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Abstract. In this paper, we outline the design of an algorithm recommender system (PYTHIA).
Given a problem in (a specific domain of) scientific computing and performance criteria constraints
on its solution, PYTHIA selects the best (or nearly best) algorithm to solve it. It uses a combina-
tion of inductive logic programming, statistical analysis, and a database of algorithm performance
data to map a feature-based representation of problems (plus performance objectives) to appro-
priate algorithms. Currently, PYTHIA successfully recommends algorithms for domains such
as numerical quadrature, elliptic partial differential equations, domain decomposition and linear
algebra.
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1. Introduction

A recommender system provides automatic advice on selections/choices necessary
to optimize its user’s performance objectives. The primary motivation for rec-
ommender systems (originally called collaborative filtering systems) is to reduce
information overload. Examples are advanced web search engines, book and movie
recommenders, social network filters, and scientific software selectors. More sophis-
ticated applications abound in the areas of Geographic Information Systems (GIS),
traffic regulation, user interfaces and problem solving environments (Kautz, 1998).
Building recommenders is now a very fertile business activity due, in part, to the
success of electronic commerce and intelligent internet systems. Several companies,
including Net Perceptions, Imana Inc., Autonomy, AT&T, Relevance Technologies,
Magenta Communications, Firefly specialize in ‘personalization’ technology and
provide custom-made recommender systems for client specifications.

The focus of this paper is, however, a ‘scientific recommender system’ (PYTHIA)
(Ramakrishnan, 1997) whose users are scientists/engineers trying to locate soft-
ware module(s) appropriate to their needs. Given a scientific problem instance
and performance criteria constraints on its solution, PYTHIA recommends an al-
gorithm, estimates its parameters, and identifies a location on the web where a
software module implementing the algorithm can be obtained. The current im-
plementations of PYTHIA address the domains of numerical quadrature, elliptic
partial differential equations (PDEs) (Ramakrishnan, 1997), domain decomposi-
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DOMAIN [—1,1] x [-1,1]
BC u=0
OPERATOR Self adjoint, discontinuous coefficients
RIGHT SIDE Constant
BoUNDARY CONDITIONS  Dirichlet, homogeneous
SOLUTION True solution unknown. Approximate solutions available for

a =1, 10, 100. Strong wave fronts for o > 1.

Figure 1. An example partial differential equation for which an algorithm and associated param-
eters have to be determined.

tion (Verykios, 1999), and linear algebra. Assume that we would like to solve the
problem presented in Fig. 1 under the constraints that the relative error is less
than 1.0 x 107°, time to solve the PDE is less than 600 seconds (timing mea-
sured on a Sun SPARCstation 20) and place equal emphasis on achieving both
the time and the error bounds. PYTHIA’s recommendation would be: Use sec-
ond order Dyakunov conjugate gradient finite differences with 17 grid lines. Error
Estimate: 1.00331 x 107°. Time Estimate: 8.353 minutes. Confidence: 0.85. Soft-
ware available at: http://math.nist.gov/cgi-bin/gams-serve/list-module-
components/ELLPACK/12/13060.html.

PYTHIA’s basis for recommendations is a rule-bank mined by spooling performance
trace data for various algorithms on benchmark scientific problems and correlat-
ing variations in performance to specific characteristics of the problem input. In
addition, it interfaces with the GAMS software repository on the web! where im-
plementations of the recommended algorithm can be down-loaded. We refer the
interested reader to (Drashansky et.al., 1999) for more details about this interface.
In this paper, we specifically concentrate on the data mining methodology utilized
for the design of PYTHIA.

2. PYTHIA’s Methodology

The algorithm/software/resource selection problem, detailed above, is non-trivial,
even for specific domains of scientific software. In particular, the space of ap-
plicable algorithms for specific problem subclasses is inherently large, complex, ill-
understood and often, intractable by brute—force means. Depending on the way the
problem is (re)presented, the space of applicable algorithms changes; some of the
best algorithms sacrifice generality for performance and have specially customized
data structures and routines fine tuned for particular problems or their reformu-
lations. Moreover, there is an inherent uncertainty in interpreting and assessing
the performance measures of a particular algorithm for a particular problem. Dif-
ferent implementations of an algorithm produce substantially large variations in
performance measures that render relying on purely analytic estimates impractical.



