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The forecasting of significant societal events such as civil unrest and economic crisis is an interesting and
challenging problem which requires both timeliness, precision, and comprehensiveness. Significant societal
events are influenced and indicated jointly by multiple aspects of a society, including its economics, politics,
and culture. Traditional forecasting methods based on a single data source find it hard to cover all these aspects
comprehensively, thus limiting model performance. Multi-source event forecasting has proven promising but
still suffers from several challenges, including (1) geographical hierarchies in multi-source data features, (2)
hierarchical missing values, (3) characterization of structured feature sparsity, and (4) difficulty in model’s
online update with incomplete multiple sources. This article proposes a novel feature learning model that con-
currently addresses all the above challenges. Specifically, given multi-source data from different geographical
levels, we design a new forecasting model by characterizing the lower-level features’ dependence on higher-
level features. To handle the correlations amidst structured feature sets and deal with missing values among
the coupled features, we propose a novel feature learning model based on an N th-order strong hierarchy and
fused-overlapping group Lasso. An efficient algorithm is developed to optimize model parameters and ensure
global optima. More importantly, to enable the model update in real time, the online learning algorithm is
formulated and active set techniques are leveraged to resolve the crucial challenge when new patterns of
missing features appear in real time. Extensive experiments on 10 datasets in different domains demonstrate
the effectiveness and efficiency of the proposed models.
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1 INTRODUCTION

Significant societal events have a tremendous impact on our entire society, such as disease out-
breaks and mass protests, which strongly motivate anticipating their occurrences accurately in
real time. For instance, according to a recent World Health Organization (WHO) report [58],
seasonal influenza alone is estimated to result in around 4 million cases of severe illness and about
250,000–500,000 deaths each year. In regions such as the Middle East and Latin America, the ma-
jority of instabilities arise from extremism or terrorism, while others are the result of civil unrest.
Population-level uprisings by disenchanted citizens are generally involved, usually resulting in
major social problems that may involve economic losses that run into the billions of dollars and
create millions of unemployed people. Significant societal events are typically caused by multiple
social factors. For example, civil unrest events could be caused by economic factors (e.g., increasing
unemployment), political factors (e.g., a presidential election), and educational factors (e.g., educa-
tional reform). Moreover, societal events can also be driven and orchestrated through social media
and news reports. For example, in a large wave of mass protests in the summer of 2013, Brazilian
protesters calling for demonstrations frequently used Twitter as a means of communication and
coordination. Therefore, to fully characterize these complex societal events, recent studies have
begun to focus on utilizing indicators from multiple data sources to track different social factors
and public sentiment that jointly indicate or anticipate the potential future events.

These multi-source-based methods share essentially similar workflows. They begin with collect-
ing and preprocessing each single data source individually, from which they extract meaningful
features such as ratios, counts, and keywords. They then aggregate these feature sets from all differ-
ent sources to generate the final input of the forecasting model. The model response, in this case,
predicting the occurrence of future events, is then mapped to these multi-source input features
by the model. Different data sources commonly have different time ranges. For example, Twitter
has been available since 2006, but Centers for Disease Control and Prevention (CDC) data
dates back to the 1990s. When the predictive model utilizes multiple data sources, of which some
are incomplete, typically the samples with missing values in any of these data sources are simply
removed, resulting in substantial information loss.

Multi-source forecasting of significant societal events is thus a complex problem that currently
still faces several important challenges. 1. Hierarchical topology. When features in different
data sources come from different topological levels, they cannot normally be treated as indepen-
dent and homogeneous. For example, Figure 1 shows multiple indicators during the “Brazilian
Spring”, the name given to a large wave of protest movements in Brazil in June 2013 caused by
economic problems and spread by social media. Here, indicators in the economy and social me-
dia would be the precursors of the protests. Some of these indicators are country-level, such as
the exchange rate; some are state-level, such as news reports specific to a state; and some are city-
level, such as the Twitter keyword count for chatter geolocated to a specific city. When forecasting
city-level protest events, however, it is unrealistic to simply treat the union of all these multi-level
features directly as city-level features for prediction. Moreover, it is unreasonable to assume that
all cities across the country are equally influenced by the higher-level features and are completely
independent of each other. 2. Interactions involving missing values. When features are drawn
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Fig. 1. Predictive indicators from multiple data sources with different geographical levels during the
“Brazilian Spring” civil unrest movement.

from different hierarchical topologies, features from higher levels influence those from lower lev-
els. Thus, the missing value in such feature sets will also influence other features. This means that
simply discarding the missing values is not an ideal strategy as its interactions with other features
also need to be considered. 3. Geo-hierarchical feature sparsity. Among the huge number of
features from multiple data sources, only a portion of them will actually be helpful for predict-
ing the response. However, due to the existence of hierarchical topology among the features, as
mentioned earlier, features are not independent of each other. It is thus clearly beneficial to dis-
cover and utilize this hierarchically structured pattern to regulate the feature selection process. 4.

Incremental model update with new missing patterns of features. In multi-source models,
the availability of the multiple sources usually changes and the model need to adapt swiftly to the
new missing patterns of sources, as shown in Figure 2. Retraining with the whole historical data is
typically prohibitive and thus incremental learning is preferred. However, this problem cannot be
addressed by conventional online learning, because the set of available feature changes when the
current missing pattern changes. Furthermore, it also cannot be addressed by existing methods on
incremental feature selection because it requires respective feature selection for each correspond-
ing missing pattern. Moreover, the predictive model on new missing patterns also needs to learn
from the existing missing patterns in order to quickly gain good generalizability with few initial
samples.

In order to simultaneously address all these technical challenges, this article presents a
novel model named hierarchical incomplete multi-source feature learning (HIML) and its
incremental-learning version, named online-HIML (oHIML). HIML is capable of handling the
features’ hierarchical correlation pattern and secure the model’s robustness against missing values
and their interactions. To characterize the hierarchical topology among the features from multi-
source data, we build a multi-level model that cannot only handle all the features’ impacts on the
response, but also take into account the interactions between higher- and lower-level features.
Under the assumption of feature sparsity, we characterize the hierarchical structure among the
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Fig. 2. Not all the data sources (and thus their respective data features) are available all the time. Along with
the time, there will be new missing patterns and the model needs to be able to incrementally update along
with data with new missing patterns of features.

features and utilize it to regulate a proper hierarchical pattern. Our HIML model can also han-
dle missing values among multiple data sources by incorporating a multitask strategy that treats
each missing pattern as a task. Both batch-learning-based and incremental-learning-based meth-
ods have been proposed with theoretical analyses.

The main contributions of our study are summarized below:

— Design a framework for event forecasting based on hierarchical multi-source indi-

cators. A generic framework is proposed for spatial event forecasting that utilizes hierarchi-
cally topological multiple data sources and is based on a generalized multi-level model. A
number of classic approaches to related research are shown to be special cases of our model.

— Propose a robust model for geo-hierarchical feature selection. To model the structured
inherent in geo-hierarchical features across multiple data sources, we propose an N -level
interactive group Lasso based on strong hierarchy. To handle interactions among missing
values, the proposed model adopts a multi-task framework that is capable of learning the
shared information among the tasks corresponding to all the missing patterns.

— Develop an efficient algorithm for model parameter optimization. To learn the pro-
posed model, a constrained overlapping group Lasso problem needs to be solved, which is
technically challenging. By developing an algorithm based on the alternating direction

method of multipliers (ADMM) and introducing auxiliary variables, we ensure a globally
optimal solution to this problem.

— Propose an incremental multi-source feature learning algorithm. To quickly learn
the new missing patterns in real time without retraining the whole model, an efficient incre-
mental learning method has been proposed based on active set techniques [22]. A theoretical
equivalence of the objective function of the existing model is presented, based on which a
stochastic ADMM is developed to update the model (with new missing patterns) incremen-
tally.

— Conduct extensive experiments for performance evaluations. The proposed batch and
incremental-based methods were evaluated on 10 different datasets in two domains: Forecast-
ing civil unrest in Latin America and influenza outbreaks in the United States. The results
demonstrate that the proposed approach runs efficiently and consistently outperforms the
existing methods in multiple metrics.

This paper is an extension of the article [62] in the following aspects: (1) A new model and the-

oretical analysis. We extend the original model, which is based on a fixed number of multi-source
missing patterns, to a new one which can accommodate all the possible multi-source missing
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patterns. Moreover, we provide the theoretical proof of the equivalence between the solution of
these two model formulations. (2) A new optimization algorithm. Based on the newly-proposed
extended model, we develop new incremental learning algorithm, which innovatively updates the
model in real time when both the samples and new missing patterns of (new) features can be incre-
mentally added. Time complexity analysis of the new algorithm has also been added. (3) Additional

experiments. We added the results on all the 10 datasets for the newly proposed incremental-
learning-based algorithm, named oHIML. We also added the scalability validation and analysis on
proposed batch-learning-based and incremental-learning-based algorithms. Discussions on the
results are also provided. Moreover, we added a new comparison method, namely AutoInt, which
is a multi-head self-attentive neural network with residual connections that maps the numerical,
categorical features, and their interactions into the same low-dimensional space. We also added
the analysis of the performance of this method. (4) More comprehensive literature reviews. We have
added relevant literature survey in online models and incremental feature selection. In addition,
we also surveyed recent related work in relevant topics on event detection and forecasting,
multi-source event forecasting, missing values in multiple data sources, and feature selection in
presence of interactions.

The rest of this article is organized as follows: Section 2 reviews background and related work,
and Section 3 introduces the problem setup. Section 4 presents our model while Section 5 both
batch-learning-based and incremental-learning-based parameter optimization algorithm. The ex-
periments on 10 real-world datasets are presented in Section 6, and the article concludes with a
summary of the research in Section 7.

