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ABSTRACT

Spatial optimization problems (SOPs) are characterized by spatial

relationships governing the decision variables, objectives and/or

constraint functions. These are mostly combinatorial problems (NP-

hard) due to the presence of discrete spatial units. Hence, exact

optimization methods cannot solve them optimally under practical

time constraints, especially for large-sized instances. Motivated

by this challenge, we explore the use of population-based meta-

heuristics for solving SOPs. To this end, we observe that the search

moves employed by these methods are suited to real-parameter

continuous search space rather. To adapt them to the SOPs, we

explore the role of domain knowledge in designing spatially-aware

search operators that can e!ciently search for an optimal solution

in discrete search space while respecting the spatial constraints.

These modi"cations result in a simple yet highly e#ective spatial

hybrid metaheuristic called SPATIAL, which is applied to the prob-

lem of school boundary formation (also called school redistricting).

Experimental "ndings on real-world datasets reveal the e!cacy of

our algorithm in obtaining superior quality solutions in compari-

son to traditional baseline methods. Additionally, we perform an

in-depth study of the individual components of our framework and

highlight the $exibility of our method in assimilating other search

operators as well as in adapting it to related SOPs.

CCS CONCEPTS

• Theory of computation→ Optimization with randomized

search heuristics.
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1 INTRODUCTION

Solving a SOP involves search for an optimal con"guration of a set

of discrete spatial units such that some predetermined planning cri-

teria and/or objectives are satis"ed. It can also be de"ned as the use

of mathematical/computational techniques for "nding solutions to

geographic decision problems under design constraints [24]. The op-

timization variables relate to the decision being made (as quanti"ed

by the objective function) while the constraints impose a set of nec-

essary design considerations (speci"c to the studied problem) to be

satis"ed. The functions and constraints usually have spatial prop-

erties/topological relationships, including adjacency, contiguity

(connectivity), intersection, similarity (distance), shape (compact-

ness), containment, and so on, encapsulated in them [39]. Due to the

interdisciplinary nature of SOPs, they have been studied in di#er-

ent contexts - location sciences [15, 23, 41], regionalization [6, 22],

spatial data mining [16, 26], territory design [19, 36, 42], etc. A

key feature of these SOPs is the presence of an underlying graph

representation for encoding the spatial relationships as shown in

Figure 1. Accordingly, a SOP is classi"ed as either an assignment

or a partitioning problem, with or without spatial constraints [40].

Figure 1: Graph-based representation of a geographical re-

gion formed by spatial units. The nodes encode the spatial

units with edges linking the adjacent spatial units.

The discrete nature of a SOP makes them computationally chal-

lenging, i.e., an increase in the problem size leads to a combinatorial

explosion of search space - the phenomenon where the computing

time required to "nd the optimal solution of a NP-hard problem

increases as an exponential function of the problem size [8, 25]. As

a result, traditional optimization techniques are unable to optimally

solve the problem under practical time constraints [14]. This has

led to an increased adoption of metaheuristics for solving mid- to
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large-sized combinatorial optimization problems [2]. In this work,

we devise a population-based metaheuristic for solving SOPs in-

spired by the emerging "eld of Swarm Intelligence1. These methods

instantiate search moves the closely mimic the complex social be-

havior of animals such as ant colonies, beehives, bird $ocks, and so

on, which may lead to an improved exploration of the decision or

search space [5].

However, adapting methods based on Swarm Intelligence for

solving SOPs has its own set of challenges: (1) Real-parameter

search move: These algorithms employ linear search moves for

perturbing existing solutions in order to explore the decision space.

While these moves are ideal for solving real-parameter continuous

optimization problems, they are hardly suited to the discrete search

space present in SOPs. (2) Spatial constraints: SOPs are highly

constrained in nature due to the presence of spatial relationships.

Hence, the number of infeasible solutions surpass the number of

feasible solutions signi"cantly with an increase in problem size.

This often results in expending tremendous computational e#ort in

"nding a feasible solution, especially when the search operators are

not spatially cognizant. (3) Exploration-exploitation trade-o!:

Population-based models have a tendency for strong exploration

during the initial stages of a trial run. This is detrimental to pre-

serving solution structure and spatial constraints present in SOPs.

(4) Random (re)initialization: Solutions are reinitialized at the

start of a run or when they become infeasible. This practice has

little value in terms of search e!ciency, especially when the de-

cision space is highly constrained locally. The newly generated

random solution might be worse of than its predecessors and incur

signi"cant time in "nding promising region of the earch space.

In view of these challenges, we devise a simple, easy-to-use

search framework for solving SOPs inspired by the Arti"cial Bee

Colony (ABC) algorithm [20]. The linear search moves of the origi-

nal ABC algorithm are modi"ed to perform spatially-aware search

with provision for solution repair. The resulting hybrid metaheuris-

tics, commonly known as memetic algorithm [29], is called Swarm-

based sPAatial memeTIc ALgorithm (SPATIAL) and is tested on

the problem of school boundary formation [1, 35], a well-known

SOP encountered in zone design. It involves the delineation of the

public school attendance zones (boundaries) in a school district

based on a series of factors, including operational e!ciency, stabil-

ity, geographic proximity, accessibility, contiguity, transportation

cost, and so on. The main contributions of our work are as follows:

• We highlight the role of domain knowledge in designing

spatially-aware search moves in order to make population-

based metaheuristics work on SOPs. This is a fundamental

contribution to the "eld of spatial optimization. Additionally,

we rigorously test the new search moves on the problem of

school boundary formation by extensive experimentation

on two real-world geospatial datasets.

• We depict how SOPs can be encoded in the form of graphs

and derive a mathematical formulation for the problem of

school boundary formation. The formulation is general and

1Swarm Intelligence is de"ned as the study and design of computational optimization
techniques based on the collective intelligence emerging from a large population of
search agents with simple behavioral patterns for communication and interaction [3].

can easily be extended to other similar spatial problems such

as territory design, service redistricting, regionalization, etc.

• We demonstrate how spatial search operators take advantage

of searching for solutions at the boundary between feasible

and infeasible decision space, especially in exploring the

previously unseen solutions. This is an important "nding in

context of combinatorial optimization probelms.

