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Abstract—Predicting the popularity of news articles—
whether measured via retweets, clicks, or views—is an impor-
tant problem for editors, journalists, and readers alike. In this
paper, we introduce a new model to predict the shape of news
article views, and use this model to determine when an article
will likely reach its maximum number of views. Although
volume prediction for news articles has been extensively studied
predicting when a burst of views will happen, in what shape,
and by how much, remains an open problem. We engineer
several classes of features (metadata, contextual or content-
based, temporal, and social), develop models for view shape
classification, with particular attention paid to performing
online, time-updated, prediction, i.e., using data before and
during the early stages of article prediction to predict its
eventual peak views and update earlier predictions. The system
presented here is an emerging application being developed
at The Washington Post and can be used to support article
placement, updating, and promotion strategies.
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I. INTRODUCTION

Most everyday content that we experience in our online
lives exhibit a bursty lifecycle, e.g., stock quotes [1], posts
on social media such as Twitter and Facebook [2], and viral
videos on YouTube [3]. For our purposes here, a burst can be
characterized as a brief period of intensive activity followed
by a long period of nothingness [4]. Explanations of bursty
behavior revolve around a threshold behavior [5] wherein,
for instance, people share or read about an article once a
handful of his or her friends share or read that article. This
reinforcing behavior around an object leads to a burst of
activity.

Our focus here is to determine when an object of interest
will likely reach its maximum views (or shares or likes).
This is different from prior studies which focused primarily
on either aggregate prediction or burst detection. Aggregate
prediction is the task of estimating the total (but not peak)
number of views or the total size of a cascade, e.g., [6], [7],
[8], [9], [10], [11]. Burst detection aims to detect (but not
predict) the burst time as it happens, e.g., see [12], [13].

Shape and peak time prediction in the context of news
articles is very challenging for at least two reasons. First,
traditional regression models cannot be directly applied due
to the quick rise-and-fall pattern of bursts [14]. Secondly,
different articles exhibit significantly distinct lifespans. For
instance, we later explain in Section III-A2 that sports

articles have much shorter lifespans than political articles
at The Washington Post.

In this paper, we propose two approaches to predict peak
time for news articles. First, we adopted a classification
method similar to [18]. We extract many features and then
train several classifiers to do the prediction with them.
However, results of this approach are not good enough.
We present a better alternative online approach. The online
method that we propose combines a time-series clustering
method called KSC [15] and a time-series detection method
called SpikeM [14] for the purpose of peak and shape
prediction for news articles. Evaluation shows our online
approach significantly outperforms classification approach in
all settings.

Given the promising results of online approach, we are
deploying the model at The Washington Post to support
prediction for all published news articles. Everyday millions
of visitors read thousands of articles at The Washington Post
and generate hundreds of millions of page views. In order
to process this tremendous amount of data in real time, we
had to adopt the Spark Streaming infrastructure. Section IV
presents more details on the deployment.

II. RELATED WORK

Related work can be grouped into two categories: burst
time detection and burst time prediction.

In burst time detection, we are given the entire time
series and our goal is to spot bursts in its. This area of
research is very prominent in the literature as there are
significant applications, e.g., in telecommunications wherein
we aim to detect network anomalies using bursts in the
number of packages sent/received, in financial time series
analysis wherein we aim to spot sharp price fluctuations in
the stocks [1], or in detecting web trends [16]. Bursts in
such time series are typically detected by dividing the time
series into equal or variable windows and detecting the one
that exhibits an anomaly [1].

In burst time prediction, the problem is, given the current
time series, to predict whether we will witness a burst in
the near future or not. Traditionally, classical linear methods
such as auto regression (AR) and moving average (MA) [17]
have been utilized in this purpose. However, as stated
earlier, the quick rise-and-fall property of practical time