2 RELATED WORK

This section introduces related work in several research areas.
Event detection and forecasting in social media. There is a large body of work that fo-

cuses specifically on the identification of ongoing events, such as earthquakes [43] and disease
outbreaks [14, 15, 47, 58]. Unlike these approaches, which typically uncover events only after their
occurrence, event forecasting methods predict the incidence of such events in the future. Most
event forecasting methods focus on temporal events, with no interest in the geographical dimen-
sion, such as elections [35] and stock market movements [2]. Few existing approaches can provide
true spatiotemporal resolution for the predicted events [56]. For example, Gerber utilized a logistic
regression model for spatiotemporal event forecasting [16]. Zhao et al. [59] designed a multi-task

learning (MTL) framework that models forecasting tasks in related geo-locations concurrently.
Zhao et al. [57] also designed a new predictive model that jointly characterizes the temporal evo-
lution of both the semantics and geographical burstiness of social media content. Shi et al. [45]
focus on jointly detect the events and discover the social media users’ interests during the events.
By generalizing the spatial locations as nodes in the network, Shao et al. formulate the event detec-
tion problems as subgraph detection methods [44], but they are not able to consider the attributes
in different hierarchical levels. Cui et al. [8] utilize Weibo data to detect the foodborne disease
outbreaks for restaurant regulation while Brown et al. utilize Twitter to forecast the outcomes of
sport match results based on prediction markets [4]. Tensor-completion-based techniques have
been also applied for event prediction. They usually first learn the underlying factors of different
modes (e.g., along spatial and temporal dimensions), and then use time series forecasting tech-
niques to predict the future values for those underlying factors [32, 33, 65]. Zhao et al. [62] has
proposed a multi-source event forecasting methods that can handle block-wise missing patterns of
the different data sources. These types of methods are difficult to handle multi-level attributes and
the model parameters cannot be updated online. For a more comprehensive survey, please refer to
recent survey papers such as [55].
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Multi-source event forecasting. In recent years, a few researchers have begun to utilize mul-
tiple data sources as surrogates to forecast future significant societal events such as disease out-
breaks and civil unrest. Chakraborty et al. proposed an ensemble model to forecast Influenza-like

Illness (ILI) ratios based on seven different data sources [5]. Focusing on civil unrest events, Ra-
makrishnan et al. employ a LASSO model as the event predictor, where the inputs are the union of
feature sets from different data sources [41]. Kallus explores the predictive power of news, blogs,
and social media for political event forecasting [24]. Huang et al. [21] propose a multi-modal recur-
rent framework to jointly detect abnormal events based on citywide spatiotemporal data. Li et al.
[26] propose to handle the survival analysis problem, when there are block-wise missing data when
using multiple data sources by leveraging MTL strategies. Zhao et al. [61] consider social media
data in multiple languages and learn the correspondence among the features in different languages
by matrix decomposition. Hetero-ConvLSTM [54] leverages ConvLSTM to merge multiple spatial
data sources across a time window to forecast the patterns for the future window, although it can-
not handle hierarchical sources and missing patterns in the multi-source data. Wang et al. [48] and
Zhao et al. [60] propose new methods that can fuse hierarchical features in different geographical
levels. However, although these models utilize multiple data sources that can be used to indicate a
number of different aspects of future events, they cannot jointly handle the potential relationships,
hierarchy, and missing values among these multi-source features.

Missing values in multiple data sources. The prevention and management of missing data
have been discussed and investigated in existing work [17, 50]. One category of work focuses on
estimating missing entries based on the observed values [13]. These methods work well when miss-
ing data are rare, but are less effective when a significant amount of data is missing. To address
this problem, Hernandez et al. utilized probabilistic matrix factorization [20], but their method
is restricted to non-random missing values. Yuan et al. [53] utilized MTL to learn a consistent
feature selection pattern across different missing groups. Li et al. [28] focus on the multi-source
block-wise missing data in survival analysis, modeling, and leverage MTL in both aspects in differ-
ent features and sources. In order to alleviate the missing values and complement the information
across different data sources, Que et al. focus on learning the similarity among different sources by
non-negative matrix factorization and similarity constraints on the patterns of different sources
[40]. However, none of these approaches focus specifically on missing values in hierarchical mul-
tiple data sources. Moreover, none of the above approaches can incrementally update the model
for new-coming missing values in real time without retraining the whole model.

Online models and online feature selection. Most of the existing online learning methods
assume the set of features does not change but the new samples can update the model in real
time [10, 31]. This track of research has been extensively investigated and here several representa-
tive works are presented. For example, Duchi et al. [10] dynamically incorporated the geometric
knowledge of the data observed in earlier iterations, in order to achieve a new and informative
subgradient method. In addition, to capture time-varying characteristics, some adaptive linear re-
gression methods such as recursive least squares [11] and online passive-aggressive algorithms
[7] are leveraged to provide an incremental update on the regression model. More recently, online
learning for deep neural networks has been attracting fast-increasing attention [49]. For example,
Roy et al. [42] develop an adaptive hierarchical network structure composed of deep convolutional
neural networks that can grow and learn as new data becomes available. Another research track
is to assume that the set of features can change during model training. There are typically two
categories of them: heuristic-based [30, 52, 64] and optimization-based [9, 39, 51]. For example,
Liu et al. [30] proposed an online multi-label streaming feature selection framework that includes
importance selection and redundancy update of the features under online fashion. Assuming that
the new features can come sequentially, Zhou et al. [64] presented an adaptive-complexity-penalty
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method named α-investing, for online feature selection that dynamically tunes the threshold on
the error reduction required when adding each new feature. Li et al. [27] propose novel methods
for semi-supervised incremental learning on streaming data by first learning the non-stationary
latent feature representation, which is then input into the layers for classification. Ditzler et al.
[30] constructed ensemble models using variants of online bagging and boosting to achieve better
model generalizability yet similar complexity to single models. However, these approaches focus
on the new features, instead of new multi-source missing patterns of feature sets. And they cannot
effectively learn the corresponding model for new feature missing patterns in real time.

Feature selection in the presence of interactions. Feature selection by considering feature
interactions has been attracting research interest for some time. For example, to enforce specific in-
teraction patterns, Peixoto et al. [19] employed conventional step-wise model selection techniques
with hierarchical constraints. Unfortunately, such approaches are expensive for high-dimensional
data. Choi et al. proposed a more efficient LASSO-based non-convex problem with re-parametrized
coefficients [6]. To obtain globally optimal solutions, more recent research has utilized interaction
patterns such as strong or weak hierarchy that are enforced via convex penalties or constraints.
Both of these apply a group-lasso-based framework; Lim and Hastie [29] work with a combination
of continuous and categorical variables, while Haris et al. [18] explore different types of norms.
More recently, kernel-based methods [37] and deep learning techniques [12] have been leveraged
to learn feature interactions. For instance, Song et al. [46] invent a multi-head self-attentive neural
network with residual connections to map the numerical, categorical features, and their interac-
tions into the same low-dimensional space. However, none of these approaches considers missing
values in the feature sets.

3 PROBLEM SETUP

In this section, the problem addressed by this research is formulated. Specifically, Section 3.1 poses
the hierarchical multi-source event forecasting problem and introduces the multi-level model for-
mulation. Section 3.2 discusses the problem generalization and challenges.

3.1 Problem Formulation

Multiple data sources could originate at different geographical levels, for example, city-level, state-
level, or country-level, as shown in Figure 1. Before formally stating the problem, we first introduce
two definitions related to geographical hierarchy.

Definition 1 (Subregion). Given two locations qi and sj under the ith and jth (i < j ) geographical
levels, respectively, if the whole spatial area of the location qi is included by location sj , we say qi

is a subregion of sj , denoted as qi � sj or equally sj � qi (i < j ).

Definition 2 (Location Tuple). The location of a tweet or an event is denoted by a location tuple

l = (l1, l2, . . . , lN ), which is an array that configures each location ln in each geo-level n in terms
of a parent-child hierarchy such that ln−1 � ln (n = 2, . . . ,N ), where ln is the parent of ln−1 and
ln−1 is the child of ln .

For example, for the location “San Francisco”, its location tuple could be (“San Francisco”, “Cali-
fornia”, and “USA”) that consists of this city, its parent, and the parent’s parent.

SupposeX denotes the set of multiple data sources coming from N different geographical levels.
These can be temporally split into fixed time intervals t (e.g., “date”) and denoted asX = {Xt,l }T ,L

t,l
=

{Xt,ln
}T ,L,N
t,l,n

, where Xt,ln
∈ N |Fn |×1 refers to the feature vector for the data at time t in location

ln under nth geo-level. Specifically, the element [Xt,ln
]i (i � 0) is the value for ith feature while

[Xt,ln
]0 = 1 is a dummy feature to provide a compact notation for bias parameter in the forecasting

model.T denotes all the time intervals, L denotes the set of all the locations, and N denotes the set
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of all the geographical levels. Fn denotes the feature set for Level n and F = {Fn }Nn=1 denotes the
set of features in all the geo-levels. We also utilize a binary variable Yt,l ∈ {1, 0} for each location
l = (l1, . . . , lN ) at time t to indicate the occurrence (“yes” or “no”) of a future event. We also define
Y = {Yt,l }T ,L

t,l
. Thus, the hierarchical multi-source event forecasting problem can be formulated as

below:
Problem Formulation: For a specific location l = (l1, . . . , lN ) at time t , given data sources

under N geographical levels {Xt,l1 , . . . ,Xt,lN
}, the goal is to predict the occurrence of future event

Yτ ,l , where τ = t + p and p > 0 is the lead time for forecasting. Thus, the problem is formulated
as the following mapping function:

f : {Xt,l1 , . . . ,Xt,lN
} → Yτ ,l , (1)

where f is the forecasting model.
In Problem (1), input variables {Xt,l1 , . . . ,Xt,lN

} are not independent of each other because the
geographical hierarchy among them encompasses hierarchical dependence. Thus, classical single-
level models such as linear regression and logistic regression cannot be utilized here.

