imposed by the user:
solution accuracy within the given time limitations.

6.4 User Interface

The modular implementation of PYTHIA-II makes it possible to accomplish much
of the work involved in knowledge discovery without resorting to a graphical inter-
face, and in some cases this is the preferred way of completing a given task. For
example,

(1) Creating database records for the problem population and experiments: the
SQL commands can be given directly inside the POSTGRES95 environment.

(2) Generating executable programs from the experiments: the program generator
is a separate process called from the problem execution environment which is
specific to the scientific software. The process is invoked with an argument list
describing the I/O for the program generation, and it may be called outside of
PYTHIA-II.

(3) Executing programs: the execution process is controlled by scripts invoked
by PYTHIA-II. These scripts can also be called outside of PYTHIA-II since
they simply operate on the generated program files which reside in a particular
directory.

(4) Collecting data: the data collector is called by PYTHIA-IT as a separate process,
and it is specific to the scientific software. As in (2) above, this process is
invoked with an argument list describing its I/0O.

With respect to the above items, the graphical interfaces that assist in those tasks
are most useful for knowledge engineers who are unfamiliar either with the structure
of PYTHIA-II or with the SQL language used by POSTGRES95. In this case, the
interfaces provided by PYTHIA-II’s dbFEdit and dataGEN are invaluable. The top
level window of the PYTHIA-II system is shown in Figure 13 and provides access
to these interfaces, besides others.

The graphical interface to the POSTGRES95 database is dbEdit. Each PYTHIA-
IT record has a corresponding form which is presented to the user when records of
that type are selected for editing. The fields are tagged for error checking, and
every attempt is made to facilitate data specification. For example, many fields
require references to primary records, such as the experiment record which requires
the name of an equation, domain, boundary condition and associated parameter
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records. In dbEdit, the specification of these fields is handled by selection boxes
whose contents are determined by field typing. If the field type is equation, a
selection box displaying the current list of available equation records is presented,
allowing the user to choose an equation by point and click. This method of edit-
ing ensures the correctness of the specification and eliminates costly errors during
program generation.

Similarly, dataGEN facilitates the tasks involved in the data generation process,
and frees the user from worrying about details such as: where are the generated
programs stored, which scripts are available for the selected scientific software,
where is the raw output data generated by program execution located, what input
is required for invoking the data collection process, and so on. Users familiar with
the implementation of the system may prefer to call these processes on their own,
but when many users are involved in the (lengthy) data generation process, the
graphical interface is most useful.

dataMINE encompasses the statistical analysis of data in selected performance
records and the pattern matching process. Even for the most experienced users, it
is not possible to attempt either of these tasks outside of PYTHIA-II. A template
query is used to extract the performance data of interest in order to generate input
for the statistical analyzer. This is accomplished within the graphical interface by
choosing the predicate records, and allowing dataMINE to build the query, access
perhaps hundreds of performance records to extract the identified fields, and then
build the required input file. The input specification for pattern matching is equally
difficult to build; it retrieves and matches scores of features across hundreds of per-
formance records, and filters ranking data from the statistical analyzer output.
In addition to carrying out essential data preparation tasks that cannot be han-
dled outside of the GUI, dataMINE presents a simple menu system that walks the
user through the process of selecting the predicate, calling the statistical analyzer,
generating graphical profiles of the ranked methods, and calling the knowledge gen-
erator. As a bonus, dataMINE is integrated with DataSplash [Olston et al. 1998]
an easy-to-use integrated environment for navigating, creating, and querying visual
representations of data. DataSplash is a visualization system that has been built
on top of POSTGRESY95, therefore interaction with PYTHIA-IT’s DBMS was built
into it.

7. DATA FLOW IN PYTHIA-II

The PYTHIA-II design supports two different user interfaces, one for the knowledge
engineer and the other for end users who seek advice about the specific problems
they want to solve. This section describes the data flow and I/O interfaces between
the main components of the PYTHIA-II system from the perspective of these two
interfaces.