• We empirically verify how population-based metaheuristics

can bene"t from parallel architecture of the computing plat-

form in carrying out the search without noticeable increase

in computational time.

2 BACKGROUND

2.1 Metaheuristics

The term metaheuristic was coined by Glover [9] and refers to a

set of high-level problem-independent instructions or strategies for

developing heuristic optimization algorithms [38]. Metaheuristics

fall under the sub-"eld of stochastic optimization problems. As the

name implies, these methods employ randomness or stochasticity

for "nding solutions to computationally hard problems in limited

time. Exact (traditional) methods ofmixed-integer optimization, like

dynamic programming and branch-and-bound, are prone to combi-

natorial explosion. This is why metaheuristics are often adopted as

a viable alternative to exact methods for solving computationally

di!cult problems, especially when the size of the problem instance

is large and/or there is a practical time constraint.

Metaheuristics are classi"ed into three broad classes depending

on how the solutions (or their representations) are manipulated.

1) Local search metaheuristics rely on iterative improvement

by making small perturbations to a single solution. 2) Construc-

tive metaheuristics build solutions from constituent elements by

adding them one at a time. 3) Population-based metaheuristics

start with an initial set of solutions and improve them in an iterative

manner by selecting and combining existing solutions. Henceforth,

we shall focus on population-based models and up next discuss

how they can be adapted to solve SOPs.

2.2 Population-based models

These methods can be further subdivided into two groups: a) Evo-

lutionary algorithms (EAs) are global optimization methods that

mimic the process of natural evolution, by maintaining a population

of solutions and improving them via the process of recombination

and selection, till a locally optimal solution. EA methods are stud-

ied under two broad umbrella - Evolutionary Computation (EC)

and Swarm Intelligence (SI) - based on the inspiration behind the

modeling [5]. b) Deterministic methods include methods like scatter

search and path relinking that follow a set of deterministic rules in

selecting, generating and updating new solutions [12].

Recently, a line of work has focused on assimilating ideas from

di#erent classes into a “hybrid” framework. One such framework,

which combines recombination operator (from EAs) with local

search, is calledmemetic algorithm [28]. Memetic algorithms bene"t

from the synergy between iterative improvement of the local search

and the recombination operation of the population-based methods.

We take a step in this direction by proposing a memetic algorithmic

framework for solving SOPs inspired by the ABC algorithm, a
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continuous-valued real-parameter global optimization algorithm

based on the foraging behavior of honeybees [20]. For more details

about the ABC algorithm kindly refer to Part A of the Appendix.

Our approach di#ers from the ABC algorithm in the terms of the

spatially aware search moves based on domain knowledge.

2.3 Domain knowledge for spatial awareness

Domain knowledge is the set of auxiliary information that a meta-

heuristic needs to be able to e!ciently search for a feasible solution.

It includes both model-speci!c and problem-speci!c instructions.

In population-based models like ABC, given an initial population

of solutions (parents), a linear search move is employed to produce

a new set of solutions (o#springs). These linear moves are not

suited to discrete search space. To add to the di!culty, the presence

of spatial constraints (topological properties), like contiguity, in

SOPs makes it harder to "nd feasible solutions. Even the traditional

constraint handling techniques used in conjunction with EAs are

of little help [27]. It becomes increasingly impracticable for EAs

with linear search operators to solve SOPs [17]. Hence, domain

knowledge is found to be helpful in integrating spatially-aware

local search techniques within the EA framework.

We start with a set of initial feasible solution and then improve

the solutions in an iterativemanner bymoving spatial units between

the neighboring zones [30, 31]. Two types of moves are possible:

a) move one unit at a time; b) swap units between two neighboring

zones. The swaps are permitted only if it leads to an improvement

in the objective function. Even then, such local moves may result in

breaking spatial contiguity of the involved zones, thereby leading to

an infeasible solution. Additionally, the greedy nature of the moves

may prevent exploring the decision space beyond the immediate

neighborhood of the incumbent solution. In such scenarios, path

linking can help in repairing the solutions if they enter the infeasible

search space [13]. However, we must "rst allow the solutions to

reach the infeasible region before repairing them back to feasibility.

This causes the solutions to undergo strategic oscillations between

the feasible and infeasible search space, and often results in better

solutions [10]. The role of problem-speci"c domain knowledge will

be discussed in the subsequent sections.

3 SPATIAL OPTIMIZATION PROBLEM

Graphs provide a $exible way of encoding the spatial relationship

between spatial entities and can easily be used in an optimization

setting [7]. In this section, we outline general graph-based repre-

sentations underlying in most of the SOPs and follow up with a

real-life instance of the problem − school boundary formation. The

proposed formulation is $exible enough to be extended (with some

modi"cations) to similar spatial problems.

3.1 Graph-based representation

Let us assume a geographical region is composed of smaller-sized

spatial (areal) units, which can be represented as nodes in a graph.

An edge connects two nodes if their respective spatial units share

a common boundary (commonly called rook contiguity in spatial

sciences). Such a graph-based representation of a geographic region

was shown earlier in Figure 1. Next, we describe the graph notations

and use it to de"ne an SOP.

Let a geographical region be composed of # spatial units and

is represented by a graph G =
(
V, E

)
, whereV = {E1, E2, . . . , E# }

is the set of nodes and E is the set of edges connecting adjacent

nodes. Here, G is commonly called contiguity graph and is a simple

planar graph with the nodes encoding the spatial entities and the

edges capturing the spatial adjacency relationship between the

entities. Alternatively, a node E can be represented by its index,

i.e., E ∈ {1, 2, . . . , # }. These nodes may have their attributes, i.e.,

Π (G) = {c1, c2, . . . , c# }, where cE indicates the node attribute

set corresponding to node E . Let cE is represented by a tuple(
!E, %E

)
,

where !E = [(G1, ~2), (G2, ~2), . . . , (GC , ~C ), (G1, ~1)] is the list of ge-

ographic coordinates (latitude-longitude) that de"ne the boundary

polygon of the E th spatial unit, and %E is the vector of feature val-

ues corresponding to it. Besides, there exists a similarity matrix

W (G) =
(
,DE

)
D=1,...,# E=1,...,# that captures the relationship be-

tween any pair of nodes. Popular choices for the similarity metric

include the distance function or the binary adjacency relationship.