series makes such approaches inadequate and necessitates
the development of better models. One of the well known
approaches to modeling bursts is the work of Kleinberg [13],
wherein he suggested to model the stream using an infinite
state automaton so that bursts correspond to state transitions.
Bursts associated with state transitions constitute a nested
structure where a long burst of low intensity potentially
contains several bursts of higher intensity inside it, in a re-
cursive way. Using this method, Parikh et al. [12] proposed a
method to rank the bursts in an ecommerce query setting and
classify them based on their shape. In similar work [18], the
burst detection problem is modeled as a binary classification
problem wherein if a time series has a burst after a specific
time µ, its respective class would be positive (and negative
otherwise). To predict the exact burst time of the time series,
the author suggests an iterative solution and classification for
every desired point in time. This is a serious drawback since
every potential burst point in a time series requires a new
classifier to be trained. We show that the traditional way
of predicting burst by classifying to binary classes does not
necessarily provide the best result and we demonstrate how
our proposed method overcomes these limitations.

III. PROPOSED FRAMEWORKS

In this section, we describe two approaches to model the
shape and detecting the peak time of a news article. First
is the classification approach that is inspired by a previous
work [18]. Then we will present a better online alternative
to this task.

A. Prediction as Classification

We predict shape and peak time of a news article in
a two step classification process. We first transform the
shape prediction task into a multi-class classification task.
We identify four clusters of possible shapes of news articles
published by The Washington Post, then we predict which
cluster a news article belong to. This step provides basis of
burst behavior of a news article. Using the collected features,
we then transform the peak prediction task into a binary
classification task for each of four clusters of articles, i.e.,
to predict if it is going to be a peak for a news article in
next 30 mins, 1 hour, 2 hours, or 3 hours. This approach is
very similar to [18], and we explore more features than the
original approach. We use this method as our baseline and
compare our proposed method with this classification.

1) Feature Extraction: We extract four sets of features
as enumerated in Table I. Many of these features have been
proven to be very useful in a similar task of predicting click
counts for news articles in [6], we believe they are useful in
this task as well. We also introduce a few new features for
peak prediction task such as using burst time information of
historical articles which is explained in Table I. We explored
temporal features proposed by [18] as well, but through our

experiments, they do not contribute to the performance of
the model.

We have collected features from all the articles that are
accessed from September 2014 until October 2014 at The
Washington Post. To estimate the freshness of a news article,
we are comparing recent articles to archived historical arti-
cles. In our data, articles published before September 2014
are considered as historical articles.

2) Time Series Shape Identification: It is easier to predict
the burst time of the article once we have an initial under-
standing of the pattern of views for a news article. In order
to predict the pattern of click counts for a news article, we
use a combination of clustering and classification. We first
cluster all the time series in our training dataset. Then, we
consider these clusters as class labels and use meta data and
contextual features that are extracted from a news article
before its publication to classify them. We adopted a recent
clustering method KSC [15] to cluster time-series of training
news articles into four cluster. Other clustering methods such
as K-Shape [19] could be used as well. The choice of number
of clusters is reached using Silhouette testing [?], in which
a clustering with four clusters reached the highest score.

Fig 1 represents the cluster center for these four clusters
along with a pie chart representing the distribution of burst
time for articles in each cluster. The time series represented
in Fig 1 shows an exponential rise and power low fall which
is inline with the result of previous works [14], [15], [20].
The exponential rise in the time series is the reason why the
burst time is leaned toward the left side of the plot.

The clusters are ordered so that C1 contains the most
number of articles and C4 contains the least number of arti-
cles. Each cluster has its own characteristics and represents
a set of specific articles:

• Cluster 1: C1 represents articles that have an extreme
bursty behavior. More than 42% of articles in our
dataset fall into this cluster, which shows that most
of the news article have a very short lifespan and are
only popular in a very short period of time. These news
article are mostly Sports and National related topics. It
is surprising that 70% of these articles have their peak
four hours after their publication and only 17% have
their peak before 30 minutes. This means that although
there is a bursty behavior in the viewing pattern of
these articles, despite the expected behavior, this bursty
behavior will not happen right after the publication of
news.

• Cluster 2: C2 represents articles that have a sudden
burst and follow-up views by people. More than 74% of
the articles in this cluster have their peak within 2 hours
after publication. These are stories that are likely to go
viral very rapidly and people talk about it even days
after their burst time. These articles are mostly blog
articles and usually talk about Politics and Opinions.