7.1 Knowledge Engineer Perspective:

The data flow in PYTHIA-II is shown graphically in Figure 14, where the boxes
represent stored entities, the edges represent operations related to the underlying
database, and the self-edges represent operations related to various external pro-
grams such as statistical analysis, transformations and data filtering.

The knowledge engineer begins with populating the problem specific database
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Fig. 14. Data flow and I/O for the knowledge engineer user interface.

tables. In PYTHIA-II, the underlying database schema is fixed, but extensible and
dynamic. The knowledge engineer has to specify his understanding of the domain
in terms of the relational data model to match PYTHIA-II’s database schema.
Supporting an extensible and dynamic schema is possible because of some unique
features of the POSTGRES95 system, i.e., POSTGRES95 does not have the restric-
tion imposed by the traditional relational model that the attributes of a relation
be atomict, since attributes are allowed to contain sub-values that can be accessed
from the query language. In particular, POSTGRES95 allows attributes of an in-
stance to be defined as fixed-length or variable-length multi-dimensional arrays.
The knowledge engineer has to specify his understanding of the domain in terms of
the relational data model to match PYTHIA-II’s database schema. The front-end
interface for populating the database includes a full-fledged graphical environment
with menus, editors and database specific forms for presentation purposes, very
much like those supported by Oracle’s SQL*Forms.

An experiment database record combines problem records into classes of prob-
lems, and a high level problem specification is generated by a program-based trans-
formation of the experiment record into a complete and correct input file specifi-
cation. These files are passed to the problem execution environment which invokes
the appropriate scientific software for problem execution. Currently, PYTHIA-II’s
execution environment consists of the PELLPACK system which can solve a va-
riety of PDE problems by applying multiple methods for discretization, indexing,
domain partitioning and solution, and executing on various sequential and paral-
lel machines. After executing each one of the input files, a corresponding number
of output files is generated, each containing information related to the solution of
the problem, such as error, memory utilization, execution time per processor (in
case of a parallel execution), program traces, etc. Although the variability of the
input specification is dealt with by the specific schema of the problem record, the
variations in the output format for the files generated during execution are han-
dled by specifying a system specific and user selected file template. The template
lists, among other things, the full specification for the program to be called for the
collection of the “important” data contained in the output files. This data is auto-
matically collected by the program, and stored in the performance data records for
further processing, while all the output files are deleted. These records keep logi-

1This is sometimes referred to as the First Normal Form (1NF) of database systems.
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cal references to the problem records in the form of foreign keys. In this manner,
performance data can be matched with problem features by executing n-way joins,
which is necessary for pattern extraction.

By combining data from a number of performance records, while maintaining
all but one of the experimental variables constant (discretizer, indexer, partitioner,
solver, problem size, machine size), we can generate a profile that characterizes the
behavior of a certain parameter with respect to other parameters. The statistical
analyzer uses the instructions for extracting performance data contained in a profile
database table, which contains the number of experiments deemed necessary by the
knowledge engineer for the analyzer to produce rankings of the solver profiles with
the required statistical significance. The analyzer submits “canned” SQL queries
(Figure 12) to retrieve the data to use for further processing.

After the performance data has been retrieved and combined, it is given to the
statistical analyzer for ranking based on the parameter(s) selected by the user for
evaluation. The ranking produces an ordering of these parameters which is sta-
tistically significant (i.e., if the performance data shows no significant difference
between parameters, they are shown as tied in rank). This ranking can be used
in a number of different ways to drive the pattern extraction process. Before the
data is handed over to this process however, yet another abstraction level is used.
A predicate record defines the collection of profile records to be used in pattern
extraction. This means that the knowledge engineer can change the set of input
profile records as easily as updating a database record. The predicate also con-
tains all the required information used by the program that creates input for the
algorithms used in pattern extraction.