Similarity can also be considered as an edge attribute since it is

generally de"ned for edges connecting adjacent nodes.

Given a graph G =
(
V, E

)
corresponding to a geographical

region, a SOP involves search for a feasible (often locally optimal)

solution G′ =
(
V ′, E ′

)
, such that the spatial con"guration ofV ′ ⊆

V and E ′ ⊆ E satis"es pre-de"ned problem criteria/constraints

while minimizing certain objective(s). We are concerned with the

zoning problem, where E ′ ⊂ E andV ′
= V such that the nodes

inV ′ are partitioned into subgraphs called zones.

3.2 School boundary formation (SBF) problem

The public school system, in countries like the US, operates through

the functioning of a school district, which represents a large geo-

graphical region coterminous with the boundary of a county, sub-

division, or a city. These districts are administrative units for over-

seeing the local jurisdiction of public schools. A school district is

composed of smaller spatial units called planning zones or student

planning areas (SPAs). These SPAs are grouped to form a geograph-

ically contiguous area, called the school attendance zone (SAZ),

which de"nes the boundary of a school. The schools at di#erent

levels (elementary, middle, and high) have a well-de"ned boundary

often arranged in a hierarchical manner. In a school district, the

rule of thumb is that students attend the school assigned to their

residing SPA. In Figure 2, we illustrate a school district with its con-

stituent - school locations, SPAs, and SAZs. We see that the school

district data has an underlying graphical structure. From hence-

forth, we shall use the following groups of terms interchangeably:

nodes/spatial units/SPAs and subgraphs/zones/SAZs.

These school boundaries (SAZs) are often redrawn due to con-

stantly shifting demographics within the school district which in

turn leads to closing, opening, or building modi"cation of schools.

During a school boundary process, the planning department of the

school district may consider many factors such as program capacity,

accessibility, proximity, presence of man-made/geographical barri-

ers, transportation costs, etc. Though there is no speci"ed order in

which these factors will be considered, the school boundaries are

mostly modi"ed to balance the present student enrollment with

the schools’ program capacity.
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Figure 2: A GIS visualization showing the school district

of Loudoun county, VA. The smaller polygons (with blue-

colored border) are the SPAs and larger polygons (with

brown-colored border) are the SAZs of elementary schools.

The blue dots indicate the locations of all the public schools

in the county.

We consider the naturally quanti"able factors − student enroll-

ment to program capacity (capacity utilization) and school prox-

imity (compactness) − as soft constraints, and spatial factors −

geographic contiguity2 and hard partition − as hard constraints.

A feasible solution should satisfy all the hard constraints. On the

other hand, the soft constraints can be violated with problem ob-

jective encoding the degree of violation. The optimization problem

involves determining a feasible solution with the minimum possible

(soft) constraint violation.

In instantiating the problem, let the SPAs be represented as

%E =
(
ES=E,MS=E,HS=E, ES2E,MS2E,HS2E

)
, E ∈ {1, 2, . . . , # } , (1)

where L=E is the student population residing in SPA 8 corresponding

to the school level L (ES: elementary school, MS: middle school, HS:

high school), and L2E is the program capacity of the schools con-

tained in the same SPA. For majority of the SPAs that don’t enclose

any school inside them, we have ES2E = 0, MS2E = 0, HS2E = 0. We

assume that all the schools in a school district follow a consistent

grade structure with respect to the school levels.

Problem de"nition: If a school district is composed of # SPAs

and  schools3, and can be represented as a graph G =
(
V, E

)
such that |V| = # and |E | ≤ 3# − 6 (when # ≥ 3 as per Euler’s

polyhedral formula), the solution to the SBF problem is a spatial

con"guration of  connected subgraphs (contiguous SAZs) such

that it minimizes a weighted objective of capacity utilization and

compactness (proximity). It can be mathematically written as

2One can travel from one part of the SAZ to another part without leaving the SAZ.
3The number  depends on the school level L := ES, MS or HS, since we solve the
problem at each level independently.

minimize

S F
(
S
)

(2a)

s. t.

 ∑
I=1

(IE = 1, ∀E = 1, 2, . . . , # , (2b)

#∑
E=1

)IE = 1, ∀I = 1, 2, . . . ,  , (2c)

)IE ≤ (IE, ∀E = 1, 2, . . . , # , ∀I = 1, 2, . . . ,  , (2d)∑
E∈N(�)\�

(IE −
∑

E∈�∪{; }

(IE ≥ 1 − (|�| + 1),

∀I = 1, 2, . . . ,  , ∀; = 1, 2, . . . , # ,

∀� ⊂ {1, 2, . . . , # }\N ({;}) ≠ ∅, (2e)

)IE, (IE ∈
{
0, 1

}
, ∀E = 1, 2, . . . , # , ∀I = 1, 2, . . . ,  . (2f)

where,

E = {1, 2, . . . , # } : is the index corresponding to the nodes;

I = {1, 2, . . . ,  } : is the index corresponding to the subgraphs;

S =
(
(IE

)
I=1,2,.., E=1,2,..,# : is a binary matrix {0, 1} ×# , where

(IE is 1 if node E is assigned to subgraph I, otherwise 0;

T =
(
)IE

)
I=1,2,.., E=1,2,..,# : is another binary matrix {0, 1} ×# ,

where )IE is 1 if node E is the center of subgraph I, otherwise 0;

II =

{
E |(IE = 1

}
: is the indexset containing the indices of nodes

present in subgraph I.

