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Abstract—Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the
dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different
populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection)

address some, but not all, of these challenges. Here we propose a novel multi-task learning framework that aims to concurrently
address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the
locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each
location, thus improving the forecasting performance. The new model combines both static features derived from a predefined
vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning
framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And
efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and
prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the

effectiveness and efficiency of our proposed approach.

Index Terms—Event forecasting; Multi-task learning; LASSO; Dynamic query expansion; Hard thresholding

1 INTRODUCTION

Microblogs such as Twitter and Weibo are experiencing
an explosive level of growth. Millions of microblog users
across the world broadcast their daily observations on an
enormous variety of topics, such as crime, sports, and
politics. This paper focuses on the problem of spatial event
forecasting from microblogs, for events such as civil unrest,
disease outbreaks, and crime hotspots. Our new approach
searches for subtle patterns in specific cities that serve as
indicators of ongoing or future events, where each pattern
is defined as a burst of context features (keywords) relevant
to a specific event. For instance, expressions of discontent
about gas price increases could be a potential precursor to a
protest about government policies.

Three technical challenges must be overcome when ad-
dressing this problem: 1) Dynamic features. The language
used in microblogs is highly informal, ungrammatical, and
dynamic. Most existing methods treat fixed keywords as fea-
tures [23], [24], but expressions in tweets may dynamically
evolve, rendering the use of fixed features and historical
training data insufficient. For example, the most significant
Twitter keyword for the Mexican protests in Aug 2012 was
“#YoSoy132” (i.e., the hashtag of an organization protesting
against electoral fraud), alluding to the protests against the
Mexican presidential election, but “#CNTE” (i.e., a hashtag
denoting the national teacher’s association of Mexico) had
become the most popular term by the beginning of 2013
due to the growing resistance to Mexican education refor-
m. Ideally, an event forecasting system must combine the
judicious use of static (fixed) features with an awareness of
subtle changes involving dynamic features. 2) Geograph-
ic heterogeneity. Existing models usually build a single
predictive model for all the different locations [24], [28].

However, different cities have different characteristics, such
as population, weather (e.g., humidity, temperature), and
administrative structures (e.g., capital cities versus non-
capital cities). As a result, it is difficult to impute basal
levels of occurrence uniformly. Considering civil unrest as
an example, finding 1000 tweets mentioning the keyword
“protest” is not likely to be a strong indicator of an up-
coming civil unrest event in a city with a population of a
few million users but could be a strong signal in a much
smaller city with a population of only 10,000. To consider
the geographical heterogeneity, some works propose to es-
tablish the corresponding model for each different location
separately [21]. But because each model only utilizes the
data of its corresponding location, the data scarcity problem
(especially for non-large locations) is a serious challenge that
degrades the model performance and generalization. 3) S-
calability. Spatiotemporal event forecasting in social media
streams prefers real-time (or near real-time) framework and
hence has emphasis on computation efficiency. However,
the efficiency is challenged by the huge scale of the data,
including (1) High-dimension features (e.g., keywords) to
characterize the rich text and network information; (2) large
number of time points; and (3) heterogeneity in enormous
geo-locations (e.g., counties and cities). This means that even
a medium-scale problem that contains 1000 keywords, 1000
dates and 1000 locations will involve at least 1 billion data
points in the optimization computation. Therefore, some
scalable forecasting methods are desired for this problem.
In order to concurrently address all these technical chal-
lenges, this work presents a novel computational approach
in the form of a framework of multi-task learning (MTL) that
combines the strengths of methods that use static features
(e.g., LASSO regression [21]) and those that use dynamic
features (e.g., dynamic query expansion (DQE) [32]). In
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our previous work we have utilized these methods, indi-
vidually, for event forecasting, but this paper tackles the
challenges involved in unifying these contrasting approach-
es in a single framework. Learning multiple related tasks
simultaneously effectively increases the sample size for each
location (e.g., city, state), thus potentially also improving
the forecasting performance, especially when the sample
size for each task (i.e., location) is small. One critical issue
in multi-task learning is how to define and exploit the
commonality among different tasks. Intuitively, events that
occur around the same time may involve similar topics, and
therefore tweets from different cities may share many com-
mon keywords that are related to the event(s). We address
this issue by presenting four multi-task feature learning
(MTFL) formulations for event forecasting that differ in the
specifics of how common features are extracted.