As generalizations of the single-level models, multi-level models are commonly used for prob-
lems where input variables are organized at more than one level. The variables for the locations
in Level n−1 are dependent on those of their parents, which are in Level n (2 ≤ n ≤ N ). The
highest level (i.e., Level N ) variables are independent variables. Without loss of generality and for
convenience, here we first formulate the model with N = 3 geographical levels (e.g., city-level,
state-level, and country-level) and then generalize it to N ∈ Z+ in Section 3.2. The multi-level
models for hierarchical multi-source event forecasting are formulated as follows:

(level − 1) Yτ ,l = α0 +

|F1 |∑
i=1

αT
i · [Xt,l1 ]i + ε,

(level − 2) αi = βi,0 +

|F2 |∑
j=1

βT
i, j · [Xt,l2 ]j + εi , (2)

(level − 3) βi, j =Wi, j,0 +

|F3 |∑
k=1

W T
i, j,k · [Xt,l3 ]k + εi, j ,

where αi , βi, j , and Wi, j,k are the coefficients for models of Level-1, Level-2, and Level-3, respec-
tively. Each Level-1 parameter αi is linearly dependent on Level-2 parameters βi, j and each Level-2
parameter βi, j is again linearly dependent on Level-3 parametersWi, j,k . ε , εi , and εi, j are the noise
terms for Levels 1, 2, and 3. Combining all the formulas in Equation (2), we get

Yτ ,l =

|F1 |∑
i=0

|F2 |∑
j=0

|F3 |∑
k=0

Wi, j,k ·[Xt,l1 ]i ·[Xt,l2 ]j ·[Xt,l3 ]k + ε, (3)

where ε is noise term. Utilizing tensor multiplication, Equation (3) can be expressed in the following
compact notation:

Yτ ,l =W � Zt,l + ε, (4)

where W = {Wi, j,k } |F1 |, |F2 |, |F3 |
i, j,k=0

and Zt,l are two ( |F1 |+1) × ( |F2 |+1) × ( |F3 |+1) tensors, and an
element of Zt,l is defined as [Zt,l ]i, j,k = [Xt,l1 ]i ·[Xt,l2 ]j ·[Xt,l3 ]k . The operator � is the summation
of the Hadamard product of two tensors such that A�B =∑i, j,kAi jk ·Bi jk for 3rd-order tensors A
and B.

The tensorZt,l is illustrated in Figure 3(b). Specifically, the terms [Zt,l ]i,0,0 = [Xt,l1 ]i , [Zt,l ]0, j,0 =
[Xt,l2 ]j , and [Zt,l ]0,0,k = [Xt,l3 ]k are the main-effect variables shown, respectively as green,
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Fig. 3. A schematic view of HIML model.

blue, and brown nodes in Figure 3(b). Main-effect variables are independent variables. The terms
[Zt,l ]i, j,0 = [Xt,l1 ]i · [Xt,l2 ]j , [Zt,l ]i,0,k = [Xt,l1 ]i · [Xt,l3 ]k , and [Zt,l ]0, j,k = [Xt,l2 ]j · [Xt,l3 ]k are
2nd-order interactive variables and are shown as nodes on the surfaces formed by the lines of the
main-effect variables in Figure 3(b). Their values are dependent on both of their two main-effect
variables. The terms [Zt,l ]i, j,k = [Xt,l1 ]i · [Xt,l2 ]j · [Xt,l3 ]k are called 3rd-order interactions because
their values are dependent on 2nd-order interactive variables, as shown in Figure 3(b). Finally, de-
note Z = {Zt,l }T ,L

t,l
as the set of feature tensors for all the locations L and time intervals T .

3.2 Problem Generalization

Here, the 3-level model in Equation (4) is generalized into an N -level model. Moreover, the linear
function in Equation (4) is generalized into nonlinear setting.

3.2.1 1. N -Level Geo-Hierarchy. In Equation (4), we assumed that the number of geographical
levels is N = 3. Now we extend this by introducing the generalized formulation where the integer
N ≥ 2. We retain the formulation in Equation (4), and generalize the operator � into a summation
of theN th-order Hadamard product such thatA�B = ∑i1, ...,iN

Ai1, ...,iN
. . . Bi1, ...,iN

. For simplicity,

this can be denoted as A � B =
∑

�i A�i · · · B�i , where�i = {i1, i2, . . . , iN }.

3.2.2 2. Generalized Multi-Level Linear Regression. In Equation (4), we assumed a linear relation
between input variable Zt,l and the response variable Yt,l . However, in many situations, a more
generalized relation could be necessary. For example, we may need a logistic regression setup
when modeling a classification problem. Specifically, the generalized version of our multi-level
model adds a nonlinear mapping between the input and response variables:

Yt,l = h(W � Zt,l ) + ε, (5)

where h(·) is a convex and differentiable mapping function. In this article, the standard logistic
function h(x ) = 1/(1 + e−x ) is considered (see Section 4.3).

Although the models proposed in Equations (4) and (5) are capable of modeling the features
coming from different geo-hierarchical levels, they suffer from three challenges: (1) The weight
tensor W is typically highly sparse. This is because the main effects could be sparse, meaning
that their interaction (i.e., multiplication) will be even more sparse. Without considering this spar-
sity, the computation will be considerably more time-consuming. (2) The pattern of W is struc-
tured. There is a geo-hierarchy among the multi-level features, which causes their interactions in
W to follow specific sparsity patterns. Careful and effective consideration and utilization of this
structure are both vital and beneficial. (3) The models do not consider missing values, whereas
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these are actually quite common in practical applications that use multi-source data. A model that
is capable of handling missing values is therefore imperative. In the next section, we present HIML,
a novel hierarchical feature learning approach based on constrained overlapping group Lasso, to
address all three challenges.

4 HIERARCHICAL INCOMPLETE MULTI-SOURCE FEATURE LEARNING

Without loss of generality and for convenience, Section 4.1 first proposes our hierarchical feature
learning model for N = 3 geographical levels, and then Section 4.2 generalizes it to handle the
problem of missing values, as shown in Figure 3. Section 4.3 then takes the model further by
generalizing it to N ∈ Z+ geographical levels and incorporating nonlinear loss functions. The
algorithm for the model parameter optimization is proposed in Section 5. The relationship of our
HIML model to existing models is discussed in Section 4.5.

4.1 Hierarchical Feature Correlation

In fitting models with interactions among variables, a 2nd-order strong hierarchy is widely utilized
[18, 23] as this can handle the interactions between two sets of main-effect variables. Here, we
introduce their definition as follows:

Lemma 4.1 (2nd-order Strong Hierarchy). If a 2nd-order interaction term is included in the

model, then both of its product factors (i.e., main effect variables) are present. For example, ifWi, j,0 � 0,

thenWi,0,0 � 0 andW0, j,0 � 0.

Here we generalize the 2nd-order Strong Hierarchy to N th-order Strong Hierarchy (N ∈ Z+ ∧
N ≥ 2) as follows:

Theorem 1 (Nth-order Strong Hierarchy). If an N th-order interaction variable is included

in the model, then all of its nth-order (2 ≤ n < N ) interactive variables and main-effect variables are

included.

Proof. According to Lemma 4.1, if an nth-order interaction variable (2 ≤ n ≤ N ) is included,
then its product-factor pairs, (n−1)th-order interaction factor and main effect, must also be included.
Similarly, if an (n−k)th-order interaction variable (1 ≤ k ≤ n − 2) is included, then so must its
pairs of (n−k −1)th-order interaction factor and main effect. By varying k from 1 to N − 2, we
immediately know that any nth-order (2 ≤ n < N ) interactive variables and main effects must be
included. �

When N = 3, Theorem 1 becomes the 3rd-order strong hierarchy. Specifically, ifWi, j,k � 0, then
we have Wi, j,0 � 0, Wi,0,k � 0, W0, j,k � 0, Wi,0,0 � 0, W0, j,0 � 0, and W0,0,k � 0, where i, j,k � 0.
In the following we propose a general convex regularized feature learning approach that enforces
the 3rd-order strong hierarchy.

The proposed feature learning model minimizes the following penalized empirical loss:

min
W
L (W ) + Ω(W ), (6)

where L (W ) is the loss function such that L (W )=
∑

t,l ‖Yτ ,l −W � Zt,l ‖2F . Ω(W ) is the regulariza-
tion term that encodes task relatedness:

Ω(W ) = λ0

∑
i, j,k�0

|Wi, j,k | + λ1

∑
j+k�0

‖W·, j,k ‖F

+ λ2

∑
i+k�0

‖Wi, ·,k ‖F + λ3

∑
i+j�0

‖Wi, j, · ‖F , (7)
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where ‖ · ‖F is the Frobenius norm. λ0, λ1, λ2, and λ3 are regularization parameters such that
λ0 = λ/( |F1 | · |F2 | · |F3 |), λ1 = λ/(

√
|F1 | · |F2 | · |F3 |), λ2 = λ/( |F1 | ·

√
|F2 | · |F3 |), and λ3 =

λ/( |F1 | · |F2 | ·
√
|F3 |), where λ is a regularization parameter that balances the tradeoff between

the loss function L (W ) and the regularization terms. Equation (7) is a higher-order generalization
of the �2 penalty proposed by Haris et al. [18], which enforces a hierarchical structure under a
2nd-order strong hierarchy.