• Cluster 3: C3 represents articles that become popular



Table I: Features extracted from historical dataset

Metadata Feature
Article Type Each news is either a blog or article
Article Category BookWorld, Editorial-Opinion, Food, etc
Article Section Business, Lifestyle, Local, etc

Publication Date We divide this feature to the time of the day and day of the week that an
article is published

Author Name There are more than 12k authors in our dataset where authors such as
Valerie Strauss and Dan Steinberg has the most published article

Contextual Feature

Sentiment
We extract both sentiment of the title and main article.
The sentiment is defined as probabilities into four categories
of negative, positive, compound, and neutral

Name Entities Number of persons, location, and organization in an article
Readability of Text Five measures that captures different aspects of readability of a document

Freshness of Article

1- Topic Intersection
2- Click count of 10 most similar articles and its average
3- Content similarity of 10 most similar articles and its average
4- Number of similar articles in the historical dataset
5- Maximum similarity and maximum click counts
6- Number of viral articles in the top 10 most similar articles
7- Is the article with maximum similarity a viral article?
8- Is the article with maximum count a viral article?
9- Burst time and burst time slot of the article with maximum similarity
10- Burst time and burst time slot of the article with maximum count

Temporal Feature
FirstViewTimeDiff Time difference between the publishing time and first page view
First 30 Minute View Number of page views after 30 minutes of publication
Page View Acceleration How fast an article is being read within the first 30 minutes
Page view Time-series
Normalized Page view Time-series The first 30 minutes time-series of views in a 5-minute time interval

Social Features
FirstTweetTimeDiff Time difference between the publishing time and first tweet
First 30 Minute tweet Number of tweets after 30 minutes of publication
First 30 Minute Followers’ Number Number of followers of users who post the news within 30 minutes
Tweet/Follower Acceleration How fast an article is being tweeted within the first 30 minutes
Tweet/Follower Time-series
Normalized Tweet/Follower Time-series The first 30 minutes time-series of tweets in a 5-minute time interval

gradually. No article in this cluster has its peak within
one hour after its publication. Almost 78% of these arti-
cles have their peak after four hours of their publication.
This behavior is completely aligned with the shape of
the cluster. These are the stories that go popular slowly
and lose their popularity at a similar pace. These news
content are almost equally divided to blogs and articles
on almost all topics. People will gain interest in blog
articles after a good amount of people talk about it and
that is the reason for the slow increase of number of
views in the beginning.

• Cluster 4: C4 has a similar behavior to C1, with a
small difference that there is a small follow-up after
the peak. These articles covers Sports, National, and
Foreign topics and usually are more trending than the
news article in C1. More percentage of articles have
their peaks in the first 30 minutes than those in C1
cluster. At the same time, there are fewer articles to
peak 4 hours after their publication.

From Fig 1, the life-span of a news article could be
captured by these four clusters. We can predict the shape of
viewing pattern of a news article by classifying it into one of
these four classes. Besides metadata and contextual features,
we introduce some additional effective features based on an
interesting observation. Fig 2 enumerates 8 out of 10 most
similar time-series to the given query news article. As you
can see, the plot of most of these time series has a similar
shape to the time series of the query article. We can use this
resemblance between the time series of query article and its
top ten similar articles to find the shape of the query article.
The cluster number of these top ten most similar time-series
are also used as additional features in the classification task.

Once we collect all features, we train a multi-class Ran-
dom Forest classifier and use 10-fold cross validation to
verify the performance on our data. The result is shown
in Table II. Table III reports the detailed Precision, Recall,
and Fmeasure value for each cluster. As you can see in
this table, we have a good classification result for the first



(a) C1 (b) C2

(c) C3 (d) C4

Figure 1: Different cascading pattern of news articles along with the pie chart representing the portion of news articles that
have their peak before a specific time for each cluster.

three clusters, while a poor performance on cluster C4. As
explained earlier, the reason for this poor performance is
the abundance of all types of article in this category, which
makes it hard for the classifier to distinguish the articles in
this cluster from other clusters.