A filter program is called for the selected predicate record to collect and transform
the information to the input format required by the pattern extraction programs.
For example, our system currently supports, among others, the input formats for
GOLEM/PROGOL and the MLC++ (Machine Learning Library in C++) library.
After the input data is prepared, the programs generate output in the form of “logic”
rules, “if-then” rules or decision trees/graphs for categorization purposes. In this
process there is open-ended extensibility reg. the integration of tools like neural
networks, genetic algorithms, fuzzy logic tool-boxes, rough set systems, etc. It is
only the support for the Recommender that restricts the automatic transformation
of the knowledge structures provided by each one of these tools, since building a
knowledge base for the Recommender requires that the knowledge induced by the
mining process be comprehensible and structured.

7.2 End User Perspective:

The front-end for the Recommender must be configurable and adaptable for sat-
isfying a variety of user needs. It is well understood that end users of an RS for
scientific computing are most interested in questions regarding accuracy of a so-
lution method, performance of a hardware system, optimal number of processors
to be used in a parallel machine, how to achieve certain accuracy by keeping the
execution time under some limit, etc. The PYTHIA-II Recommender allows users
to specify the characteristics of the problems to solve, as well as the performance
objectives or constraints. The system that supports this functionality is CLIPS, an
expert system shell tool-box, which uses the induced knowledge, even background
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knowledge, and facts from the problem, feature, performance, profile and predicate
tables to provide the user with the best inferred solution to the problem presented.
It is also possible that the user’s objective cannot be satisfied. In that case, the
user can specify weights for the various objectives, and then the system tries to
satisfy the objectives (e.g., accuracy first, then memory constraints) based on the
ordering implied by the weights.

8. CASE STUDY 1. EFFECT OF SINGULARITES ON THE PERFORMANCE OF
ELLIPTIC PDE SOLVERS

To validate the design and implementation of PYTHIA-II and the underlying KDD
process, we consider a performance evaluation database of software modules (PDE
solvers) from the PELLPACK [Houstis et al. 1998] library over a population of
2-dimensional, singular, steady state PDE problems defined in [Houstis and Rice
1982]. The algorithm selection problem for this domain can be formally stated as
follows:

Select an algorithm to solve
Lu=f on Q
Bu=g¢ on 09
so that relative error ¢, <  and time t, < T

where L is a second order, linear elliptic operator, B is a differential operator
involving up to first order partial derivatives of u, Q is a bounded open region in
2—dimensional space, and #, T are performance criteria constraints.

8.1 Performance Database Description

In this study, PYTHIA-II collects tables of execution times (in seconds) and errors
for each of the selected solvers with respect to various sizes of the grid/mesh over
the population of PDE problems. The error is measured as the maximum absolute
error on the computational grid/mesh divided by the maximum absolute value of
the PDE solution. The PDE software considered from PELLPACK library are
abbreviated as follows:

—>5PT = 5-point star,
—COLL = Hermite Cubic Collocation,
—DCG2 = Dyakanov CG,
—DCG4 = Dyakanov CG-4,
—FFT2 = FFT9 (order=2),
—FFT4 = FFT9 (order=4) and
—FFT6 = FFTY (order =6).
In the case of 5PT and COLL, the linear systems are solved with the Band-GE
direct solver from PELLPACK with natural ordering. The grids considered are
5x5, 9x9, 17x17, 33x33, and 65x65. More information about this experimental
study can be found in [Houstis and Rice 1982].
Defining the PDE population and experiments required 21 equation records with

up to 10 parameter sets each, 3 rectangle domain records of differing dimensions,
5 sets of boundary conditions records, 10 grid records defining uniform grids from
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Phases Description Implementation |
Determine Evaluate the efficiency and accuracy of a set of Manual
evaluation solution methods and their associated parameters
objectives with respect to elapsed time, error and problem size.
Data preparation (1) problem population POSTGRES95
(1) selection (2) measures: elapsed solver time, discretization error. SQL
(3) methods Tel/Tk
(2) pre-processing | (4) Generate performance data. PERL
Data Mining (1) Collect the data for error and time across all TCL/Tk
solvers, grid sizes PERL
(2) Use the method of least squares to develop linear In-house
approximations of time vs error across all grid sizes. statistical
Develop profiles of the methods for all problems, and software
rank the methods.
(3) Use the rankings and the problem features to PROGOL
identify patterns and generate rules.
Analysis of results | Domain experts ensure correctness of the results. Manual
Assimilation of Create an intelligent interface to utilize the knowledge CLIPS
knowledge to identify the “best method” with associated parameters

for user’s problems and computational objectives.