4.2 Missing Features Values in the Presence of Interactions

As shown in Figure 3(a), multiple data sources usually have different time durations, which result
in incomplete data in multi-level features and about the feature interactions among them. Before
formally describing the proposed generalized model for missing values, we first introduce two
related definitions.

Definition 3 (Missing Pattern Block). A missing pattern block (MPB) is a block of multi-source
data {Xt,l }Tm,L

t,l
(Tm ⊆ T ) that share the same missing pattern of feature values. DefineM (Xt,l )

as the set of missing-value features of the data Xt,l . Assume the total number of MPBs is M , then
they must satisfy the following three criteria:

— (completeness) : T =
⋃M

m Tm

— (coherence) : ∀ti , tj ∈ Tm :M (Xti ,l ) =M (Xtj ,l )
— (exclusiveness) : ∀ti ∈ Tm , tj ∈ Tn ,m � n :M (Xti ,l ) �M (Xtj ,l )

Therefore, completeness indicates that the whole time period of dataset is covered by the union
of all MPB’s. Coherence expresses the notion that any time points in the same MPB have identical
set of missing features. Finally, Exclusiveness suggests that time points in different MPB’s must
have different sets of missing features.

Definition 4 (Feature Indexing Function). We defineWm as the weight tensor learned by the data
for MPB {Xt,l }Tm,L

t,l
. A feature indexing functionWG ( ·) is defined as follows:

WG ( ·) ≡
⋃M

m
[Wm]( ·).

For example,WG (i, j,k ) ≡
⋃M

m [Wm]i, j,k andWG (i, ·,k ) ≡
⋃M

m [Wm]i, ·,k .
According to Definitions 3 and 4, the feature learning problem based on a third-order strong

hierarchy is then formalized as

min
W
L (W ) + λ0

∑
i, j,k�0

‖WG (i, j,k ) ‖F + λ1

∑
j+k�0

‖WG ( ·, j,k ) ‖F

+ λ2

∑
i+k�0

‖WG (i, ·,k ) ‖F + λ3

∑
i+j�0

‖WG (i, j, ·) ‖F , (8)

where the loss function L (W ) is defined as follows:

L (W ) =
∑

Tm ⊆T

1

|Tm |
∑Tm,L

t,l
‖Yτ ,l −Wm � Zt,l ‖2F , (9)

where |Tm | is the total time period of the MPB Tm .

4.3 Model Generalization

We can now extend the above 3rd-order strong hierarchy-based incomplete feature learning to
N th-order and prove that the proposed objective function satisfies the N th-order strong hierarchy.
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The model is formulated as follows:

min
W
L (W ) + λ0

∑
min(�i )�0

�
�
�
WG (�i )

�
�
�F
+

N∑
n=1

λn

∑
�i−n��0

�
�
�
WG (�i−n )

�
�
�F
, (10)

where W = {Wm }Mm , and Wm ∈ R |F1 |×···× |FN | is an N th-order tensor whose element index is
�i = {i1, . . . , in }. Also denote �i−n = {i1, . . . , in−1 , in+1, . . . , iN }.WG (�i ) ≡

⋃M
m [Wm](�i ) according to

Definition 4. λ0 = λ/(
∏N

i |Fi |), λn = λ/(
√
|Fn | ·

∏
i�n |Fi |).

Theorem 2. The regularization in Equation (10) enforces a hierarchical structure under an N th-

order strong hierarchy. The objective function in Equation (10) is convex.

Proof. First,L (W ) is convex because the Hessian matrix for ‖Yτ ,l−Wm�Zt,l ‖2F is semidefinite.
Second, according to Definition 4 and the properties of the norm, ‖WG (�i ) ‖F = ‖

⋃M
m [Wm]�i ‖F is

convex. Similarly, ‖WG (�i−n ) ‖ is also convex. Therefore, the objective function is convex. �

Our model is not restricted to a linear regression and can be extended to generalized linear
models, such as logistic regression. The loss function is as follows:

LM (W ) = −
∑

Tm ⊆T

1

|Tm |
∑Tm,L

t,l
{Yτ ,l logh(Wm � Zt,l )

· (1 − Yτ ,l ) log (1 − h(Wm � Zt,l ))}, (11)

where h(·) could be a nonlinear convex function such as the standard logistic function h(x ) =
1/(1 + e−x ).

4.4 Exponentially Many Possible Missing Patterns

This section considers the situation when there are new missing patterns appearing in real time
when the model is updated incrementally. Theoretically equivalent problem is presented and
proved based on active set techniques.

Because the missing patterns come in sequentially in time order, there could be new missing
patterns along with time and thus our model framework should be able to accommodate all the
possible missing patterns that could appear in the future, in order to achieve incremental learning.

However, the number of all the possible missing patterns is exponentially many. Specifically,
recall that the number of primitive features for each n-th layer is |Fn |, then the total number of

possible missing patterns is 2
∑N

n |Fn | . Assume among all of them, there are M missing patterns that

have already been seen, and thus there are another M ′ = 2
∑N

n |Fn | − M unseen missing patterns.
Therefore, any unseen missing pattern(s) can be denoted asW′

G ( ·) ⊆
⋃M ′+M

m=M+1[Wm]( ·) . Then the
objective function which also includes the unseen missing patterns is as follows:

min
W,W′

L (W ) + λ0

∑
min(�i )�0

�
�
�
�

WG (�i )

⋃
W′

G (�i )

�
�
�
�F

(12)

+
∑N

n=1
λn

∑
�i−n��0

�
�
�
�

WG (�i−n )

⋃
W′

G (�i−n )

�
�
�
�F
,

where it should be noted that there is noW′ in the loss function, L (W ) because the other M ′

missing patterns have not been seen in the historical data.
However, Equation (12) could be prohibitively more time-consuming to be solved than Equation

(10) because M ′ > M and sometimes M ′ � M . To address this problem, in the following, we
present a theorem which shows the equivalence between these two problems.

Theorem 3. The solutions ofW in the objective functions in Equation (10) and Equation (12) are

identical.
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Proof. We first prove that the solution to the variablesW′ is all-zeros by contradiction. Specif-
ically, assume there exist solutionW andW′′ to the objective function value such thatW′′ � 0.
Then there must be a corresponding solutionW andW′ � 0 which will achieve an even lower
objective function value because

∑
min(�i )�0 ‖WG (�i )

⋃
0‖F ≤

∑
min(�i )�0 ‖WG (�i )

⋃W′′
G (�i )
‖F , as well

as
∑N

n=1 λ
′
n

∑
�i−n��0

‖WG (�i−n )

⋃
0‖F ≤

∑N
n=1 λ

′
n

∑
�i−n��0

‖WG (�i−n )

⋃W′
G (�i−n )

‖F .
Then it is easy to see that

∑
min(�i )�0 ‖WG (�i )

⋃
0‖F =

∑
min(�i )�0 ‖WG (�i ) ‖F and

∑N
n=1 λ

′
n

∑
�i−n��0

‖WG (�i−n )

⋃
0‖F =

∑N
n=1 λ

′
n

∑
�i−n��0

‖WG (�i−n ) ‖F . The proof is completed. �

The above proof indicates that the variables involved in Equation (12) are the active set among all
the variables in Equation (10). Here active set means the nontrivial solution typically consisting of
non-zero feature weights while all the remaining feature weights outside the active set in Equation
(10) are trivially zeros, following the definitions from [1, 22]. The equivalence between them shows
us an efficient way which only needs to solve the small problem on the active set [22] (i.e., Equation
(10)), and then involve newly-seen missing patterns incrementally instead of directly involving all
the possible missing patterns. More detailed descriptions of the executive algorithm will be given
in Section 5.2.

4.5 Relations to Other Approaches

In this section, we show that several classic previous models are actually special cases of the pro-
posed HIML model.

1. Generalization of block-wise incomplete multi-source feature learning. Let N = 1,
which means there is only one hierarchical level in the multisource data. Our model in Equation
(10) is thus reduced to an incomplete multi-source feature learning [53]:

min
W

∑
m

1

2Cm

Cm∑
n

‖Yn −Wm · Zn ‖2F + λ0

|F |∑
i

‖WG (i ) ‖F , (13)

where Cm is the count of observations in themth MPB and F is the feature set.
2. Generalization of LASSO. Let N = 1 and M = 1, which means there is only one level

and there are no missing values. Our HIML model is thus reduced to a regression with �1-norm
regularization [36]:

min
W

1

2C

∑C

i
‖Yi −W · Zi ‖2F + λ0

∑ |F |

i
|Wi |, (14)

where C is the count of observations.
3. Generalization of interactive LASSO. Let N = 2 and M = 1, which means there are only

two hierarchical levels in data without missing value. HIML is thus reduced to a regression with
regularization based on 2nd-order strong hierarchy [18]:

min
W

1

2C

∑C

i
‖Yi −W � Zi ‖2F + λ0

∑
i, j�0
|Wi, j |

+ λ1

∑ |F1 |

j=1
‖W·, j ‖F + λ2

∑ |F2 |

i=1
‖Wi, · ‖F , (15)

where F1 and F2 are the feature sets for the two levels, respectively.