Constraints (2b), (2c), and (2d), ensure that each node can be

assigned to one subgraph only and each subgraph can have at most

one center node, respectively. The connectivity of each subgraph

is ensured by constraint (2e), where N(+ ) refers to all the nodes

either represented by + or adjacent to some node represented by

+ . This constraint checks whether each subgraph (zone) is con-

nected (contiguous) with respect to its constituent nodes (spatial

units) and performs an exponential number of comparisons of order

$ ( # 2
# ). Due to this combinatorial explosion of the constraints,

it becomes impracticable for exact optimization methods to solve

mid- to large-sized instances of this problem.
The problem de"ned in Equation (2) is a constrained optimiza-

tion problem with binary decision variables, i.e., matrices S and T.
In these problems, domain knowledge is often used in pre"xing a
subset of nodes as centers of their respective zone. Here, we can con-
sider the SPAs with schools inside them as center nodes, denoted by

V , and accordingly "x the variable T resulting in a reduced number
of decision variables and constraints in the optimization problem.
Now, we solve a constrained assignment problem by minimizing a
non-linear objective function F

(
S
)
computed as the total violation

of soft constraints (aspatial and spatial):

F
(
S
)
= _

 ∑
I=1

��������
1 −

#∑
E=1

(IE · L=E

#∑
E=1

(IE · L2E

��������
︸                       ︷︷                       ︸
capacity utilization (aspatial)

+(1 − _)

 ∑
I=1

����1 − 4c · Area
(
II

)
Perimeter2

(
II

)
����

︸                           ︷︷                           ︸
boundary compactness (spatial)

, (3)

where, both the components asymptotically approaches 0 and are

linearly weighted. _ ∈ (0, 1) is a weighing factor that judges the

relative importance of these objectives. We prefer to use _ such that
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_/(1−_) ≥ 2 since capacity utilization is the predominant reason

behind changing school boundaries.

The objective function in (3) generalizes to any SOP seeking a

 −partition of a geographical region by minimizing a similarity-

based dispersion metric while being subjected to balance and con-

tiguity constraints. Here, we preferred shape compactness (non-

linear) over distance-based dispersion (linear) due to the arbitrary

locations of schools and lack of clustering structure in the dataset.

Similar problems with slightly di#ering constraints and objectives

are often encountered in designing commercial territories [34].

4 OUR APPROACH

The SPATIAL technique solves a SOP by maintaining a population

of trial solutions. It starts by initializing the trial solutions. Then, the

solutions are improved in an iterative manner (till a termination

criterion is met) by executing two types of search moves: local

improvement and spatially-aware recombination.

4.1 Initialization

Let X = {S(1) , S(2) , . . . , S((# ) } represent a population of trial solu-

tions of size (# . Each solution represents a di#erent assignment

of spatial units based on the binary matrix S(8) . We do not use the

matrix T(8) in solution representation since it has already been pre-

"xed using domain knowledge. To ensure each solution is initially

feasible, we adopt a two-step approach as elucidated below.

Seeding. It identi"es a set of seed nodes, each of which is assigned

to an unique subgraph. The problem-speci"c domain knowledge

helps to select the seed nodes and is set equal to the number of

zones we wish to "nd. Alternatively, we may apply the  −mediods

algorithm to identify centrally located nodes and designate them

as seed nodes. In our problem setting, the seed nodes correspond

to the center nodes, i.e., the SPAs containing schools inside them.

This results in forming  partial zones with one spatial unit in each

zone. This ensures satisfaction of the constraints (2c) and (2d).

Contiguity-based growth. Following the seeding process, we ap-

ply the growth phase to grow the zones in a guided manner. A zone

is randomly selected and grown by adding an adjacent unassigned

spatial unit to it. The process is repeated till all the spatial units

have been assigned. This results in a partition of  contiguous

zones (connected subgraphs) satisfying constraints (2b) and (2e).

The pseudocode of initialization steps is given in Algorithm 1.

4.2 Local improvement

To explore the neighborhood of each candidate solution, we apply

the local search move. In optimization literature, this is similar

to the notion of search space exploitation. We sequentially scan

each solution S
(8) , 8 = {1, 2, . . . , (# }, and select any random zone

I, I ∈ {1, 2, . . . ,  } within it for local improvement by moving any

adjacent spatial unit (sharing boundary with zone I but belonging

to a di#erent zone F , F ∈ {1, 2, . . . ,  } \{I}) into zone I. If the

move results in violation of spatial constraints either in zone I or

in zoneF , the solution becomes infeasible. We deal with the spatial

constraint of contiguity in a zoning problem. Thus, a solution with

disconnected zones in it is infeasible and needs to be brought back

into the feasible search space by applying a repair mechanism.

Algorithm 1: Initialization

Input :G : Contiguity graph, (# : Population size, L: School level.
Output :X : Population of trial solutions
begin

Determine the center nodes V for school level L and set  ←
���V���

X ← {} ⊲ Empty population
for 8 = {1, 2, . . . , (# } do

V : Get the set of nodes in G

Seeding phase ⊲

Set I ← 0 and S(8 ) as a zero matrix$ ×#
for E ∈ V do

I ← I + 1

(
(8 )
IE ← 1 ⊲ Assignment
V ← V\ {E }

Guided growth phase ⊲

do
I: Randomly pick a zone from {1, 2, . . . ,  }

N (I) : Find unassigned nodes adjacent to zone I

while |N (I) | > 0 do
E: Randomly select a node from N (I)

(
(8 )
IE ← 1 ⊲ Assignment
N (I) ← N (I) \ {E } , V ← V\ {E }

while |V | > 0

X ← X
⋃ {

S
(8 )

}
return X

To repair a solution, we start by enumerating the connected com-

ponents in the disconnected zone, say I, using breadth-"rst search

(BFS) traversal. Then, each connected component is analyzed; if it

doesn’t contain a seed node, we reassign it to the neighboring zones

randomly. In case there is no prior information about the center

nodes, we can retain merely the largest-sized connected compo-

nent of zone I while reassigning the remaining ones. The repaired

solution S̃
(8) might be few steps away from the incumbent solution

S
(8) in discrete space and thus helps in controlled exploration of

the search space. This is illustrated in Part B of Appendix.

The local improvement is expected to produce a better or an

equally good solution in terms of the objective functional value

F , i.e., F (S̃(8) ) ≤ F (S(8) ). If the condition holds, S(8) is replaced

by S̃
(8) in the population. As the local improvement of an solution

is independent of other solutions, it can leverage the parallel ar-

chitecture of the computing platform. The pseudocode of the local

improvement operation is provided in Algorithm 2.