Table III. The PYTHIA-II instance as applied to the PELLPACK singular PDE case study.

| Problem Component | Features

Equation first tier operator: Laplace, Poisson, Helmholtz, self-adjoint, general
second tier operator: analytic, entire, constant coefficients,

operator smoothness tier: constant, entire, analytic

right-hand-side tier : entire, analytic, singular(infinite),

singular derivatives, constant coefficients, nearly singular,

peaked, oscillatory, homogeneous, computationally complex
right-hand-side smoothness tier: constant, entire, analytic,
computationally complex, singular, oscillatory, peaked

Domain unit square,
[a,b] X [a 4+ z,b + z], where x can vary
[a,b] X [a 4 ¢, b+ c], where c is a constant

Boundary Conditions | U = 0 on all boundaries

AU = f on all boundaries

BU,, = f on some boundaries

AU + BU,, = f on some boundaries

constant coefficients, non-constant coefficients

Table IV. Features for the problem population of the benchmark case study.

coarse to fine, several discretizer, indexing, linear solver and triple records with
corresponding parameters, and a set of 40 solver sequence records defining the
solution schemes. Using these components, 37 experiments were specified, each
defining a collection of PDE programs involving up to 35 solver sequences for a
given PDE problem. Figures 6, 7, and 9 depict the structure of these records.
The 37 experiments were executed sequentially on a SPARCstation20 with 32MB
memory running Solaris 2.5.1 from within PYTHIA-II’s execution environment (see
Table III. All 37 test cases executed successfully, resulting in the insertion of over
500 performance records into the database.
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Field | Value

name | PELLPACK Solution Methods Study
reference | pellpack

num_rankings | 1

max_num_blocks| 37

prof_recs | {{""pde3-1","pde3-2","pde7","pde8-1","pde8-2" ' pde8-4",
"pde9-1", "pde9-2'", "pde9-3", 'pdel0-2", "pdel0-3"}}

best | method

nbest | 7

bestlist {"fft 9pt order 2" ,"fft 9pt order 4","fft 9pt order 6",
"5point star & bandge', '"herm coll & bandge",

"dyakanov-cg'", ''dyakanov-cg 4"}
featurelist | {"operator","right-hand-side",'domain","bconds","matrix"}

possiblevalues| {{"opLaplace",'"opPoisson",'"opHelmholtz","opGeneral"},
{"rhsEntire","rhsConstCoeff", "rhsSingular", "rhsAnalytic"}}
recordlist | {"equation",'"equation",'domain","bcond",'"perfdata'"}

indexlist | {"featurevals[1]","featurevals[5]"}

Fig. 15. Partial listing of a predicate from the PDE benchmark.

8.2 Data Mining and Knowledge Discovery Process

After the experiment records were defined, dataGEN was used to retrieve them
from the database and execute them. Each experiment represented up to 35 PDE
programs. When program execution was complete, the raw performance output
was located in a specified directory, and the data collection facility was invoked to
extract data from the output and trace files and to insert them in the performance
database. The dataMINE interface was used to access the performance data ac-
cording to the specification of the predicate and profile records created for the case
study. A portion of the predicate record used to generate profiles and rankings for
the seven PELLPACK solvers is shown in Figure 15.

Figure 16 lists the ranking produced by the analyzer for PDE problem pdel0-4.
The rankings over all PDE problems and their associated features were then used
by PROGOL to mine rules. The features considered in this case study are defined
in IV, and examples of rules mined by this process are shown in Figure 18. The first
rule, for instance, indicates that the method Dyakanov CG4 is best if the problem
has a Laplace operator and the right-hand-side is not singular.