The main contributions of our study can be summarized
as follows:

1) Formulation of a multi-task learning framework for
event forecasting. Here, event forecasting for multiple
cities/states in the same country are treated as a multi-
task learning problem. In the proposed model, we build
event forecasting models for different cities/states si-
multaneously by restricting all cities/states to select a
common set of features with different weights exclusive
to corresponding tasks. We explore both penalized and
constrained MTL formulations, applying 4 different s-
trategies to control the common set of features selected.

2) Concurrent modeling of static and dynamic terms. The
existing models (LASSO and DQE) use different but
complementary information: LASSO uses static terms,
while DQE identifies dynamic terms. Our proposed MTL
formulations make use of both types of information by
integrating the strengths of LASSO (a supervised ap-
proach) into DQE (an unsupervised approach). To the
best of our knowledge, there is little if any prior work
that combines supervised and unsupervised approaches
for event forecasting.

3) Development of efficient algorithms. In this paper we
explore both convex and non-convex optimization for-
mulations. For convex problems, we employ proximal
methods, such as FISTA [6] that have been shown to be
efficient for solving sparse and multi-task learning prob-
lems. For non-convex problems, we apply the iterative
Group Hard Thresholding (IGHT) [8] framework, which
is guaranteed to converge to a local solution.

4) Comprehensive experiments to validate the effective-
ness and efficiency of the proposed techniques. We
evaluated the proposed methods using two different
Twitter datasets: the Latin America civil unrest dataset
and the United States influenza outbreaks dataset. For
comparison, we implemented a broad range of other
algorithms. The results demonstrated that the proposed
methods consistently outperformed the competing meth-
ods, namely LASSO, DQE, traditional multitask learning
models, and their variants. We also performed sensitivity
analyses to reveal the impact of the parameters on the
performance of the proposed methods. Multiple case
studies are provided to demonstrate the utility of the
proposed method in practical applications.

2

The rest of this paper is organized as follows. Section 2
reviews the background to this research and related work,
and Section 3 introduces the problem. Section 4 presents our
proposed multi-task feature learning models, and Section
5 presents two efficient algorithms based on IGHT. The
experiments on real Twitter datasets are presented in Section
6, and the paper concludes with a summary of the research
in Section 7.

2 RELATED WORK

This sections introduces the related work in the areas of
1) temporal mining of social media; 2) event detection and
forecasting; 3) supervised and unsupervised learning; and
4) multitask learning.

Temporal mining of social media: In recent years, much
attention has been paid to this area, which focuses on
modeling the temporal pattern such as evolutional pub-
lich sentiment [25], dynamic topic [33], online collabrative
environments [16], and information diffusion [31]. Tan et
al. [25] proposed two topic models that leverage lexicon-
based knowledge to characterize the variations of the public
sentiment. Zhao et al. [33] developed a framework that can
track themes of targeted domain dynamically utilizing the
heterogeneous links such as co-occurrence, friendship, au-
thorship, and replying. Guan et al. [16] proposed a method
for locating appropriate expert on relevant knowledge by
modeling and identifying people’s knowledge based on
their web activities. Zhang et al. [31] leverage triadic struc-
tures to investigate the formation of other neighboring links
triggered by “following” links.

Event detection: A large body of work focuses on the
identification of ongoing events, including earthquakes [23],
disease outbreaks [24], and other types of events [3], [18],
[29]. In general, these researchers use either classification
or clustering to extract tweets of interest and then examine
the spatial [23], temporal [29], or spatiotemporal burstiness
[18] of the extracted tweets. However, instead of forecasting
events in the future, these approaches typically uncover
them only after their occurrence.

Event forecasting: Most research in this area focuses on
temporal events and ignores the underlying geographical
information. This approach is generally used for events such
as the forecasting of elections [20], stock market movements
[9], disease outbreaks [22], and crimes [28]. These studies
can be grouped into three categorizes: 1) Linear regression
model, where simple features, such as tweet volumes, are
utilized to predict the occurrence time of future events
[9], [20]; 2) Nonlinear models, where more sophisticated
features such as topic-related keywords are used as the
input to build forecasting models using existing methods
such as support vector machines or LASSO [28]; and 3) Time
series-based methods, where methods such as autoregres-
sive models are used to model the temporal evolution of
event-related indicators (e.g., tweet volume) [2]. However,
few existing approaches can provide true spatiotemporal
resolution for predicted events. Wang et al. [28] developed a
spatiotemporal generalized additive model to characterize
and predict spatio-temporal criminal incidents, but their
model requires demographic data. Ramakrishnan et al. [21]
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built separate LASSO models for different locations to pre-
dict the occurrence of civil unrest events. Zhao et al. [34] also
designed a new predictive model based on topic models
that jointly characterize the temporal evolution for both
the semantics and geographical burstiness of social media
content.