4.3 Spatially-aware recombination

During the above phase, the individual solutions are improved lo-

cally without any exchange of information between them. Such

an approach results in constricted exploration of the search space,

and is akin to running a local search algorithm multiple times and

reporting the best solution obtained. Interestingly, any two solu-

tions have varying spatial con"gurations of the zones, and a better

solution may be obtained if we can mix the features of individual

solutions. Population-based methods permit such recombination

of solutions resulting in a wider exploration of the search space.

However, the linear nature of the move is not suited to spatially-

constrained search spaces. To circumvent the issue, we propose the

spatially-aware recombination as outlined in Algorithm 3.
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Figure 3: Illustrating the individual steps involved in the spatially-aware recombination operator.

Algorithm 2: Local improvement

Input :X : Population of solutions, G : Contiguity graph
Output :Updated solution
begin

for 8 = {1, 2, . . . , (# } do

S̃
(8 ) , I (8 )

:Make a copy of the 8Cℎ solution and "nd its indexset

I: Randomly pick a zone from {1, 2, . . . ,  }

// Find nodes adjacent to (but not present in) zone I

N (I) =
{
E |E ∈ V\I

(8 )
I , ∃D ∈ I

(8 )
I and, E,D = 1

}
E : From N (I) pick a random node E ∈ I

(8 )
F , F ≠ I

// Move node E from zone F to I and update assignment

(̃
(8 )
IE ← 1, (̃

(8 )
IF ← 0, I

(8 )
I ← I

(8 )
I

⋃
{E }, I

(8 )
F ← I

(8 )
F \{E }

// Repair zones I and F if they are non-contiguous

for zone A ∈ {I, F } do
CA : Find the number of connected components in zone A

if
��CA �� > 1 then
// zone A is disconnected and needs repairing

for� ∈ CA do

if ∃E ∈ � |E ∈ V then
continue ⊲ contains a seed node

else
Assign node E, ∀E ∈ � to neighboring zones

and update the assignment matrix S̃(8 )

if F
(
S̃
(8 )

)
≤ F

(
S
(8 )

)
then

S
(8 ) ← S̃

(8 )
⊲ Fitness-based selection

The recombination operator works with two solutions, say 8

and 9 , with the latter selected probabistically based on the "tness

value. The "tness function is de"ned to allow solutions with lower

functional value have higher "tness as this is a minimization prob-

lem4. Next, a solution is modi"ed by swapping spatial units in the

following steps. Suppose a zone I is present in both solution 8 and

9 as I (8) and I ( 9) such that they have a common node. Now, I (8) is

modi"ed by simultaneously inserting a node E (present in I ( 9) ) into

it while removing a node D (present in I (8) ) from it. The operator

is designed to steer solution 8 towards the "tter solution 9 by ex-

changing information. In doing so, we expect to "nd intermediate

solutions that may have better "tness than the incumbent solution.

Note that the swapping of spatial units might lead to presence

of holes in the involved zones and may break contiguity. To avoid

such undesirable situations, we prefer to use boundary units5 while

performing the swaps. Nevertheless, the repair operation still needs

to be applied if the contiguity of the zones are broken by the swap.

4For maximization, the "tness can be set equal to the objective functional value.
5Spatial units in zone I that share boundary with other zones.

Algorithm 3: Spatially-aware recombination

Input :X : Population of solutions, G : Contiguity graph
Output :Updated solution
begin

F =

{
1

1+|F
(
S(8 )

)
|

����� ∀8 = 1, 2, . . . , (#

}
⊲ Fitness values

for 8 = {1, 2, . . . , (# } do

S̃
(8 ) , I (8 )

:Make a copy of the 8Cℎ solution

Based on the "tness value, probabilistically select the 9Cℎ solution,

i.e., S( 9 ) , such that 9 ∈ {1, 2, . . . , (# } \{8 }

I (8 ) , I ( 9 ) : Determine the indexset of the 8Cℎ and the 9Cℎ solution

Randomly pick a node D,D ∈ {1, 2, . . . , # }, so that there is a zone

I, ∃I ∈ {1, 2, . . . ,  } |D ∈ I
(8 )
I ∩ I

( 9 )
I

// Find two sets of nodes for doing simultaneous swap

�I =

{
E |E ∈ I

( 9 )
I \ I

(8 )
I

}
,$I =

{
D |D ∈ I

(8 )
I \ I

( 9 )
I

}
Randomly pick an incoming node E ∈ �I and an outgoing node

D ∈ $I
In the 8th solution, simultaneously insert node E into zone I and

remove node D from zone I, and update the assignments in S̃
(8 )

Repair the zones in the 8th solution that were rendered
non-contiguous by the swap operation

// Update the population synchronously based on fitness

for 8 = {1, 2, . . . , (# } do

if F
(
S̃
(8 )

)
≤ F

(
S
(8 )

)
then

S
(8 ) ← S̃

(8 )

The recombination steps are illustrated in Figure 3. The newly

generated solutions are updated in the population synchronously,

i.e., a new set of (# solutions are generated before performing the

one-to-one "tness-based replacement (selection) of the solutions.

4.4 Putting it all together

The full pseudocode of SPATIAL is in Algorithm 4. The code is

available at h!ps://github.com/subhodipbiswas/SPATIAL.

Algorithm 4: SPATIAL

Data: G : Contiguity graph, F : Objective function, Design constraints,
Algorithm parameters

Result: Best spatial con"guration
begin

X : Initialize the population of solutions using Algorithm 1.

for iter = 1, 2, . . . , iter
max

do
Modify X through local improvement (Algorithm 2)

Update X by spatial recombination (Algorithm 3)

- ∗ : Find the best solution in X

return :- ∗
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Several remarks are in order. Firstly, the search moves (local

search and recombination) are performed based on the adjacency

relationships between the spatial units. This is analogous to the

ABC framework where honeybees search the neighborhood of a

food source for "nding a better one. Secondly, the search moves do

not require beforehand information about the gradient or put any

restriction on the objective/constraint function(s), such as linearity;

thus can be used as a black-box optimizer for solving any SOPs.

Thirdly, we do not prevent a move that breaks contiguity. The so-

lution is repaired and in the process leads to (local) exploration of

the search space. Lastly, the local search and the recombination

(synchronous population update) operations can make use of par-

allel architecture thereby resulting in a signi"cant reduction in

computation time without a#ecting the solution quality.