8.3 Knowledge Discovery Outcomes

The discovered rules confirm the assertion (established by statistical methods) in
[Houstis and Rice 1982] that higher order methods are better for elliptic PDEs
with singularities. They also confirm the general hypothesis that there is a strong
correlation between the order of a method and its efficiency. More importantly, the
rules impose an ordering of the various solvers for each of the problems considered
in this study. Interestingly, this ranking corresponds closely with the subjective
rankings published in [Houstis and Rice 1982]. This shows that these simple rules
capture much of the complexity of algorithm selection in this domain. Table V
summarizes these observations.
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The rank analysis produces the following comparison
listed in order from ’best’ to ’worst’:

The method ranks

fft 9 point order 6

fft 9 point order 4
dyakanov-cg4d

fft 9 point order 2

hermite collocation and band ge
dyakanov-cg

N OGO W N

5-point star and band ge

Fig. 16. Rankings of the PELLPACK solvers considered for problem pdel0-4.

Probability for the label 'fft'9 point order'4’ : 27.03%

Probability for the label 'dyakanov-cg4’ : 13.51%

Probability for the label 'fft'9 point order'6’ : 10.81%

Probability for the label ’hermite collocation’and band’ge’ : 21.62%
Probability for the label ’5-point’star'and'band’'ge’ : 18.92%
Probability for the label 'fft'9 point order'2’ : 2.70%

Probability for the label 'dyakanov-cg’ : 5.41%

Fig. 17: Statistical data for the rankings of the seven PELLPACK solvers over the entire PDE
population considered for this case study.

9. CASE STUDY 2: THE EFFECT OF MIXED BOUNDARY CONDITIONS ON THE
PERFORMANCE OF NUMERICAL METHODS

In this section, we apply PYTHIA-II to the performance database obtained by
assigning different boundary condition types to a population of two-dimensional
elliptic partial differential equation problems from the study of [Dyksen et al. 1988].
The objective of this performance evaluation can be stated as follows:

Determine the effect of the presence of derivatives in the boundary conditions
on the performance of numerical methods, where the PDE problem is given by
Lu = augy + cuyy + duy + euy + fu=g on
Bu = au+ fBsu, =t on 0Q
and «,f control the strength of the derivative term.

The coefficients and right hand sides, a, ¢, d, ¢, f,g,s and ¢, are functions of # and
y, and Q is a 2—dimensional domain with boundary 0. The selected numerical
methods are the following PELLPACK modules:

—>5HPT = 5-point star,
—COLL = Hermite Cubic Collocation,
—DCG2 = Dyakanov CG,
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best_method(A,dyakanov-cg4) :- opLaplace_yes(A), rhsSingular_yes(4)
best_method(A,fft_9_point_order_4) :- opHelmholtz_yes(A), pdePeaked_no(A)
best_method(A,fft_9_point_order_4) :- pdeSmoConst_yes(A), rhsSmoEntire_yes(A)
best_method(A,fft_9_point_order_4) :- solEntire_yes(A), solSmoBoundLayer_yes(A)
best_method(A,fft_9_point_order_4) :- solVarSmooth_yes(A), solSmoSingular_no(A4)
best_method(A,fft_9_point_order_4) :- opLaplace_yes(A), rhsAnalytic_no(4),
rhsSingDeriv_no(A), rhsConstCoeff_no(4)
best_method(A,fft_9_point_order_2) :- solSingular_no(A), solSmoSingDeriv_yes(4)
best_method(A,fft_9_point_order_6) :- opLaplace_yes(A), rhsSingular_no(4),
rhsConstCoeff_no(A), rhsNearlySingular_no(A), rhsPeaked_no(A)
best_method(A,fft_9_point_order_6) :- rhsSmoOscillatory_yes(4).
best_method(A,fft_9_point_order_6) :- pdeSmoConst_yes(A), rhsSmoDiscDeriv_yes(4)