3) Peak Time Prediction: We have identifyed four possi-
ble viewing patterns of a new article, and we need to estimate
the approximate peak time of the news article. We treat it as
a binary classification task. In [18], the author proposed CPB
(Classifiers to Predict the Bursts) which is a method that by

using multiple classifiers in each time frame tries to predict
whether we will have a peak in the µ future time windows.
Therefore, the main prediction problem changes to a binary
classification. The major problem with this method is that
it generates a new classifier for each time frame and each
value of µ. On the other hand, it collects temporal features
and update them incrementally as they move along the time
series of the news article. In our proposed method, we only
use the features that are collected within the first 30 minutes
after publication of an article.



Table II: Result of shape prediction by classifying the news article using features that are extracted before its publication.

Precision Recall Fmeasure Weighted Precision Weighted Recall Weighted Fmeasure
0.7 0.7 0.7 0.7 0.7 0.68

Figure 2: An example of the queried article (the most top
plot) along with the plot of time series for its top eight most
similar articles to it.

Table III: The detailed performance of the shape prediction
method representing how the model works for each cluster

Metric/Classes 1 2 3 4
Precision 0.67 0.67 0.73 0.66
Recall 0.73 0.56 0.94 0.28
Fmeasure 0.70 0.61 0.82 0.39

Our method could be considered as a simpler version of
the CPB, however it is as effective as this method. We first
explain CPB method and then explain our model in terms of
this model. Each time-series in CPB is divided into K time
windows and it extracts various temporal features using these
K time windows. A spike is the f(kmax) that satisfies ∀1 ≤
k ≤ K, f(kmax) ≥ f(k), and kmax is the time window
of the spike and f(.) is the number of page views at any
given time interval. Given two constants K and µ and the
observed cascade spreading in time interval [t0, tcurrent],
where t0 is the starting time of the cascade and tcurrent is
the current time, the µth future time interval is defined as
[tcurrent+

µ−1
K ×(tcurrent−t0), µK ×(tcurrent−t0)]. Given

this definition, CPB tries to find whether we see a peak in
the µ future time window. On the other hand, by solving the
above problem incrementally, it is able to predict in which
time window the burst will appear.

We create 4 different classifiers to predict whether we will
have a burst within 30 minutes, within an hour, within two
hours, and within three hours after publication of an article.
In order to make the prediction for the first 30 minutes,
we only use the contextual and metadata feature, while for
the rest of the classifiers we use the whole feature set.
We consider all the articles that have their peak before a

specific time, as the positive class and all the other articles
as negative class. Therefore, we are trying to have a high true
positive while reducing the false positive. Table IV presents
the result of our SVM classifiers for the peak prediction.

The recall value represents how well we can classify
articles in the positive class. As you can see in this table,
in all the experiment the recall value is close to maximum,
meaning that if an article have a peak before that specified
time, we will be able to report that. However, the low
precision value shows that we also report lots of articles
that have their peak after that specified time, as the ones
that have their peak before it. Therefore, we have to try to
reduce the amount of false positive rate in our classifiers.
As you can see in Table IV, the precision value increases
as we try to make prediction for a farther future. This is
due to the fact as we try to predict for farther future, each
dataset turns to look like a balanced dataset and number of
positive and negative samples tend to get closer. This means
that rather dealing with a rare-class classification problem
in the beginning, we are dealing with a balanced dataset in
the future.

Table IV: Result of predicting approximate time-frame
where a peak would occur for an article using classification
framework

Precision Recall Fscore #Pos
First 30 Minutes 0.19 0.99 0.31 3747
First One Hour 0.28 0.99 0.43 5512
First Two Hours 0.36 0.99 0.52 7201

First Three Hours 0.41 0.99 0.57 8151

B. Online Peak Prediction

In Section III-A, we described a classification method
to predict the peak of news articles. This method is an
offline method since the prediction is done once and model
is not updated with changes of article behaviors. After
exploring a rather comprehensive set of features with latest
classification models, it is difficult to achieve a significantly
better prediction results with the this classification frame-
work. Alternatively, we propose an online method. We track
real time click time-series of each news articles after their
publication and identify similar historical click time-series
of previous articles and use them to predict shape and peak
times for newly published news articles. In this method, we
use the SpikeM algorithm [14] to predict whether we will
have a peak in the future time intervals. Although Spikem is
originally created for time-series detection, we are the first
to use it for predicting peak time of news articles. In the
following section, we shortly explain the SpikeM model and



how we adapt this method to predict the shape and peak
time of a news article.