5 EXPERIMENTATION

In this section, we evaluate our technique against traditional base-

line methods on the problem of school boundary formulation. The

dataset description, baseline methods, experimental setting, perfor-

mance metrics, and result discussions are provided subsequently.

Additionally, we perform detailed ablation tests to understand the

e!cacy of the individual components in our proposed framework.

5.1 Dataset and pre-processing

For this study, we selected two school districts (corresponding to

counties) located in the eastern part of the USA. These large-sized

districts are characterized by widely varying demographics and

recent population growth, thereby making the problem instances

challenging for spatial algorithms. We used GIS data of both the

districts for the school year 2019-2020. It contains information about

• SPAs: Location coordinates of the boundary and aggregated

student count at di#erent school levels.

• Schools: Location coordinates of the school building, school

level and its program capacity.

The summary statistics of the datasets are provided in Table 1.

From the given data, we determined the adjacency relationship be-

tween the nodes (spatial units) and the center nodes (units that con-

tain schools) using Python-based geospatial packages like PySal [33].

Table 1: Summary statistics of the school districts

District
# SPAs # Schools ( )

(# ) Elementary Middle High

X 453 57 16 16

Y 1313 138 26 24

5.2 Baseline methods

We evaluate our SPATIAL method against the following baselines:

• Basic Hill Climbing (BHC) [4]: A variation of Hill Climb-

ing that starts with an initial feasible solution and searches

for better neighboring solutions in a random manner. If such

a solution is found, it is saved and the search continues till a

local optimum is obtained.

• OBA (Old Bachelor Acceptance) [18]: A thresholding al-

gorithm that applies similar search move as BHC, however,

the new solutions are accepted if it is better (or worse) within

some acceptable thresholds.

• SA (Simulated Annealing) [21]: A stochastic version of

the BHC that closely follows the process of tempering of

metals. It allows for worsening moves to take place if no

better solutions are found and can escape local optima.

• TS (Tabu Search) [11]: Uses a restrictive (tabu) list to for-

bid revisiting recently explored solutions so that the new

neighboring solutions can be explored.

We used the default parametric con"guration for each of the

baseline methods, as suggested in the literature. For SPATIAL, we

set the population size to 10. All the algorithms were made to run

for till the change in objective function value was less than 0.01

for 10 consecutive iterations, or the limit of 1000 iterations was

reached. Note: Initially, we also simulated two more methods −

greedy randomized adaptive search procedure (GRASP) [34] and

Mixed Integer Linear Programming (MILP) [37]. While GRASP’s

performance was inferior to the other baselines, MILP could not

converge to an optimal solution (even with a run-time of 24 hours)

for 4/6 test cases even. Hence, these methods are not included in

the reported results for comparison.

5.3 Objective criteria and Evaluation metrics

We simulated the peer algorithms to solve the school boundary

formation problem for each problems instance as reported in Table

1. The weighing parameter _ is empirically set to 0.7 and 0.8 for

districts X and Y respectively so that the condition _/1−_ ≥ 2 is

satis"ed.

We used two metrics for assessing the quality of solutions pro-

duced by the algorithms. Both the metrics can be interpreted as

percentage scores since they lie in the range [0, 100].

• Balance: This metric measures the average balance between

a school’s program capacity and the number of students

residing within its boundary. It is calculated as

1

 

 ∑
I=1

©­­­­«
100 ×

���������
1 −

���������
1 −

���������

#∑
E=1

(IE · L=E

#∑
E=1

(IE · L2E

���������

���������

���������
ª®®®®¬
. (4)

We penalized both under-enrolled and overburdened schools

equally with respect to the capacity of schools. This is an

importantmetric for school planners sincemost of the bound-

ary changes occur to achieve a better balance in schools.

• Compactness: This metric measures how tighly a school’s

boundary is packed on an average with respect to its perime-

ter. A scaled version of the Polsby-Popper metric [32] is used

to measure compactness as

1

 

 ∑
I=1

(
100 ×

4c · Area
(
II

)
Perimeter2

(
II

) ) . (5)

Compactness has a direct bearing on a budget of a school

district. Compact school boundaries indirectly translate to

proximal schools that students can walk to and thereby lower

the transportation cost incurred by the school district.
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Table 2: Performance of peer algorithms on the problem of school boundary formation in both the districts.

District X

Models
Elementary School Middle School High School

Balance Compactness Balance Compactness Balance Compactness

Present 83.5671 ± 0.0000 32.5344 ± 0.0000 85.7586 ± 0.0000 27.3467 ± 0.0000 87.9101 ± 0.0000 27.3467 ± 0.0000

HC 87.4392 ± 0.8087 36.4436 ± 1.2762 93.0557 ± 2.1933 30.3058 ± 1.6974 96.5058 ± 1.9421 28.0142 ± 2.4857
OBA 86.5387 ± 1.1054 35.0348 ± 1.0757 91.5191 ± 2.7554 29.0308 ± 2.5145 94.3810 ± 1.9450 25.7212 ± 3.2835
SA 86.9885 ± 0.9542 36.2501 ± 1.5118 92.3514 ± 2.3691 29.6381 ± 3.7883 94.9052 ± 1.6857 27.6893 ± 3.4297
TS 87.6545 ± 0.6669 37.3322 ± 1.7913 93.2058 ± 2.9611 31.0033 ± 2.0849 95.3739 ± 1.6518 28.9664 ± 2.8948

SPATIAL 88.0687 ± 0.4367 42.4213 ± 1.3372 95.2043 ± 1.4368 37.5817 ± 2.3496 98.0835 ± 0.7759 36.8147 ± 1.9898

District Y

Models
Elementary School Middle School High School

Balance Compactness Balance Compactness Balance Compactness

Present 84.6901 ± 0.0000 35.9234 ± 0.0000 84.9227 ± 0.0000 27.7097 ± 0.0000 88.4553 ± 0.0000 26.8001 ± 0.0000