PYTHIA’s design borrows heavily from a performance evaluation methodology
first formulated in (Boisvert, 1979). Assuming a ‘densely’ distributed set of bench-
mark problems from the targeted application domain, PYTHIA uses a four-pronged
strategy: feature determination of benchmark problems, performance evaluation of
scientific software, statistical analysis of performance data, and the (automatic)
knowledge discovery of recommendation rules from software performance? (Fayyad
et.al., 1996, Matheus et.al., 1993). Data is collected (or is sometimes readily avail-
able) from experiments in the domain, mined for recommendations and a recom-
mender system is built according to a conceptual schema of the problem domain.
It is then put into production mode in the field and its efficacy is evaluated.

PYTHIA’s software architecture is both flexible (allowing extension to newer do-
mains) and scalable (providing a variety of options to the knowledge engineer for
mining data, while storage and retrieval issues are handled by an integrated DBMS).
PYTHIA works in conjunction with a host problem solving environment (PELL-
PACK) (Houstis, et. al., 1998) 3 and provides layered subsystems for problem
definition, method definition, experiment management, performance data collec-
tion, statistical analysis, knowledge discovery (for recommendation rules) and an
inference engine. We now describe these issues in the context of algorithm recom-
mendation for PDEs.

3. Design Issues and Decisions
3.1.  Database Design and Ezperiment Management

In order to facilitate the storage and execution of the experiments, the input spec-
ification of a PDE problem is decomposed into a set of database tables. There is a
one-to-one mapping between the components of the problem specification and the
basic entities in PYTHIA’s database schema. Features of problem components are
also modeled by other tables and tables representing relations are used for designat-
ing the constraints in associating features with basic entities. Experiments are also
managed by yet another table, in the sense that each experiment record holds all
the necessary information for executing a collection of problems in a specific system.
PYTHIA currently communicates with the host PELLPACK system via I/0O files.
In order to avoid redundancy in the implementation, an experiment record uses
foreign keys for representing the logical connections with the basic records. Tables
that store performance data are used for saving selected parts from the output files
produced by running these experiments.

It is important to mention that the implementation of the schema does not re-
quire any advanced techniques to be provided by the database management system.
The relational model, along with some extensions available in the Postgres95 Ob-
ject/Relational DBMS, used in our system, can adequately handle all the required
functionality as well as extensibility issues. The database tables are accessed by
using simple SQL queries, or by embedding SQL queries in the Tcl scripting lan-
guage. The ‘libpgtcl’ package is a new front-end library that supports Tcl-based
clients to the Postgres95 database. The data collection process has been imple-



mented by using the Perl language, and it includes the extraction of information
from specific parts of the output generated by running the experiments, as well as
storage of this information in the performance table(s). The graphical user inter-
face is built in Tcl/Tk. In addition, the storage manager of Postgres95 helps in
recording archival information into a spooling mechanism that can be efficiently
utilized for experiment management.

3.2.  Performance Analysis of Algorithms

The first step to solving a PDE is to replace the continuous problem by a discrete
set of equations. This discretization step involves, typically, placing a grid on the
continuous domain to approximate it. Let us assume that all PDEs are solved on
a uniform square N by N grid. The logarithm of the total execution time increases
linearly with the logarithm of N, and so the slope of the total execution time versus
N (on a log-log chart) is the primary measure of performance. This implies that the
algorithm with the smallest slope is the most efficient asymptotically, as N increases.
An algorithm’s performance profile is thus, the slope obtained by a least-squares
approximation to the data points of (total execution time, grid size) on a log-log
base for a certain sequence of grid sizes.

The algorithms’ performance profiles are ranked by a non-parametric statisti-
cal technique — the Friedman, Kendall and Babington-Smith test (Hollander and
Wolfe, 1973) — for testing the hypothesis that the PDE algorithms applied to a
problem instance are not equally effective and thus there is an ordering/ranking
among them. In order to test this hypothesis, the algorithms applied to every
problem are ranked, in such a way that the most efficient method (or else the
method with the smallest slope) gets a rank of one. After computing the rankings
for several problem variations (e.g., using different instantiations of a problem’s
parameter), PYTHIA computes the average ranking of each method with respect
to each problem. By computing a statistic related to the rankings produced, and
comparing it with the chi-square statistic corresponding to a certain number of
degrees of freedom and significance, it can estimate whether the algorithms differ
with respect to performance.