1) SpikeM Algorithm: The SpikeM algorithm is designed
to model the rise and fall in the time-series pattern of
different events. This model can take into account time-
series characteristics such as exponential rise and power-
law fall pattern, periodicities, and avoiding divergence to
infinity. SpikeM model uses a handful of parameters that
each of them captures one of these characteristics. The main
equation for detecting the pattern of the time-series is as
follows:

∆B(n+ 1) = p(n+ 1).
(
U(n).

∑n
t=nb

(∆B(t)+

S(t)).f(n+ t− 1) + ε
) (1)

Where ∆B(n) is the number of people who just clicked
on the article, U(n) is the number of un-informed people1,
S(t) represents when the time-series peaks, ε is the noise
parameter of the effect of external activities around the
article which is usually ε ≈ 0, f(t) is the amount of
infectiveness of an article at time t which is defined as
f(t) = β × t−1.5. As you can see it is a decaying function
over time which means that as we move along time the
infectiveness of the article also fades away. β represents the
interestingness of the article and a low β value means that
no one cares about this news. p(n) captures the periodicity
of the event and has the following equation:

p(n) = 1− 1

2
Pa(sin(

2π

Pp
(n+ Ps) + 1) (2)

The periodicity of the time-series is controlled using three
parameters which are the strength of periodicity, Pa, the
actual period, Pp, and phase shift of the periodicity Ps. The
periodicity captures mainly the fact that readers tone down
their activity during the night.

SpikeM uses the Levenberg-Marquardt (LM) to minimize
the sum of the errors between the actual number of viewers
at time n, X(n) and the estimated ∆B(n):

D(X, θ) =

nd∑
n=1

(X(n)−∆B(n))2 (3)

where nd is the duration of the time-series. We consider
the SpikeM model as a smoothing algorithm that can be
used to provide a better resolution of the time-series in our
historical dataset. Through our experiments, we find out that
this model provide a much better result than other smoothing
algorithms such as LOESS smoother [21].

2) SpikeM for Shape Prediction: In [14], the author
explained how to use SpikeM algorithm in order to use it for
forecasting the volume and pattern of the next time-intervals.
According to this method, we have to wait until we see the
first spike in a time-series to be able to predict the rest of
the time-series. This comes from the fact that once an event
like ”Harry Potter” movies, shows a pattern in the past, it
pretty much shows the same pattern of user activities in
the future. Therefore, using the spike patterns in the past,

1N represents total number of people who viewed the article, and B(n)+
U(n) = N

we would be able to infer SpikeM parameters and then use
them on the new time-series to predict the future. Although,
this hypothesis highly relies on the fact that similar events
would entice the same behavior in user activities, it would
not have any solution for events that does not have a history.

Therefore, in order to use the SpikeM model, we have to
use the model in a way that it uses the pattern of similar
articles in the past and use them for prediction. To solve
this problem, we suggest two approaches to find the similar
time-series to an article. As mentioned in Section III-A2, for
each news article in our dataset, we extract top ten similar
articles to it. As we argued in Section III-A2 and according
to Fig 2, the viewing pattern of the queried time-series is
quite similar to the viewing pattern of these top ten articles.
Therefore, these are the strongest candidates for finding the
similar pattern.

In the second approach, we find the similarity on all our
historical dataset. This could be viewed as the method that
is used by Google Correlate2, which finds the most similar
time-series to the input time-series in their dataset.

In both of these methods, we try to find the most similar
article to the queried article. We later explain in this section
different measures to identify the most similar time-series
to the queried article. Having similar events with similar
viewing pattern is all we need to use SpikeM algorithm to
predict the future time-intervals of the queried article. Our
solution on using the top ten articles and SpikeM consists
of the following steps:

• For each queried article, we extract top ten similar
articles to it and extract their time-series.