HC 92.5992 ± 0.6034 29.8237 ± 0.7715 90.6346 ± 0.4646 23.7399 ± 2.2729 94.7308 ± 3.6228 22.3509 ± 3.0465
OBA 89.8471 ± 0.7397 27.1554 ± 0.8889 89.6780 ± 0.7126 18.5098 ± 1.8385 91.3610 ± 1.6740 18.0583 ± 1.5202
SA 92.5673 ± 0.5876 29.7977 ± 1.2676 90.7170 ± 0.3586 24.1184 ± 2.5154 95.8883 ± 1.3153 21.4539 ± 3.0878
TS 92.4823 ± 0.3777 31.2161 ± 0.9821 90.6917 ± 0.3752 27.0545 ± 2.5537 96.0029 ± 0.8505 25.0559 ± 2.4043

SPATIAL 92.6013 ± 0.6179 34.5602 ± 1.143 90.5901 ± 0.3098 33.6391 ± 2.0858 96.5190 ± 0.3046 29.5485 ± 1.3143

5.4 Discussions and Results

We observed that the two objectives- balance and compactness -

are con$icting in nature, and thus a spatial optimizer has to make a

trade-o# between themwhile selecting a new solution. Interestingly,

solving the ES instance of the problem is particularly challenging.

This is because a school district that has seen recent population

growth is likely to have new ESs, which are situated at arbitrary

locations without much separation between them. This leads to a

decrease in the clustering tendency. Besides, there is a high variation

in the capacity of the ESs with the new ones having much higher

capacity than its older counterparts. In attempting to satisfy the

schools’ capacities, the spatial algorithmsmight try to "ll in concave

segments in the SAZs with regular-shaped SPAs having a high

density of student population, thereby a#ecting the balance scores,

which are generally lower than its other counterparts. The MS

and HS, being well-separated and showing fewer deviations of

capacity, are comparatively easier to solve. Interestingly, the ES

boundaries are more compact than their MS and HS counterparts.

In comparison to ES SAZs, a greater proportion of SAZs of MS

and HS share borders with the school district boundary, which

is usually zigzagged by naturally occurring geographies (highly

irregular geometries). These additional considerations, besides the

spatial constraints, make school boundary formation a challenging

spatial optimization algorithm to solve.

For comparison purposes, we simulated 25 trial runs of each

baseline and record the "nal solutions. In Table 2, we reported the

mean and standard deviation of the performance metrics. We also

included the current school boundary con"guration of the school

districts. It is marked as Present in the table. The results reveal

that SPATIAL is able to generate better solutions (spatial con"gu-

rations) in the majority of the test cases, especially for district X.

For district Y, the performance of our method is comparable to the

baselines in terms of the balance scores, yet the compactness scores

are much better. SPATIAL is the only model that can achieve at par

or better compactness than the existing con"guration of district Y.

A similar trend has also been observed for district X. The baseline

methods adopt a greedy approach by continuing to look for better

solutions in the locality of the incumbent solution. In doing so, the

solutions lying just outside their immediate neighborhood remain

elusive to them. On the other hand, aided by the recombination

operator and the repair mechanism, SPATIAL is able to "nd these

solutions while maintaining diversity. This leads to an overall better

performance on both the metrics.

5.5 Ablation study of SPATIAL

In this subsection, we conduct ablation studies to understand the ef-

fectiveness of di#erent components in the proposed SPATIAL frame-

work. To this end, we perform the simulations on two instances

(ES and MS) of the district X. We omitted HS instance since it is

similar to MS in both problem complexity and di!culty.

How e!ective are the search operators in improving solu-

tion quality? To answer this question, we simulate 15 sample runs

of SPATIAL with three possible con"gurations as stated below:

• Only the local improvement operator is activated.

• Only the recombination operator is activated.

• Both the operators are activated.

The performance metrics obtained by each con"guration are illus-

trated as error bars in Figure 4. We observe that using the local

improvement operator does not guarantee the high-performance

gain. It also shows a high standard deviation indicating the e#ect

of initialization on output performance. On the other hand, the

recombination operation is found to particularly aid in achieving

high compactness. As mentioned earlier, recombination helps to

"nd better solutions lying outside the immediate neighborhood

of the incumbent solution. To sum up, we noticed that the com-

bined e#ect of both the operators led to an overall improvement in

solution quality.
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Figure 4: The performancemetrics obtained by the di!erent

combinations of search operators in SPATIAL . We observed

that the combined e!ect of both the operators resulted in

better quality solutions.

Should the population update be made synchronously or

asynchronously? The "tness-based selection to update the solu-

tions during the recombination operation can be performed in two

ways as follows:

• Asynchronous update: The population of (parent) solu-

tions is scanned sequentially, and as soon as a new (o#spring)

solution is generated, the parent is replaced if the o#spring

is found to be better or equally good.

• Synchronous update: The o#spring solutions are main-

tained separately as they are generated via recombination.

Post generation, a one-on-one comparison is made between

the o#spring and its corresponding parent, and the better

one is retained in the population.

Asynchronous update follows ‘serial’ execution to update the

population of solutions. As the ("tter) o#spring solutions are up-

dated in the population, they become available to the remaining

parent solutions that are yet to be updated. This makes the algo-

rithm more greedy and is prone to reaching local optima faster.

On the other hand, asynchronous update prevents intermixing of

parent and o#spring solutions by delaying the update. This has

two-fold advantage: (a) helps to preserve population diversity, and

(b) enables usage of ‘parallel’ architecture, i.e., multiple copies of

the population are sent to the individual cores with each generating

one o#spring, leading to computational e!ciency.

To observe the di#erence in performance between them, we sim-

ulated 5 runs of each update on a 16-core machine with 2.2 GHz

Intel CPUs having x86_64 architecture and running on Ubuntu

16.04.6 LTS operating system. The obtained run-times and perfor-

mance metrics are plotted in Figure 5 for two instances of District

X. Interestingly, we observed no marked di#erence in performance

with a noticeable gap in their run-times. Hence, we conclude that

synchronous update is preferable in the interest of practical time

limits.
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Figure 5: The trade-o! between run time and performance

metrics obtained on district X by asynchronous and synchro-

nous population update techniques. No major di!erence in

performance is observed while the run-time of asynchro-

nous update is signi"cantly higher than its counterpart.