3.3.  Mining Recommendation Rules

While this information provides the ranking for different algorithm instances on
a given problem instance, generalization across the problem space is achieved by
inductive logic programming (ILP) (Dzeroski, 1996) performed with respect to the
feature space of the problems (The reasons why a relational encoding is appropriate
are detailed in (Ramakrishnan, 1997)). We found ILP to be prohibitively expensive
and controlled the complexity of induction by several means — we first use domain
specific restrictions for the management of recommendation spaces. For example,
PYTHIA uses both syntactic and semantic restrictions on the nature of the induced
recommendations. An example of a syntactic restriction is that a PDE algorithm
consists of a discretizer, indexer and solver (chained in that order). A different



permutation of algorithm parts does not make syntactic sense*. An example of

a semantic restriction is consistency checks between algorithms and their inputs.
For example, a Dyakunov algorithm assumes that its input is in ‘self-adjoint form’,
so inducing a more general rule will not be fruitful. Moreover, since the software
architecture of PYTHIA is augmented with a natural database query interface, we
utilize this aspect to provide meta-level patterns for rule generation. An example of
a meta-rule is that generalization across problems should be performed with respect
to a given accuracy constraint. For example, we would like to induce a rule that
infers the best algorithm to use, for a given problem instance and user specified
performance criteria. This is because generalizing across the space of constraints is
not fruitful in numerical analysis terms.

Our system also supports online and incremental mining. In particular, when a
new algorithm is added to the system, PYTHIA can be bootstrapped with the old
rule-bank so that new information does not require retraining on the old. Moreover,
the stability of our relational encoding ensures that new data does not ‘throw’ off
the ranking. We refer the interested reader to (Ramakrishnan et.al., 1998) for more
details.

4. A Case Study

To validate the design and implementation of PYTHIA, a knowledge base was gen-
erated for evaluating PELLPACK algorithms based on performance data produced
by a population of 2-dimensional, singular, steady state PDE problems. Defin-
ing the PDE population and experiments required 21 equation records with up
to 10 parameter sets each, 3 rectangle domain records of differing dimensions, 5
sets of boundary conditions records, 10 grid records defining uniform grids from
coarse to fine, several discretizer, indexing, linear solver and triple records with
corresponding parameters, and a set of 40 solver sequence records defining the so-
lution schemes. Using these components, 37 experiment sequences were specified,
each defining a collection of PDE programs involving up to 35 solver sequences
for a given PDE problem. The 37 sequences were executed sequentially on a Sun
SPARCstation 20 with 32MB memory running Solaris 2.5.1 from within PYTHIA’s
execution environment. All of them executed successfully, resulting in the insertion
of hundreds of performance records into the database. The analyzer evaluated the
algorithm performance based on generated measures for time vs problem size and
time vs error. The analyzer rankings and problem features were passed to the rules
generator which produced relational rules governing algorithm selection for PELL-
PACK. The recommender was then used to predict the best method and estimate
the corresponding parameters for user specified features and performance criteria.

4.1.  Usage Scenario

The PYTHIA project web page http://www.cs.purdue.edu/research/cse/pythia
-IT provides an interface to our system. At the outset, there is a facility to pro-
vide feature information about a PDE problem. In particular, there are forms that