• For each of these ten time-series, we fit the SpikeM
model and store their respective parameters.

• We use the parameters of these ten models to create ten
time-series. As we move along the time, we compare
the time-series of the current article with these ten time-
series. We use four different measures to estimate the
closeness of the each of these ten time-series to the
queried article.

• Please note that as we move along the time, for different
time intervals, we find the most similar time-series.
This is due to the fact that in first few hours after the
publication of article, we see a lot of fluctuation in the
article that is chosen as the most similar articles.

The above-mentioned approach could also be used for find-
ing the most similar article in the whole historical dataset.
In this method, rather finding the most similar article among
only the top ten articles, we find the similarity of the queried
article with the time-series in the whole dataset.

Using the above-mentioned procedure, we are able to
have an online prediction for all articles that have at least
one similar article in our historical dataset. Although it is
possible that trend of the current article behave completely

2correlate.google.com



different from the historical ones, there is still a large number
of articles that imitate the same behavior.

3) Similarity Measure: Time-series similarity metric is
a very important component in our framework. Besides two
methods we used to measure time-series similarity in III-B2,
we compare the performance of three different similarity
measures in this paper. We use a normalized version of
time-series in which we normalize the time-series by the
maximum value that is been recorded up to the current time.
We use Euclidean distance, the KSC similarity measure [15],
and our proposed method which is a modified version
of KSC method which we call Lagged KSC (LKSC) to
compare time-series.

Normalized Time-Series
Given the current time t and a time-series xt, the nor-
malized time-series is calculated by x̂t = xt

max(xt)
. There-

fore, given two normalized time-series x̂t and ŷt, the
Euclidean distance between these time-series is calculated
using Euclid(x̂t, ŷt) =

√∑t
i=1(x̂it − ŷit)

2, where x̂it is the
number of clicks at time point i.

KSC
As mentioned in [15], there are some problems in using
the Euclidean distance to find the similarity between two
time-series. We need a distance measure that is invariant
to translation and scaling. Therefore, given two normalized
time-series x̂t and ŷt, KSC defines the distance between
them as:

d(x̂t, ŷt) = argmin
||x̂t − αŷ(q)

t ||
||x̂t||

(4)

where ŷ
(q)
t is the result of shifting the ŷt time-series by q

time units and ||.|| is the l2 norm. With a fixed value for q,
α is considered as a convex function and we could find the
optimal value of α by setting the gradient to zero:

α =
x̂T
t x̂

(q)
t

||x̂(q)
t ||2

(5)

Whereas given a fixed q, we can simply find the optimal
value for α, there is no trivial solution to find the best value
for q. Therefore, KSC shifts all the time-series to peak at
a specific time unit and then use this distance measure to
find the similarities between time-series. However, in our
problem, we are not aware of the peak time of the current
article and therefore, we consider the maximum value that
is seen so far as the peak value and use this value for
normalization.

Lagged KSC
KSC lacks in finding the best shift value q since we do

not know the peak time of the current article. Therefore, we
have to find a way to deal with finding the best value for q.
As mentioned earlier, if we normalize the time-series of the
current article according to the maximum value that is been
recorded until now, we can use this method to shift the time-
series and match peaks of the current article with its top ten
time-series. In order to find the q value, we use the Cross
Correlation between the normalized version of current time-
series and its similar articles. The Cross Correlation method
is a measure of similarity of two series as a function of lag

Figure 3: For each pair of similarity measures, this plot
represents the percentage of article that have identical most
similar article over each time interval

of one relative to the others. The Cross Correlation between
two series x̂t and ŷt is measured as follows:

(x̂t ? ŷt)[n] =

∞∑
m=−∞

x̂∗t [m]ŷt[m+ n]. (6)

where x̂∗
t denotes the complex conjugate of x̂t and n is the

lag. In our application, x̂t is the current time-series while
ŷt represents the time-series of similar articles. We find the
best lag value that could maximize the Cross Correlation
between two time-series and consider it as the value for q:

q = arg maxn(|(x̂t ? ŷt)[n]|) (7)

Although both the KSC and LKSC will not provide a correct
measure of the distance between the two time-series (since
we use a portion of time-series to compare them), it could
be considered as an approximation for the distance between
the two.