5 PARAMETER OPTIMIZATION

In this section, we propose the optimization algorithms for the objective functions developed in the
last section. The batch and incremental-based algorithms as well as their analyses are elaborated
in Sections 5.1 and 5.2, respectively.
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5.1 Batch Learning Algorithm

The problem in Equation (10) contains an overlapping group Lasso which makes it difficult to
solve. To decouple the overlapping terms, we introduce an auxiliary variable Φ and reformulate
Equation (10) as follows:

min
W,Φ

LM (W ) + λ0

∑

min(�i )�0

�
�
�
�

Φ
(0)

G (�i )

�
�
�
�F
+
∑N

n=1
λn

∑
�i−n��0

�
�
�
�

Φ
(n)

G (�i−n )

�
�
�
�F

s .t . Wm = Φ
(n)
m , m = 1, . . . ,M ; n = 1, . . . ,N ., (16)

where the parameter Φ(n)
m ∈ R |F1 |×···× |FN | is the auxiliary variable for the mth MPB for Level n.

ΦG ( ·) then follows Definition 4 such that ΦG ( ·) =
⋃M

m [Φm]( ·) . M is defined in Definition 3 and N is
the number of levels of the features.

It is easy to see that Equation (16) is still convex using Theorem 2. We propose to solve this
constrained convex problem using the alternative direction method of multipliers (ADMM)
framework. The augmented Lagrangian function of Equation (16) is

Lρ (W,Φ, Γ) = LM (W ) +
∑M,N

m,n
tr (Γ

(n)
m (Wm − Φ

(n)
m ))

+
∑N

n=1
λn

∑

I−n��0

�
�
�
�

Φ
(n)

G (�i−n )

�
�
�
�F
+ ρ/2

∑M,N

m,n

�
�
�
�

Wm − Φ
(n)
m

�
�
�
�

2

F

+ λ0

∑
min(�i )�0

�
�
�
�

Φ
(0)

G (�i )

�
�
�
�F
, (17)

where ρ is a penalty parameter. tr (·) denotes the trace of a matrix. Γ(n)
m is a Lagrangian multiplier

for the constraintWm − Φ(n)
m = 0.

To solve the objective function in Equation (17) with multiple unknown parametersW , Φ, and Γ,
we propose the hierarchical incomplete feature learning algorithm as in Algorithm 1. It alternately
optimizes each of the unknown parameters until convergence is achieved. Lines 11–12 show the
calculation of residuals and Lines 13–19 illustrate the updating of the penalty parameter, which
follows the updating strategy proposed by Boyd et al. [3]. Lines 4–10 show the updating of each
of the unknown parameters by solving the subproblems described in the following.

1. UpdateWm .
The weight tensorWm is learned as follows:

Wm = argmin
Wm

LM (W ) +
Nρ

2

�
�
�
�
�

1

N

∑N

n
Φ

(n)
m − 1

Nρ

∑N

n
Γ

(n)
m −Wm

�
�
�
�
�

2

F

, (18)

which is a generalized linear regression with least-squares loss functions. A second-order Taylor
expansion is performed to solve this problem, where the Hessian is approximated using a multiple
of the identity with an upper bound of 1/(4 · I ). I denotes the identity matrix.

2. Update Φ(n)
m (n ≥ 1).

The auxiliary variable Φ(n)
m is learned as follows:

Φ
(n)
m←argmin

Φ
(n )
m

ρ

2

�
�
�
�
�
�

Φ
(n)
m −Wm−

Γ
(n)

m

ρ

�
�
�
�
�
�

2

F

+λn

∑
�i−n��0

�
�
�
�

Φ
(n)

G (�i−n )

�
�
�
�F
, (19)

which is a regression problem with ridge regularization. This problem can be efficiently using the
proximal operator [3].
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3. Update Φ(0)
m .

The auxiliary variable Φ(0)
m is learned as follows:

Φ
(0)
m ←argmin

Φ
(0)
m

ρ

2

�
�
�
�
�
�

Φ
(0)
m −Wm−

Γ
(0)

m

ρ

�
�
�
�
�
�

2

F

+λ0

∑

min(�i )�0

�
�
�
�

Φ
(0)

G (�i )

�
�
�
�F
, (20)

which is also a regression problem with ridge regularization and can be again efficiently solved by
utilizing the proximal operator.

4. Update Γ(n)
m .

The Lagrangian multiplier is updated as follows:

Γ(n)
m ← Γ(n)

m + ρ
(
Wm − Φ(n)

m

)
. (21)

ALGORITHM 1: Hierarchical Incomplete Feature Learning

Require: Z , Y , λ
Ensure: solutionW
1: Initialize ρ = 1,Wm, Γ, Φ = 0.
2: Choose εs > 0, εr > 0.
3: repeat
4: for m ← 1, . . . , M do
5: Wm ← Equation (18)
6: for n ← 0, . . . , N do

7: Φ
(n )
m ← Equation (20) # Equation (19) if n � 0

8: Γ
(n )

m ← Equation (21)
9: end for

10: end for

11: s = ρ ‖ {Φ(n )
m − Ψ

(n )
m }M,N

m,n ‖F # Calculate dual residual

12: r = ‖ {W (n )
m − Ψ

(n )
m }M,N

m,n ‖F # Calculate primal residual
13: if r > 10s then
14: ρ ← 2ρ # Update penalty parameter
15: else if 10r < s then
16: ρ ← ρ/2
17: else
18: ρ ← ρ
19: end if
20: until r < εr and s < εs

Algorithm Analyses: As shown in Theorem 2, the objective function in Equation (16) is convex.
In addition, the constraint is simple linear equality. Thus, the ADMM algorithm guarantees to
converge to global optima, following the proof process in [3].

For the time complexity, the subproblem for calculatingWm requires O ( |Z | · T · L) thanks to
the utilization of Hessian matrix approximation introduced above. |Z | is the number of interaction
features. The subproblem for Φ(n) is dominated by group soft-thresholding, with the time complex-
ity of O (M · |Z |). In all, the total time complexity is O (l0 · (l1 · M · |Z | · T · L + M · |Z |)), where
C = l0 ·l1 and l0 and l1 are the number of iterations for the loops of ADMM and the first subproblem,
respectively.

5.2 Incremental Learning Algorithm

To improve the time and memory efficiency and achieve incremental updating of the learned model,
here we propose an online version of the parameter optimization algorithm. Assume current time
is denoted as t , therefore we have:

min
Wt

Lt (Wt ) + λ0

∑

min(�i )�0

�
�
�
�

W
G (�i ),t

�
�
�
�F
+

N∑
n=1

λn

∑
�i−n��0

�
�
�
�

W
G (�i−n ),t

�
�
�
�F
, (22)
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whereWt denotes the feature weight at time t and Lt denotes the loss function at time t . Similar
to the above, we assume there arem missing patterns inWt .

Now a new sample comes, and there are two possible situations: When this new sample follows
an existing missing pattern, then there is no change to the above objective function. Otherwise,
when this sample brings a new missing pattern and its feature weight is denoted as Wnew, we
extend our feature setWt byWt ←Wt

⋃{Wnew}. According to Theorem 3, the objective function
based on this extended feature set is still equivalent to the original one in Equation (22). After
building up Lagrangian forms in a way similar to that in Section 5.1, the problem can be solved
and illustrated in Algorithm 2. In general, for each new-coming sample, in Lines 3–5 we first
identify if it brings new missing patterns, and extend our objective function if so. Then, different
parameters are updated iteratively through their corresponding subproblems in Lines 6–20, which
will also be described in detail in the following. Note that any parameter that has a subscript “t”
denotes that it is at time t .
1. UpdateWm,t .

Denotesmt as the missing pattern of the current time t , the weight tensorWm,t+1 (m =mt ) is
learned as follows:

Wm,t+1 ← argmin
Wm

∑L

l
log(1 + exp(−Yt,l (WmXt,l )))

+
∑N

n
tr
(
Γ

(n)
m

(
Wm − Φ

(n)
m,t

))
+ ρ/2

∑N

n

�
�
�
�

Wm − Φ
(n)
m,t

�
�
�
�

2

F

+ D (Wm,t+1,Wm,t )/ηt+1, (23)

where the function D (x ,y) denotes the Bregman divergence [63] between x and y to keep the
smoothness of the parameter value update in consecutive time points. And ηt ∝ 1/

√
t is the step-

size. Whenm �mt , the weight tensorWm,t+1 is updated as follows:

Wm,t+1 ←
∑N

n
tr
(
Γ

(n)
m

(
Wm − Φ

(n)
m,t

))
+ ρ/2

∑N

n

�
�
�
�

Wm − Φ
(n)
m,t

�
�
�
�

2

F

+ D (Wm,t+1,Wm,t )/ηt+1. (24)

2. Update Φ(n)
·,t (n ≥ 1).

The auxiliary variable Φ(n)
m is learned as follows:

Φ
(n)
·,t+1←

M∑
m

argmin
Φ

(n )
m

ρ

2

�
�
�
�
�
�

Φ
(n)
m −Wm−

Γ
(n)

m

ρ

�
�
�
�
�
�

2

F

+λn

∑
�i−n��0

�
�
�
�

Φ
(n)

G (�i−n )

�
�
�
�F

+ D
(
Φ(n) ,Φ

(n)
t

)
/ηt+1. (25)

3. Update Φ(0)
·,t .

The auxiliary variable Φ(0)
m is learned as follows:

Φ
(0)
·,t+1←argmin

Φ(0)

ρ

2

M∑
m

�
�
�
�
�
�

Φ
(0)
m −Wm−

Γ
(0)

m

ρ

�
�
�
�
�
�

2

F

+λ0

∑

min(�i )�0

�
�
�
�

Φ
(0)

G (�i )

�
�
�
�F

+ D
(
Φ(0) ,Φ

(0)
t

)
/ηt+1. (26)

4. Update Γ(n)
m,t .

The Lagrangian multiplier is updated as follows:

Γ(n)
m,t+1 ← Γ(n)

m,t + ρ
(
Wm,t+1 − Φ(n)

m,t+1

)
. (27)
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ALGORITHM 2: Online Hierarchical Incomplete Feature Learning