How does SPATIAL fare when other local search methods

are integrated? Any local search can easily be integrated within

SPATIAL. We instantiated two variations of SPATIAL by integrat-

ing the basic Hill Climbing and Simulated Annealing in the lo-

cal improvement phase, thereby resulting in HC-SPATIAL and SA-

SPATIAL, respectively. These two variants are compared with the

original SPATIAL in Figure 6. We observed no clear winner.
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Figure 6: Error plots of performance metrics obtained from

15 sample runs of algorithmic variations of SPATIAL.
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6 CONCLUSION & FUTUREWORK

We propose a spatial memetic algorithm SPATIAL in this paper

inspired by the "eld of population-based metaheuristics. To this

end, we developed search operators that are spatially cognizant

and are able to seek improved solutions by searching through dis-

crete search space characterized by spatial constraints. Our SPA-

TIAL method achieved better performance than traditional baseline

algorithms on the problem of school boundary formation. A detailed

analysis revealed interesting insights into the e#ectiveness of the

di#erent components− recombination operator and synchronous

population update. Moreover, we highlight the generalizability of

our framework by integrating di#erent local search techniques. Our

contribution lies in showing the potential of memetic algorithms

in solving spatial optimization problems.

For future research, we have the following directions in mind.

Firstly, we may develop a many-objective version of our algorithm

where multiple decision criteria can be considered in solving the

problem. Secondly, we can investigate the e#ect of population size

on the recombination search operator. It can also be augmented

using MCMC techniques for sampling better solutions. Lastly, SPA-

TIAL can help in getting an initial set of good solutions, which

can be used to pre"x decision variables so that exact optimization

methods can solve mid- to large-sized SOPs in a reasonable time.
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A ABC ALGORITHM

ABC is a continuous-valued real-parameter global optimization

algorithm based on the foraging behavior of honeybees [20]. The

pseudo-code of the ABC method for solving a bound-constrained

real-parameter optimization problem is provided in Algorithm 5.

Algorithm 5: ABC algorithm

Data: F : Objective function, � : Problem dimensionality, (# : Population
size, 8C4Amax : Evaluation budget, ;8<8C : Non-improvement limit

Result: Best possible solution to F
begin

// Initialize the candidate solutions within the bounds

for 8 = 1, 2, . . . , (# do
for 9 = 1, 2, . . . , � do

G8,9 = G 9,min
+ A0=38,9 [0, 1] ×

(
G 9,max

− G 9,min

)
Evaluate the solutions

// Iterative improvement of the solutions till termination

for iter = 1, 2, . . . , iter
max

do
// Employed bee phase

for 8 = 1, 2, . . . , (# do
Pick a random index : ∈ {1, . . . , (# } \ {8 }

for 9 = 1, 2, . . . , � do
E8,9 = G8,9 + A0=38,9 [−1, 1] ×

(
G8,9 − G:,9

)
,

if F
(
®+ 8

)
≤ F

(
®- 8

)
then

®- 8 ←
®+ 8

2>D=C8 ← 0

else
2>D=C8 ← 2>D=C8 + 1

// Onlooker bee phase

for 8 = 1, 2, . . . , (# do
Repeat the steps of Employed Bee phase except selecting the

: th solution based on the probability calculated in Eq. (7)

// Scout bee phase

for 8 = 1, 2, . . . , (# do
if 2>D=C8 ≥ ;8<8C then

Reinitialize ®- 8 randomly
2>D=C8 ← 0

Find the best solution ®- ∗ , i.e., F( ®- ∗) ≤ F( ®- 8 ) , 8 = 1, . . . , (#

return : ®- ∗

In ABC terminology, a food source is a metaphor for a candidate

solution, i.e., a �−dimensional real-parameter vector

®- 8 =
[
G8,1, G8,2, . . . , G8,�

]
, 8 = 1, . . . , (# ,

where (# is the number of food sources, and each parameter may

lie within some bounded range of values. The nectar amount of

each food source is determined by the value of its objective ("tness)

function 5
(
®- 8
)
. Following the random initialization of the food

sources, ABC searches for a global optimum in the �−dimensional

real-parameter space through the action of arti"cial bees (search

agents). The search for an optimal solution is performed iteratively

in three phases till a termination criteria is satis"ed.

Employed bee phase. In this phase, the employed bees bring about

improvement in the quality of food sources by exploring it’s neigh-

borhood. The local exploration is implemented as

E8, 9 = G8, 9 + q8, 9 ×
(
G8, 9 − G:,9

)
, (6)

where : ∈ {1, 2, . . . , (# } \{8} and 9 ∈ {1, 2, . . . , �} are randomly

chosen indices, and q8, 9 is another random number lying in the

range [−1, 1]. ®+ 8 =
[
E8,1, E8,2, . . . , E8,�

]
represents the position of

a new food source that an arti"cial bee has found in the vicinity

of original food source ®- 8 . If the new position has better "tness

value, i.e., 5
(
®+ 8
)
≥ 5

(
®- 8
)
, the arti"cial bee replaces the position of

®- 8 by
®+ 8 in its memory. This "tness-based (greedy) selection helps

in preserving better solutions as the search progresses.

Onlooker bee phase. This is identical to the above phase except

for the probabilistic selection of the food source 8 based on the value

?8 = 5
(
®- 8

)
/
∑
(#
8′=1

5
(
®- 8′

)
. (7)

Scout bee phase. This is random search move for re-initializing

food sources which could not be improved by the above two phases

for a pre-de"ned number of iterations.

Note that the linear search move in Equation (6) is adopted by

ABC to generate new solutions in real-parameter space. This move

is suited to continuous search space and cannot be used to solve

discrete optimization problem. Our SPATIAL framework executes

the spatial analogue of these linear search moves for solving SOPs.

B REPAIR PROCESS

The repair mechanism is illustrated in Figure 7. It results in a new

feasible solution that is a few hops away from the initial solution.

We opine that the repair process results in attaining solutions that

are otherwise di!cult to reach from the initial solution and thus

leads to e!cient exploration of the search space.

Figure 7: Illustration of the individual steps involved in ap-

plying the repair process once a solution becomes infeasi-

ble. The spatial unitswith gray circles inside themare center

nodes that cannot be reassigned.