best_method(A,dyakanov-cg4) :— opSelfAdjoint_yes(A), rhsConstCoeff_no(A)
best_method(A,dyakanov-cg4) :- opLaplace_yes(A), rhsEntire_no(4),
rhsSingular_no(A), rhsSingDeriv_no(A), rhsOscillatory_no(A)
best_method(A,dyakanov-cg4) ;- pdeJump_yes(A)
best_method(A,dyakanov-cg4) :- opLaplace_yes(A), rhsAnalytic_no(4),
rhsSingDeriv_no(A), rhsPeaked_no(A)
best_method(A,dyakanov-cg4) :- pdeSmoConst_yes(A), rhsSmoConst_yes(4)
best_method(A,dyakanov-cg4) :— pdeSmoDiscDeriv_yes(A), rhsSmoConst_no(A)
best_method(A,dyakanov-cg) :— opLaplace_yes(A), rhsSingDeriv_yes(4)
best_method(A,dyakanov-cg) :— pdeSmoConst_yes(A), rhsSmoDiscDeriv_yes(A)
best_method(A,hermite_collocation) :- opGeneral_yes(A)

best_method(A,hermite_collocation) :- opLaplace_no(A), pdeConstCoeff_yes(4),
rhsEntire_no(A)

best_method(A,hermite_collocation) :- pdePeaked_yes(A)
best_method(A,hermite_collocation) :- pdeSmoConst_no(A), rhsSmoSingular_yes(A)

Fig. 18. Sample rules generated by PROGOL for the singular PDE study.

—DCG4 = Dyakanov CG-4, and
—MG-00 = Multigrid mg00.

In the case of 5PT and COLL, the linear systems are solved with the Band-GE direct
solver from PELLPACK with natural ordering. The PDE problems are restricted
to rectangular domains for this case study, and the boundary condition types are
defined as follows

—Dirichlet: u =t on all sides.
—Mixed : au + su, =t where @« = 0 or @ = 2 on one or more sides

—Nearly Neumann : au+ fsu, =t where either a = 1, 8 =1000ora =0, § = —1
on one or more sides.

Every PDE equation is paired with all three boundary condition types and is asso-
ciated with three experiments. Each experiment consists of a problem defined by
the PDE equation and boundary condition, which is solved by five selected numer-
ical methods using five uniform grids. There are 75 program executions for a given
PDE. Data for elapsed solver time and various error measures at the grid points
are collected for each problem execution.
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9.1 Performance Data Generation, Collection and Analysis

The basic PYTHIA-II database records (equations, domains, boundary_conditions,
parameters, modules, solver_sequences and experiments) are defined using dbEdit,
and the PDE programs are built and executed with PYTHIA-II’s dataGen using
the basic components and the default PELLPACK program execution environment.
All experiments were executed on a SPARCstation-20 SunOS 5.5.1 with 32 MB
memory. The standard PELLPACK raw output data was generated and collected,
and 600 records were successfully inserted into the performance database.

The statistical analysis and rules generation are handled by dataMINE, which
requires as input the predicate and its corresponding profile records. The predi-
cate and profile records identify all important controlling parameters for the tasks
involved in data analysis and mining.

The predicate is the highest level controlling agent, and the end result in this
case study is knowledge which answers the question stated at the beginning of
this section. The predicate names a matrix of profile records that identify the
number and type of analyzer invocations. Then it identifies the features of the basic
components that are used. In this case, these are boundary_condition features. The
analyzer rankings and the predicate feature specifications are handed over to the
rules generation process. If the predicate is correctly constructed, the generated
rules answer our questions about the effect of derivatives in the boundary conditions
on solving PDEs when solved using the selected methods. Table VI lists, in part,
the required predicate information.

Although the predicate controls the entire analysis and mining process, the de-
tails of the analysis are handled by the profile records. Each profile record identifies
which fields of performance data are extracted, how they are manipulated, and how
the experiment profiles for the analyzer are built. The result of the analysis is a
ranking of method performance for the selected experiments according to the ex-
tracted data. In this case, the objective is to study the relative changes in elapsed
time as a function of derivative strength in the boundary conditions. Again, the
query posed to the database by the profile extracts exactly the information needed
by the analyzer to answer this question. Samples of the required retrieval infor-
mation are listed in Table VI. The complex query used for building the analyzer’s
input data is determined by profile field entries for x-axis, y-axis and field matching.
In this case, the profile record builds sets of (z, y) points for each numerical method,
where the z values are grid points and the y values are relative elapsed time changes
for mixed boundary conditions with respect to Dirichlet conditions. Other pred-
icates/profiles were built to study relative changes in elapsed time for Neumann
conditions with respect to Dirichlet conditions, and relative changes in error for
derivative conditions with respect to Dirichlet conditions. In all, 6 predicates and
more than a hundred profiles were used to generate the knowledge base.