Require: Z (t ) , Y (t ) (t = 1, 2, · · · ), λ
Ensure: solutionW
1: Initialize ρ = 1,W (t )

m , Γ(t ), Φ(t ) = 0.
2: for A new sample do
3: if The sample has new missing pattern then
4: Equivalently extend the current objective function using Theorem 3
5: end if
6: for m ← 1, . . . , M do
7: if m =mt then

8: W (t )
m ← Equation (23)

9: else

10: W (t )
m ← Equation (24)

11: end if
12: for n ← 0, . . . , N do
13: if n=0 then

14: Φ
(n ), (t )
m ← Equation (26)

15: else

16: Φ
(n ), (t )
m ← Equation (25)

17: end if

18: Γ
(n ), (t )

m ← Equation (27)
19: end for
20: end for

21: s = ρ ‖ {Φ(n ), (t )
m −Ψ(n ), (t )

m }M,N
m,n ‖F # Calculate Dual residual

22: r = ‖ {W (n )
m − Ψ

(n ), (t )
m }M,N

m,n ‖F # Calculate primal residual
23: if r > 10s then
24: ρ ← 2ρ # Update penalty parameter
25: else if 10r < s then
26: ρ ← ρ/2
27: else
28: ρ ← ρ
29: end if
30: t ← t + 1
31: end for

For the time complexity of each update of the above online algorithm, the subproblem for cal-
culatingWm requires O ( |Z |) thanks to the utilization of the Hessian matrix approximation intro-
duced above, where |Z | denotes the number of interaction features. The subproblem for Φ(n) is
dominated by group soft-thresholding, with the time complexity ofO (M · |Z |). In all, the total time
complexity is O (l0 · (l1 · M · |Z | + M · |Z |)) = O (C · M · |Z |), where l0 and l1 are the number of
iterations for the loops of ADMM and first subproblem, respectively. Thus, C = l0 · l1 is a variable
independent of M and |Z |.

6 EXPERIMENT

In this section, the performance of the proposed model HIML is evaluated using 10 real datasets
from different domains. First, the experimental setup is introduced. The effectiveness and efficiency
of HIML are then evaluated against several existing methods for a number of different data missing
ratios. All the experiments were conducted on a 64-bit machine with Intel(R) core(TM) quad-core
processor (i7CPU@ 3.40GHz) and 16.0 GB memory.

6.1 Experimental Setup

6.1.1 Datasets and Labels. In this article, 10 different datasets from different domains were used
for the experimental evaluations, as shown in Table 1. Among these, nine datasets were used for
event forecasting under the civil unrest domain for nine different countries in Latin America. For
these datasets, four data sources from different geographical levels were adopted as the model
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Table 1. Labels of Different Datasets (CU=civil unrest; FLU=ILI)

Dataset Domain Label sources1 #Events

Argentina CU Clarín; La Nación; Infobae 1,306

Brazil CU
O Globo; O Estado de São Paulo;

Jornal do Brasil
3,226

Chile CU
La Tercera; Las Últimas Notícias;

El Mercurio
706

Colombia CU
El Espectador; El Tiempo; El

Colombiano
1,196

El Salvador CU
El Diáro de Hoy; La Prensa

Gráfica; El Mundo
657

Mexico CU La Jornada; Reforma; Milenio 5,465

Paraguay CU
ABC Color; Ultima Hora; La

Nacíon
1,932

Uruguay CU El País; El Observador 624

Venezuela CU
El Universal; El Nacional; Ultimas

Notícias
3,105

U.S. FLU CDC Flu Activity Map 1,027

inputs, which are Twitter, The Onion Router (Tor) network traffic statistics,2 Currency
Exchange,3 and Integrated Crisis Early Warning System (ICEWS) counts,4 as shown in
Table 3. The features of each data source are shown in Table 2. The data collected for each source
was partitioned into a sequence of date-interval subcollections. The data for the period from April
1, 2013 to December 31, 2013 was used for training, while the data from January 1, 2014 to De-
cember 31, 2014, was used for the performance evaluation. The locations of the tweets were all
geocoded by the EMBERS geocoder [41]. The event forecasting results were validated against a
labeled event set, known as the gold standard report (GSR), exclusively provided by MITRE
[34]. GSR is a collection of civil unrest news reports from the most influential newspaper outlets
in Latin America [41], as shown in Table 1. An example of a labeled GSR event is given by the
tuple: (CITY = “Hermosillo”, STATE = “Sonora”, COUNTRY = “Mexico”, DATE = “2013-01-20”). On
the other hand, for the input data in each time segment in each data source, it can be formulated
as a feature vector along its corresponding features listed in Table 2. Notice that for the keyword
features shown in Table 2, they are just formulated as keyword counts, namely they are in the
form of “bag of words”, and thus organized as part of the feature vector for the corresponding data
sources.

The other dataset was collected to track influenza outbreaks in the United States and consists
of three data sources from different geographical levels, which are Twitter, ILI-Net,5 and FluSurv-
NET,6 as shown in Table 4. These data sources all have different geographical levels. The features
of each data source are shown in Table 2. In this case, the data collection for each source was
partitioned into a sequence of week-interval subcollections. The data for the period from January 1,

1In addition to the top three domestic news outlets, the following news outlets are included: The New York Times, The Guardian, The Wall
Street Journal, The Washington Post, The International Herald Tribune, The Times of London, and Infolatam.
2Tor: https://www.torproject.org/.
3Currency Exchange: http://finance.yahoo.com/currency-converter/.
4ICEWS project: http://www.lockheedmartin.com/us/products/W-ICEWS.html.
5ILI-NET:https://wwwn.cdc.gov/ilinet/.
6FluSurv-NET:http://www.cdc.gov/flu/weekly/.
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Table 2. Features of Multiple Data Sources

domain data sources features

Civil Unrest

CURRENCY Open,High,Low,Close
Tor Tor network traffic statistics

ICEWS CAMEO Codes8 of event news article content
Twitter Volume time series of 982 keywords from [41]

FLU

FluSurv-NET
Influenza Hospitalization Ratio by age groups: 0-4 yr,

5-17 yr, 18-49 yr, 50-64 yr, and 65+ yr

ILI-Net
weighted/unweighted ILI ratios,positive perctentage,

#cases of flu types: A(H1N1), A(N1), A(H3), A, B, H3N2v
Twitter Volume time series of 522 keywords from [38]

Table 3. Geographical Levels and Time Ranges of the Multiple Data Sources for
Civil Unrest Forecasting

Level 1 Level 2 Level 3
Geo-level City State Country

Twitter: ICEWS: CURRENCY:
data sources: 2013-04-01∼ 2013-04-01∼2013-07-10 2013-04-01∼2013-10-21
training period 2013-12-31 2013-10-21∼2013-12-31 TOR:

2013-04-01∼2013-10-21

Table 4. Geographical Levels and Time Ranges of the Multiple Data Sources for
Influenza Forecasting

Level 1 Level 2 Level 3
Geo-level State Region Country

Twitter: ILI-Net: FluSurv-NET:
data sources: 2011-1∼2013-52 2009-35∼2013-52 2009-1∼2011-12
training period 2011-36∼2012-13

2012-36∼2013-52

2011 to December 31, 2013 was used for training, while the data from January 1, 2014 to December
31, 2014, was used for the performance evaluation. The locations of the tweets were geocoded by
the Carmen geocoder [38]. The forecasting results for the flu outbreaks were validated against the
corresponding influenza statistics reported by the CDC.7 CDC publishes the weekly ILI activity
level for each state in the United States based on the proportional level of outpatient visits to
healthcare providers for ILI. There are four ILI activity levels: minimal, low, moderate, and high,
where the level “high” corresponds to a salient flu outbreak and is effectively the target when
forecasting. An example of a CDC flu outbreak event is: (STATE = “Virginia”, COUNTRY = “United
States”, WEEK = “01-06-2013 to 01-12-2013”).

6.1.2 Parameter Settings and Metrics. There is only one tunable parameter in the proposed
HIML, namely the regularization parameter λ. Based on a 10-fold cross validation on the training

7CDC: http://www.cdc.gov/flu/weekly/.
8Event data codebook of Conflict and mediation event observations (CAMEO): http://phoenixdata.org/description.AccessedFeb2016.
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set, it was set as λ = 0.2. For oHIML, the batch size was set as 200. The logit function was used in
the objective functions of our HIML and oHIML.

In the experiment, the event forecasting task was to predict whether or not there would be an
event during the next time step for a specific location. For civil unrest datasets, a time step is one
day and the location is a city. For disease outbreaks, a time step is one week and the location is a
state. A predicted event was matched to a GSR event if both the time and location attributes were
matched; otherwise, it was considered a false forecast. To validate the prediction performance,
different metrics were adopted: The True Positive Ratio (TPR) designates the percentage of pos-
itive predictions that successfully matched the events that truly happened, while the False Pos-

itive Ratio (FPR) denotes the percentage of positive predictions that were actually false alarms.
In addition, a Receiver operating characteristic (ROC) curve was utilized to evaluate the
forecasting performance as its discrimination threshold for each predictive model was varied. Fi-
nally, the use of Area Under ROC Curve (AUC) was also examined as a comprehensive measure
of forecasting performance.

6.1.3 Comparison Methods. The following methods were included in the performance
comparison:

1. LASSO [36]. The feature set was the union of the features from different data sources. Only
the time period with all the data sources available was retained; samples with any missing value
were discarded. The regularization parameter was set as 0.01 based on a 10-fold cross validation
on the training set.