guide the user in providing details about the operator, function, domain geometry
and boundary conditions®. Once these details are provided, PYTHIA uses the rule-
bank to perform algorithm recommendation. For example, the problem presented
in Fig. 1 has a jump discontinuity in its operator, a right side that has constant
coefficients, homogeneous and Dirichlet boundary conditions, a square domain, and
importantly, a self-adjoint operator. PYTHIA’s rules indicate that the ‘second or-
der Dyakunov conjugate gradient finite differences’ method (DCG) is appropriate.
Having determined the algorithm, PYTHIA uses a nearest neighbor technique to
identify the closest matching problem to the user’s selection from the list of prob-
lems covered (these problems have been attached to the rule) by the fired rule.
After it finds the closest problem, it consults its database, and uses the matching
problem’s performance information to predict the parameters of the recommended
algorithm, such as grid size, etc®. In this example, the closest matching problem
is ‘p—28-3’ from the database. Using the linearized profile of the DCG solver for
this instance and the user specified criteria, PYTHIA determines that the number
of grid lines to use is 17 which produces a relative error of 1.00331 x 10~° and a
solution time of 8.353 minutes, well within the requested ranges. The user is noti-
fied of this selection along with a URL (described in the introduction) from where
a software module implementing this solver can be obtained.

4.2.  Knowledge Discovery

The recommendation rules mined confirm the statistically observed conclusion in
(Houstis and Rice, 1982) that higher order algorithms are better for elliptic PDEs
with singularities. They also confirm the general hypothesis that there is a strong
correlation between the order of a method and its efficiency. More importantly,
the first ten rules discovered impose an ordering of the various algorithms for each
of the problems considered in this study. Interestingly, this ranking corresponds
almost exactly with the subjective rankings published in (Houstis and Rice, 1982).
This shows that very simple rules capture much of the complexity of algorithm
selection in this domain. There were several other interesting inferences drawn.
Whenever the DCG method is best, so is DCG4. The rule that had the maximum
support from the data was the one which stated that FFT6 is best for a PDE if the
PDE has a Laplacian operator, homogeneous and Dirichlet boundary conditions and
discontinuous derivatives on the right side. Other rules also indicated when a certain
method is inappropriate for a problem. The FFT6 module, for example is a ‘bad’
method whenever the problem has boundary conditions with variable coefficients.
There are many more such interesting observations and we mention only the most
interesting here. Finally, an overall ordering was induced from the entire population
of performance records. This gave rise to the ordering — FFT6, FFT4, FFT2,
DCG4, DCG2, PS5. This is pertinent because this ranking corresponds most closely
to that for Poisson problems which formed the bulk of our population. In overall,
the rules from this study performed best algorithm recommendation for 100% of
the cases.



When the nature of problems was changed to ‘mixed-boundary-conditions’ we
found that the same rules were mined but the support (and confidences) of the
mined recommendations were found to come down in magnitude. This conclusively
supports the hypothesis made in (Dyksen et.al., 1988) that the introduction of the
derivative in the boundary conditions results in a degradation of performances of
algorithms.

In future work, we plan to extend PYTHIA into newer domains of scientific
software. The modular approach subsumed by the system maximizes the ability of
the end-user (a scientist/engineer) to visualize the entire KDD process, either in
parts or as a whole. The high extensibility of the system is facilitated by the large
number of alternative paths available at every stage.

Notes

1. GAMS (Guide to Available Mathematical Software) is a virtual cross-index of mathematical
software that provides access to over 10,000 implementations of algorithms from four different
repositories on the web. It is accessible at http://www.nist.gov.

2. Within each sub-domain of mathematical software, there is considerable agreement on what
performance measures are deemed important, how test collections should be organized, what
kinds of features (of problems) should be included and are relevant and so on. Thus, population
definition and feature handcrafting are not discussed in detail in this paper.

3. PELLPACK is an integrated software system that provides all the computational facilities
necessary to solve elliptic partial differential equations on multicomputer platforms. It is
similar in spirit (but not in scope) to packages like MATLAB and Mathematica.

4. This is similar to type restrictions used in induction packages like FOIL and PROGOL. For
example, to induce a predicate such as sibling(X,Y), such systems might require that the type
of X and Y be person. PYTHIA’s syntactic restrictions are more domain-specific and help in
provide a ‘taxonomical basis’ to induction rather than mere type-checking.

5. While some of our research has concentrated on determining this information automatically,
we do not address these aspects in this paper.

6. In case no rule’s antecedent (from the induced knowledge) matches completely the features
selected by the user, an algorithm is selected based on the distance between the problem’s
description and the rules. For determining the closest matching problem on this case, the
process described previously is applied.
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