9.2 Knowledge Discovery Outcomes

Here we summarize the results of PYTHIA-II analysis and the interpretation of
the rules derived for Case Study 2. They are consistent with the hypothesis and
conclusions stated in [Dyksen et al. 1988]. For the analysis, we use rankings based
on the relative elapsed time profiles described above.



Record Controlling information Field data
Predicate | How many invocations of the analyzer? 24
Profiles to be used for each invocation. pde01 Dir-vs-Mix, pde01_Dir-vs-Neu,
pde01 _Mix-vs-Neu, pde02_Dir-vs-Mix, ...
Items to rank. numerical methods :
DGC, DCG4, MG-00,
5PT, COLL
Features to base rules on. Elapsed TimeEffect Dir2Mix,
Elapsed TimeEffect Dir2Neu, ...
Profile Experiments used in a single analyzer run? | pdeOl-dirichlet, pde01-mixed, ...

Profile graph x-axis values?

grid sizes

Profile graph y-axis values?

relative increase in mixed
execution elapsed time vs Dirichlet
execution elapsed time :

(Tmi.r — Tdir)/Tdir

Matching record identifier for profile
graph building.

use perfdata record and match fields:
classparms = dir vs. mix
select on numerical methods

Name of SQL query template.

dir.vs.mix

Table VI: Sample predicate and profile information for the relative elapsed times analysis for

mixed vs. Dirichlet problem executions.

log(petcent delta tiioe)

900
230
200
730
700
630
600
530
500
+.30
+.00
3.50
3.00
230
200
130
100
0.50
Q.00
-0.50
-1L00
-1.50
-200

Profiles for methods

hetimte collocation and band ge

7 dyakahov-cg

Q.00

+.00

dyakanov-cgt

' S-porntstarand band ge

log(plroblem size)

Fig. 19: Profile graph depicting the relative change of execution times between Dirichlet and
Mixed problems as a function of the grid size for the five PELLPACK solvers considered.
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(1) The performance of the numerical methods is degraded by the introduction of

derivatives in the boundary conditions. Profile graphs of the values for relative
elapsed time changes 67 for the mixed and Neumann problems with respect
to the Dirichlet problems, 6Tz = (Tiniz — Tair)/Tair and 6Tgr = (Theuw —
Tair)/Tair were generated by the analyzer for all methods over all grid values.
It is observed that the values of 67" >> 0 for most methods over all problem
sizes. Thus, the presence of derivative terms slows the execution substantially.
One notable exception, however, was the COLL method, for which the deriva-
tive term did not introduce a significant increase in elapsed time, resulting in
a 61" that was very small and which, in some cases, decreased as the problem
size increased, as shown in Figure 19.

(2) The COLL module was least affected. Specifically, the increase in elapsed time

when the derivative term was added was least for COLL. Thus, it was most
often ranked first by the analyzer using the relative time profiles. Note that
even though the relative elapsed time was least for COLL, the total elapsed
time was not. Summary statistics for two of the predicates are given below:

Rankings for the dir2mix predicate based on relative time:
Probability for the label ‘hermite_collocation’ : 57.14%

Probability for the label ‘dyakanov-cgd’ : 28.57%

Probability for the label ‘dyakanov-cg’: 14.29%

Probability for the label ‘5-point_star’ : 0.00%

Probability for the label ‘multigrid_ mg00’ : 0.00%

Rankings for the dir2neu predicates based on relative time:
Probability for the label ‘hermite_collocation’ : 42.86%

Probability for the label ‘dyakanov-cg4’ : 21.43%

Probability for the label ‘5-point_star’ : 14.29%

Probability for the label ‘dyakanov-cg’: 14.29%

Probability for the label ‘multigrid_ mg00’ : 7.14%

The final rules generated by PYTHIA-II for the elapsed time predicates are:
best_method(A,hermite_collocation) : dir2mix(4).
best_method(A,hermite_collocation) : dir2neu(4).