2. LASSO with Interactive Features (LASSO-INT). The feature set here consisted of two parts: (1)
the union of the features from different data sources; and (2) the interactive features among all the
features from different data sources. Only the time period with all the data sources available was
retained; samples with any missing value were discarded. The regularization parameter was set as
0.01 based on a 10-fold cross validation on the training set.

3. Incomplete Multi-Source Data Fusion (iMSF) [53]. The classification error here was minimized
while a similar selection for the same features across different samples was enforced through a
group Lasso over all the samples of each feature. The regularization parameter was set as 0.2
based on a 10-fold cross validation.

4. Multitask Learning (MTL) [59]. Each task was the event forecasting for the location being pre-
dicted. This model utilized a feature set that was the same as that of LASSO-INT. The regularization
parameters ρ1 and ρL2 were set based on a 10-fold cross-validation for each dataset.

5. AutoInt [46]. A self-attentive neural method to automatically learning representations of high-
order combination features. The features are projected into the low-dimensional space and further
into stacked multiple interacting layers implemented by self-attentive neural network. The output
of the final interacting layer is the low-dimensional representation of learnt combinatorial fea-
tures, which is further used for the prediction task. Only the time period with all the data sources
available was retained; samples with any missing value were discarded. For the hyper-parameters,
we used two heads for the self-attention layer and the embedding size was set to 16 following its
default setting. The model was trained by the Adam [25] optimizer for three epochs with a batch
size of 1,024.

6. Baseline. We built a corresponding classifier based on logistic regression for each geographical
level. When predicting, the prediction results from these classifiers were comprehensively consid-
ered using a voting strategy. Specifically, if the majority of the predictions were “occurrence”, then
the final prediction was “occurrence”, otherwise it was “no-occurrence”. The regularization param-
eters for all the logistic regression models were tuned by a 10-fold cross validation on the training
set.
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6.2 Performance

In this section, the effectiveness in terms of the AUC and ROC curves are analyzed for all the
comparison methods.

6.2.1 AUC on Civil Unrest Datasets. Table 5 summarizes the effectiveness comparison for fore-
casting civil unrest events for different missing data ratios. The AUC measure has been adopted to
quantify the performance. The original percentage of missing data in our data sources was 3%. We
manually enlarged this to 30%, 50%, and 70% by randomly reducing the number of dates with com-
plete multiple sources. We used 10 random seeds, and reported the mean and standard deviation
of the performance for each method and dataset in Table 5.

The results shown in Table 5 demonstrate that the methods that take into account the hier-
archical topology in the data sources performed better. Specifically, the performance of HIML
and the online version of HIML (oHIML outperformed the other methods for different missing
data ratios in general, with small standard deviations, which indicate the consistency on the
performance. The baseline method, LASSO, and LASSO-INT also performed competitively with
AUC larger than 0.70 on over four datasets. AutoInt is a method that can also consider the
interactions among the features in different geographical hierarchical levels, which also achieved
good performance in all the datasets in general. Compared with the other methods, iMSF and
MTL had only limited performance for a missing data ratio of 3%. When looking across different
missing data ratios, it can be seen that for some datasets and some methods, when missing ratio
increases from 3% to 70% the drops may not very obvious, and sometimes there are even slight
increase in the performance. The general reason is because using more training data may not
necessarily lead to better performance in the situation when training set and test set could have
different distributions in practice, which is very common in societal event forecasting [55]. In our
experiment, in general there are already sufficient data for model training even with 70% missing
ratio. So reducing the missing ratio from 70% to 50%, 30%, and 3% may either improve or decrease
the performance, depending on how close the distribution of training set is to that of the test set.
HIML and oHIML, similar to iMSF, were able to handle the missing value problem in multiple
data sources. They achieved good model robustness against missing values, dropping on average
less than 3% when the missing data ratio increased from 3% to 70%. MTL was also not particularly
sensitive to the change in missing values. In all, oHIML outperformed the other methods in all of
the nine datasets for most data missing ratios, because it is able to effectively consider hierarchical
topology and sufficiently leverage the information in different missing patterns.

6.2.2 AUC on the Flu Dataset. Table 6 shows the performance on the metric AUC and training
runtime for forecasting influenza outbreaks. Similar to the experiments on civil unrest dataset, the
mean and standard deviation of the performance have been obtained and reported in Table 6.

As with the civil unrest datasets, Table 6 shows that for the influenza dataset, the methods that
take into account the hierarchical topology in the data sources still perform competitively for the
missing data ratio of 21% that was present in the real-world dataset. Specifically, the performance
of HIML, oHIML, and the baseline method outperformed both iMSF and MTL. LASSO and LASSO-
INT also performed competitively, with AUC surpassing 0.85 for different missing data ratios. Com-
pared with the other methods, MTL suffered from a limited performance on a missing data ratio
of 21%. When looking across the different data missing ratios, it is apparent that the methods that
cannot handle incomplete input data achieved worse performance against larger missing values.
iMSF, HIML, and oHIML achieved a more consistent performance across the full range of missing
data ratios. The performance of the other methods, namely LASSO, LASSO-INT, and MTL, dropped
more significantly. For example, although the LASSO method achieved a good AUC of 0.9180 at
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Table 5. Event Forecasting Performance in Civil Unrest Datasets Based on AUC of ROC

Missing data ratio (3%)
Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5267 0.7476 0.5624 0.8032 0.3148 0.7823 0.5572 0.4693 0.8073

LASSO-INT 0.5268 0.7191 0.5935 0.7861 0.5269 0.777 0.4887 0.5069 0.7543
iMSF 0.4795 0.4611 0.5033 0.7213 0.5 0.5569 0.4486 0.4904 0.5
MTL 0.3885 0.5017 0.5011 0.4334 0.3452 0.4674 0.4313 0.3507 0.5501

Baseline 0.5065 0.7317 0.6148 0.8084 0.7770 0.8037 0.7339 0.7264 0.7846

AutoInt 0.5310 0.6581 0.6967 0.8307 0.4604 0.8046 0.6827 0.8228 0.7052
HIML 0.5873 0.8353 0.5705 0.8169 0.7191 0.7973 0.7478 0.8537 0.7488

oHIML 0.5601 0.8539 0.7417 0.8230 0.8045 0.8069 0.7484 0.8708 0.8289

Missing data ratio (30%)
Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5240 0.7463 0.5842 0.8019 0.3221 0.7812 0.5506 0.4934 0.8043

± 0.0031 ± 0.0015 ± 0.014 ± 0.0017 ± 0.0297 ± 0.0021 ± 0.0166 ± 0.0394 ± 0.0086
LASSO-INT 0.5198 0.7155 0.6148 0.7857 0.5032 0.7747 0.4799 0.5367 0.7491

± 0.0078 ± 0.0095 ± 0.0158 ± 0.0030 ± 0.0343 ± 0.0035 ± 0.0157 ± 0.0455 ± 0.0137
iMSF 0.4796 0.4611 0.4962 0.76 0.5000 0.5565 0.481 0.4909 0.5000

± 0.0000 ± 0.0000 ± 0.0000 ± 0.0007 ± 0.0000 ± 0.0002 ± 0.0001 ± 0.0003 ± 0.0000
MTL 0.5180 0.4478 0.5420 0.5113 0.6111 0.6185 0.681 0.6648 0.4823

± 0.1181 ± 0.0879 ± 0.0742 ± 0.0694 ± 0.1610 ± 0.0241 ± 0.0334 ± 0.2456 ± 0.0481
Baseline 0.5150 0.8307 0.3694 0.8502 0.7770 0.7909 0.7327 0.8666 0.6117

± 0.0047 ± 0.0015 ± 0.0000 ± 0.0012 ± 0.0282 ± 0.0003 ± 0.0084 ± 0.0038 ± 0.1154
AutoInt 0.5464 0.7153 0.6780 0.8312 0.5514 0.8214 0.6553 0.8100 0.6576

± 0.0025 ± 0.0306 ± 0.0482 ± 0.0009 ± 0.0355 ± 0.0119 ± 0.0268 ± 0.0114 ± 0.0235
HIML 0.5859 0.8334 0.5622 0.8183 0.7164 0.7955 0.7459 0.851 0.7586

± 0.0021 ± 0.0018 ± 0.0067 ± 0.001 ± 0.0034 ± 0.0003 ± 0.0043 ± 0.0011 ± 0.0146
oHIML 0.5765 0.8492 0.6783 0.8475 0.7948 0.7990 0.7423 0.8618 0.7387

± 0.0095 ± 0.0049 ± 0.0279 ± 0.0056 ± 0.0149 ± 0.0015 ± 0.0079 ± 0.0046 ± 0.0243
Missing data ratio (50%)

Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.527 0.7453 0.5967 0.7992 0.3163 0.7828 0.5582 0.5286 0.8027

± 0.0099 ± 0.0021 ± 0.0233 ± 0.0032 ± 0.0086 ± 0.0031 ± 0.0221 ± 0.0709 ± 0.0057
LASSO-INT 0.5163 0.7051 0.6189 0.7837 0.4693 0.7738 0.4654 0.5797 0.7541

± 0.0097 ± 0.0139 ± 0.0207 ± 0.0038 ± 0.0622 ± 0.0066 ± 0.0111 ± 0.0762 ± 0.0152
iMSF 0.4798 0.4611 0.4961 0.753 0.4901 0.5494 0.4808 0.4865 0.5000

± 0.0001 ± 0.0000 ± 0.0009 ± 0.0011 ± 0.0014 ± 0.0009 ± 0.0000 ± 0.0003 ± 0.0000
MTL 0.5005 0.4056 0.5365 0.4975 0.6742 0.6508 0.6272 0.7131 0.5182

± 0.0867 ± 0.1547 ± 0.087 ± 0.0334 0.1550 ± 0.0153 ± 0.0675 0.2681 ± 0.0745
Baseline 0.5226 0.8339 0.5628 0.8373 0.7975 0.7919 0.7341 0.8699 0.5808