Since each of these measures capture a different aspects
on similarity between two time-series, the result of the most
similar article would also be different for these measures.
To understand the amount of differences between these
measures, for each pair of measures, we plot the percentage
of articles that found an identical similar article. Fig 3
represents this percentage over each time interval3. As you
can see in this figure, the similarity between the Normalized
measure and LKSC is the least while KSC and LKSC has the
largest similarity in the first 30 minutes. Moreover, once we
go along the time, the similarity of all pairs decreases which
magnifies on how different each of these measures behave
when we compare enough number of data points from two
time-series. On the other hand, Fig 4 compares the average
distance of the queried article and its most similar article
along the time. Fig 4 also plots the distance of the KSC and
LKSC method when using the whole dataset to search for
the most similar article. These plots are shown using KSC∗

3The first time interval represents the first 30 minutes, while all the
other time intervals are separated with one hour. Therefore, time interval 6
represents the similarity for five hours after the publication



Figure 4: The average distance between the time-series of
the queried article and its most similar article that is found
by each measure over time

and LKSC∗, respectively. As you can see, the Euclidean
distance gives the largest distance among other measures.
As stated in [15], this confirms the inefficiency of the
Euclidean distance for measuring the distance between two
time-series. Moreover, our modification on the KSC method,
Lagged KSC, gives a much smaller distance than KSC
which shows how effective this approach is in finding the
most similar article. Furthermore, LKSC provides a better
distance than KSC∗. Please note that LKSC only searches
among the top ten similar articles while KSC∗ searches
through the whole dataset to find the most similar article. Not
surprisingly, LKSC∗ provides the least distance between
the queried article and its most similar article which shows
the effectiveness of this method among other measures.

To show the effectiveness of each of these measures in
finding the most similar article, we plot the time-series of an
article along with their most similar SpikeM generated time-
series. Fig 5 represents the plots of time-series of an article
over 24 hours. Each plot represents the time-series of the
article along with the most similar SpikeM generated time-
series to it according to a specific measure. We use the first
48 data points, representing the page views after four hours
of publication of the article, to compare the two time-series.
The left plots show the results using the Euclidean, KSC,
and LKSC measures on the top ten similar articles, while the
right plots shows the result of search the whole dataset using
KSC∗ and LKSC∗. As you can see in this figure, the KSC
method completely failed to find the similar article, while
the Euclidean method finds a more realistic time-series to
the trend of the article. Although Euclidean method found
a similar time-series, it still fails to capture the invariant
that exists between the two time-series. This problem is
completely resolved by LKSC and LKSC∗ which capture
both the trend of the article and the invariant that exists in
the time-series.

Fig 5 represents the result of using different distance
measures over 48 data points of the queried article and

Figure 5: The result of finding the most similar article
using KSC (top-left), LKSC (middle-left), Euclidean method
(bottom-left), KSC∗ (top-right), and LKSC∗ (middle-
right) by accommodating the first 48 data points

the SpikeM generated time-series. However, as mentioned
earlier, we start finding the most similar article to a queried
article after 30 minutes of its publication. Fig 6 shows how
the most similar article will change as we move along the
time and use more data points to find it. Fig 6 shows the
result of using LKSC measure to find the most similar
article. As you can see, although just by using 6 data points

Figure 6: How most similar article will change over time, if
we use LKSC measure to find it

(top-left plot) LKSC is able to find the right trend for the
article, it lacks to shift the SpikeM generated time-series
to match the data, correctly. As we move along the time,
however we see that the SpikeM model that is similar to the
time-series also changes to a narrower time-series that could
better capture the trend and invariant in the time-series.