(3) The fourth order modules COLL and DCGY are less affected than second order

modules. The above statistics show that the fourth order modules were chosen
85% and 64% of the time, respectively (see Figure 19 for the method ranking
profile for pde04 generated by dir2mix predicate based on relative time). The
rankings above also show that fourth order modules were less affected by mized
conditions than by Neumann conditions, and that MG-00 and 5PT methods
performed worst with the addition of a derivative term in the boundary condi-
tion.

Next, we consider ranking the methods for all PDE-boundary condition pairs

using profile graphs involving problem size vs. elapsed time. The analysis does not
consider relative increase in execution time for different boundary condition types,
it ranks all methods over all PDE problems as in Case Study 1. The analysis ranks
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MG-00 as best method. It was selected 72% of the time as the faster method over
all PDE problems. The analysis also showed that all methods had the same best-
to-worst ranking for a fixed PDE equation and all possible boundary conditions. In
addition, these results show that some of the selected methods differ significantly
when ranking with respect to execution times across the collection of PDE problems.
With a computed @ value of 25 (see Section 6.2), DCG and COLL show a rank
difference of 57; MG-00 and COLL show a rank difference of 84. Methods DCG
and 5PT did not behave in a significantly different way. Some analysis results are
shown in Figure 20.

10. CONCLUSION

We have presented the architecture, implementation, and validation of the PYTHIA-
IT software system that facilitates a knowledge discovery in databases (KDD) pro-
cess for selecting scientific software. It also recommends parameters for a targeted
problem class assuming a priori defined “features” and computational objectives.
Its architecture is open-ended (i.e., allowing its application to a variety of domain
specific software and integration of alternative KDD phase implementations) and
scalable (i.e., providing a variety of options to the knowledge engineer for mining
data, while storage and retrieval issues are handled by an integrated database sys-
tem). The modular approach used by PYTHIA-II maximizes the visualization of
the entire KDD process, either in parts or as a whole. The high extensibility of the
system is facilitated by the large number of alternative paths and tools available at
every stage. The accuracy of the underlying KDD process has been demonstrated
against two existing case studies. The PYTHIA-II generated data and rules lead
to the same conclusions as the cited case studies.
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The rank analysis produces the following comparison
listed in order from ’best’ to ’worst’:

The Solver Ranks
(avg rank in parenthesis)

multigrid mgOo 121 (1)
dyakanov-cg 1 48 (2.29)
dyakanov-cg4 : 68 (3.24)
5-point star 1 73 (3.48)
hermite collocation : 105 (5)

The rank differences and indicated significance
based on the q value,
where Ti-Tj represents the absolute difference
of the Solvers Ti and Tj.

T1: 5-point star T2: hermite collocation T3: dyakanov-cg T4:
dyakanov-cg4 T5: multigrid mgOO

Solvers Rank Diff Significant?
T2 - T1 32 yes
T3 - T1 25

T3 - T2 57 yes
T4 - T1 5

T4 - T2 37 yes
T4 - T3 20

T5 - T1 52 yes
T5 - T2 84 yes
T5 - T3 27 yes
T5 - T4 47 yes

Solver Average Minimum 1st Quart Median 3rd Quart Maximum

1 2.394 3.094 2.888 2.676 1.669 1.516
2 3.224 3.506 3.238 3.171 3.101 3.072
3 1.52 2.293 1.797 1.682 0.8285 0.4857
4 1.965 2.43 2.034 1.974 1.806 0.769
5 -0.3241 0.3039 -0.3208 -0.3241 -0.405 -1.164

Fig. 20: Ranking results for the comparison of numerical methods using grid vs. total elapsed
time profiles.