± 0.0122 ± 0.0035 0.1277 ± 0.0035 ± 0.0037 ± 0.0010 ± 0.0042 ± 0.0011 ± 0.1046
AutoInt 0.5544 0.7248 0.6905 0.8319 0.5365 0.8058 0.6745 0.8195 0.6257

± 0.0146 ± 0.0209 ± 0.0110 ± 0.0032 ± 0.0137 ± 0.002 ± 0.0303 ± 0.0245 ± 0.1619
HIML 0.5782 0.8318 0.5649 0.8170 0.7103 0.7933 0.7418 0.8487 0.7743

± 0.0040 ± 0.0027 ± 0.0115 ± 0.0020 ± 0.0087 ± 0.0002 ± 0.0066 ± 0.0044 ± 0.0167
oHIML 0.5673 0.8423 0.6598 0.8378 0.7837 0.7943 0.7443 0.8648 0.7280

± 0.0089 ± 0.0064 ± 0.0235 ± 0.0046 ± 0.0126 ± 0.0025 ± 0.0092 ± 0.0067 ± 0.0179
Missing data ratio (70%)

Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5281 0.7454 0.5970 0.7997 0.3352 0.7859 0.5428 0.6499 0.7812

± 0.0124 ± 0.0060 ± 0.0271 ± 0.0030 ± 0.0494 ± 0.0087 ± 0.0274 ± 0.0296 ± 0.0084
LASSO-INT 0.5054 0.6852 0.6113 0.7826 0.4616 0.771 0.4704 0.6394 0.7481

± 0.0093 ± 0.0291 ± 0.0136 ± 0.0031 ± 0.0683 ± 0.0132 ± 0.0403 ± 0.0326 ± 0.0166
iMSF 0.4797 0.4482 0.4959 0.7719 0.5000 0.5521 0.4827 0.5222 0.5000

± 0.0000 ± 0.0118 ± 0.0026 ± 0.0018 ± 0.0000 ± 0.0043 ± 0.0005 ± 0.0000 ± 0.0000
MTL 0.5212 0.4325 0.4776 0.5829 0.7334 0.6483 0.6101 0.7372 0.4951

± 0.1035 ± 0.0818 ± 0.0699 ± 0.0741 ± 0.0437 ± 0.0188 ± 0.1286 ± 0.1922 ± 0.0687
Baseline 0.5324 0.8313 0.4636 0.8414 0.8027 0.7912 0.7467 0.8742 0.6551

± 0.0038 ± 0.0040 ± 0.1575 ± 0.0018 ± 0.0065 ± 0.0007 ± 0.0052 ± 0.0017 ± 0.0283
AutoInt 0.5557 0.7637 0.6795 0.8309 0.4918 0.8012 0.6549 0.8046 0.5612

± 0.0071 ± 0.0213 ± 0.0286 ± 0.0011 ± 0.0816 ± 0.0073 ± 0.0541 ± 0.0364 ± 0.1167
HIML 0.5641 0.8264 0.5610 0.8152 0.7045 0.7908 0.7282 0.8352 0.7707

± 0.0094 ± 0.0068 ± 0.0200 ± 0.0026 ± 0.0123 ± 0.0009 ± 0.0101 ± 0.0073 ± 0.0193
oHIML 0.5496 0.8396 0.7322 0.8237 0.6910 0.7998 0.7276 0.8716 0.7034

± 0.0119 ± 0.0079 ± 0.0076 ± 0.0054 ± 0.0109 ± 0.0023 ± 0.0175 ± 0.0034 ± 0.0184

Bold underlined font denotes a best performer while a second best performer is denoted as bold font.
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Fig. 4. ROC curves for the performances on different datasets.

a missing data ratio of 21%, this dropped to 0.7640 when the missing data ratios increased to 70%
because it could not sufficiently utilize the shared knowledge across different missing patterns and
thus large amounts of information were lost. HIML achieved the highest AUC in general. As with
the civil unrest datasets, when forecasting influenza outbreaks oHIML once again outperformed
all the other methods except HIML consistently for all the different missing data ratios by clear
margins, due to its capacity to handle hierarchical topology and interactive missing data values.

6.2.3 Efficiency in Running Time. The rightmost column of Table 6 shows the training time ef-
ficiency comparison among HIML, oHIML, and the competing methods for forecasting influenza
outbreaks with a 21% missing ratio. The running times on the test set for all the comparison meth-
ods are instant (i.e., less than 0.01 second for one prediction) so that are not provided here. Ac-
cording to Table 6, the running time of the baseline method was 31.97 seconds, outperforming the
other methods. Online version HIML achieves the second-best runtime of 47.85 seconds, which is
more than 18 times speed up comparing with regular full batch HIML and is nearly competitive
with the baseline method. LASSO, LASSO-INT, MTL, AutoInt, and HIML were hundreds of sec-
onds on the whole training set. However, the running times achieved by all these methods were
only a maximum of 15 minutes for a 4-year-long huge training set for week-wise event forecast-
ing tasks, making this eminently practical for real-world applications. The efficiency evaluation
results on civil unrest datasets follow a similar pattern to Table 6 and are not provided due to space
limitations.

6.2.4 Event Forecasting Performance on ROC Curves. Figure 4 illustrates the event forecasting
performance ROC curves for nine datasets in two domains, namely civil unrest and influenza out-
breaks. The Argentina dataset follows a similar pattern to that of Chile and is thus not shown here
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Fig. 5. Scalability of the proposed models for civil unrest dataset and influenza outbreak dataset.

Table 6. Event Forecasting Performance in Influenza Datasets

Missing data ratio runtime
Method 21% 30% 50% 70% (second)
LASSO 0.9180 0.9019 ± 0.0099 0.8754 ± 0.0158 0.7640 ± 0.0970 493.92
LASSO-INT 0.9142 0.8887 ± 0.0101 0.8572 ± 0.0390 0.7475 ± 0.1082 508.49
iMSF 0.8949 0.8818 ± 0.0067 0.8616 ± 0.0383 0.7743 ± 0.0770 88.90
MTL 0.6129 0.5920 ± 0.0528 0.5397 ± 0.0250 0.4882 ± 0.0280 223.78
Baseline 0.9044 0.9086 ± 0.0067 0.9025 ± 0.0134 0.9055 ± 0.0128 31.97

AutoInt 0.8885 0.8779 ± 0.0157 0.8721 ± 0.0041 0.8680 ± 0.0062 286.00
HIML 0.9372 0.9362 ± 0.0003 0.9370 ± 0.0008 0.9367 ± 0.0007 851.83
oHIML 0.9145 0.9149 ± 0.0032 0.9150 ± 0.0083 0.9170 ± 0.0140 47.85

Bold underlined font denotes a best performer while a second best performer is denoted as bold font.

to save space. For the eight civil unrest datasets in Figures 4(a)–(h), HIML and oHIML perform
the best overall, with ROC curves covering the largest area above the axis. Moreover, the ROC
curves for HIML are consistently above those of the other methods in datasets including Brazil,
Colombia, El Salvador, Paraguay, and Uruguay as FPR and TPR vary from 0 to 1. For the datasets
for Chile and Mexico, HIML, oHIML, AutoInt, LASSO, LASSO-INT, and the Baseline perform simi-
larly, all outperforming the other methods. For the dataset for Venezuela, LASSO, LASSO-INT, and
the Baseline method perform better than HIML and AutoInt when FPR is smaller than 0.7, while
HIML outperforms the competing methods when FPR > 0.7. MTL generally achieves a limited per-
formance, as can be seen in Tables 5 and 6. For the influenza outbreak dataset, as can be seen from
Figure 4(i), HIML and oHIML consistently outperforms the other methods with different FPR and
TPR values. iMSF, LASSO, AutoInt, and LASSO-INT also achieve quite competitive performances,
outperforming MTL by an apparent margin.

6.2.5 Scalability. The training times for the batch-based models are typically sensitive to the
size of the training set. Figure 5 illustrates the impact of scalability on the number of training
samples needed by the proposed approach for the civil unrest dataset and flu dataset, respectively.
Here we use the Mexico dataset to represent the civil unrest dataset, the rest datasets follow the
same trend.

As shown in Figure 5(a), for the civil unrest dataset, the runtime for training HIML is linear
in the number of training samples, starting from only 1.2 seconds with 1,000 samples and rising
to 1.6 seconds with 15,000 samples. Unlike batch-based models, the training times for the oHIML
were not sensitive to the number of training samples utilized, with a relatively constant runtime
of around 0.4 seconds.
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On the flu dataset, shown in Figure 5(b), the runtimes for both HIML and oHIML were longer
than for the civil unrest dataset due to the larger scale of the data. The runtime for training HIML
once again increased linearly with the number of training samples, starting from 5 seconds with
100 samples and rising to 6 seconds with 3,000 samples. The runtimes of the online versions of the
proposed models were consistently around 0.7 seconds when the number of training samples was
varied from 100 to 3,000.

7 CONCLUSIONS

The occurrence of significant societal events are influenced and determined by various aspects of
society, e.g., economics, politics, and culture. To accommodate all the intricacies involved in the
underlying domain, event forecasting should be based on multiple data sources but existing models
still suffer from several challenges. This article has proposed novel hierarchical and incremental
multi-source feature learning models that characterize the feature dependence, feature sparsity,
and interactions among missing values. Efficient batch- and incremental-based algorithm for pa-
rameter optimization are proposed. Extensive experiments on 10 real-world datasets with multiple
data sources demonstrated that the proposed model outperforms other comparison methods in dif-
ferent ratios of missing values.
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