4) Classification vs. Online: To compare the performance
of the SpikeM method with the classification approach
explained in Section III-A3, we use SpikeM with LKSC
distance to predict the peak time of each time-series and
compare the peak time with the actual peak time of the



Figure 7: The comparison of the ROC curve for the classi-
fication and SpikeM method for the first 30 minutes.

time-series. For a given time interval t (like 30 minutes),
let’s consider the prediction as p and the actual peak time
as a. We create a binary label for prediction and actual peak
as follows:

lp = 1 if p <= t, otherwise lp = 0
la = 1 if a <= t, otherwise la = 0

(8)

Using these two binary vectors for prediction and ac-
tual peak time, we are able to compare our result to the
classification result. Table V represents the results for the
SpikeM method. Online approach significantly outperformed
the classification framework (Table IV) in all settings. This
shows nonlinear methods such as SpikeM is a much better
alternative in predicting shape and peak times of news
articles.

Fig 7 plots the ROC curve for the two approaches and
compares the AUC value for these two methods4. From the
result, the classification method is no better than a random
classifier, while SpikeM provides a better prediction.

Table V: Result of using SpikeM to predict the peak

Precision Recall Fscore AUC
First 30 Minutes 0.48 0.99 0.65 0.76
First One Hour 0.47 0.99 0.64 0.77
First Two Hours 0.65 1 0.79 0.76

First Three Hours 0.68 1 0.81 0.75
First Four Hours 0.93 1 0.96 0.75

5) Lead Time: As mentioned earlier, we use SpikeM not
only to predict the shape of the time-series, but also to
predict the peak time of the news article. Section III-B2
elaborates on how to predict the shape of the time-series
using the SpikeM algorithm. One advantage of having a good
method for shape prediction is that we can use the predicted
pattern to find the peak time of the article. In this method, we
consider the peak time of the most similar SpikeM generated
time-series to a queried article, as our prediction for the
peak time of the article. The lead time is defined as the time

4Due to space limitation, we avoid plotting the ROC curve for all time
intervals, but the improvement for all time-intervals stays the same

Figure 8: The lead time of online peak prediction for the
first 30 minutes

difference between the predicted peak time and the actual
peak time. A positive lead time means that we predicted the
peak time after the actual peak, while a negative lead time
means that we predicted the peak before the actual peak.
For all articles, we find the most similar SpikeM generated
time-series to the pattern of the queried article according to
the measures that are explained in Section III-B3.

Fig 8 represents the histogram of the lead time using this
method for the first 30 minutes. The ideal shape for this
histogram is to have as few articles as possible on the right
side of zero point, while having as many articles as possible
close to the zero point on the left side. As you can see in
this figure, a large portion of news article has their lead time
close to zero, which shows the effectiveness of SpikeM in
predicting the peak time.

IV. DEPLOYMENT AT THE WASHINGTON POST

Knowing the peak time of articles allows newsroom
team to promote more effectively these articles in differ-
ent ways such as putting them on home page or social
media networks. Given the promising results of the online
prediction approach, we are deploying the model to predict
the most significant peak time of articles published by The
Washington Post.

To start simple, we only use click time series of news
articles published at The Washington Post, we can incor-
porate time-series from other sources such as social media
networks in the future. Millions of users are reading articles
at The Washington Post and it is practically very challenging
to collect time-series for news articles in real time. We have
to adopt a big data infrastructure to support the prediction.
The online prediction approach needs constant click updates
for all news articles, thus we adopt the Spark Streaming
framework for this purpose. Figure 9 demonstrates a high
level architecture of our prediction system at The Washing-
ton Post.

Click updates for all Washington Post news articles are
queued in Kafka in real time, and backend Spark Stream-



Figure 9: The architecture of predication system at The
Washington Post

ing process constantly consuming these millions of click
updates and transform them into time-series for these arti-
cles. SpikeM model matches these updated time-series with
historical articles and makes prediction as necessary. The
resulting predictions are then queue back to Kafka and then
forward to external notification channels. Newsroom teams
can then be notified about when certain articles are expect
to peak.

V. CONCLUSION

In this paper, we introduced two problems on forecasting
the pattern of click time-series and peak time of the news
articles. We proposed offline and online methods to predict
the shape of the click time-series before and after publication
of an article. While we use a combination of clustering and
classification method to provide a solution for peak time
prediction problem. Through our analysis on a real news
dataset collected from The Washington Post, we provided a
framework that could be used to both forecast the pattern of
click time-series and peak time of the news article.
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