Supervised approaches: They involve considering a set of
stationary terms whose distribution can be learned from
historical data. For example, LASSO regression methods
estimate a sparse predictive model based on a predefined
set of keyword terms (vocabulary) for each location that
predicts the probability of an ongoing event in this location
in each predefined time interval (e.g., hourly or daily) [21].
Similarly, burst detection methods search for geographic re-
gions (cities) where the aggregated counts of certain prede-
fined terms are abnormally high compared with the counts
for the same terms outside those cities. For example, Sakaki
et al. utilize spatiotemporal Kalman filtering, which is sim-
ilar to space-time burst detection, to track the geographical
trajectory of hot spots of tweets related to earthquakes [23].
Unsupervised approaches: They utilize a set of dynamic
terms that could be different in different time intervals, and
apply unsupervised learning techniques for event detection.
Here, the dynamic query expansion method (DQE) itera-
tively expands a predefined set of seed terms (e.g., protest,
strike, march) by using current tweets to identify and rank
new terms that are relevant to ongoing events, then retain
the top terms and tweets containing these terms for further
modeling [32]. Clustering-based methods search for novel
spatial clusters of documents or terms using predefined
similarity metrics, such as cosine similarity and social sim-
ilarity for documents [3], or auto-correlations [2] and co-
occurrences [29] for terms.

Multi-task learning: Multi-task learning (MTL) models
multiple related tasks simultaneously to improve general-
ization performance [10], [26]. Many MTL approaches have
been proposed in the past [36]. In [14], Evgeniou et al.
proposed a regularized MTL that constrained the models
of all tasks to be close to each other. The task relatedness
can also be modeled by constraining multiple tasks to share
a common underlying structure, e.g., a common set of fea-
tures [5], or a common subspace [4]. MTL approaches have
been applied in many domains, including computer vision
and biomedical informatics. To the best of our knowledge,
however, ours is the first work that applies MTL for civil
unrest forecasting.

3 PROBLEM SETUP

Suppose there are m locations (e.g., cities, states) in the
country of interest, and each location [ has n;; € Z tweets
in each time interval t (e.g., hour, day). Define a matrix
Cy, € ZP*™-, whose (i, j)-th entry, denoted as Cj (3, j),
refers to the frequency of the i-th term in the j-th tweet.
Here p refers to the size of the vocabulary V. We are also
given a binary variable Y; . € {0,1} for each location I at
time 7, which indicates the occurrence (‘yes” or ‘no’) of a
future event. Therefore, given the input data Cj;, the goal
is to predict the future event occurrence Y; . for a specific
location [ at a future time interval 7 = t + J based on

3

the tweets data collected, where § is called the lead time
of forecasting.

This work is built upon two of our previous predictive
models, namely LASSO [21] and dynamic query expansion
(DQE) [32]. Suppose we have a subset of keywords of size
d in V that are relevant to the domain of interest and
predefined by the domain experts, and denote A as the
corresponding incidence matrix, A € [0,1]?*P. Define a
matrix K, as follows: K; = A - Cj; - 1, where 1 refers to
a vector of all ones. It is clear that K;; € Z4%1 is the vector
of keywords frequencies in location / at time ¢. The LASSO
model learns a separate sparse linear regression model for
each location I:

2
ol

arg min leTKl,t -Y -
wy

where the regularization parameter p; controls the sparsity,
and w; € R?¥! is the vector of regression coefficients that
need to be estimated. We need to estimate m - d parameters
in total for the m separate LASSO regression models.

DQE is based on the idea that the specific topics of
events under targeted domain could be quite varied and
hence we must seek to grow our vocabularies of interest
on the fly. Term co-occurrence is generally deemed to be
an indicator of semantic proximity. A tweet and its re-
plying tweets are causal in context, similar in semantics,
and consistent in theme. Given a short seed query (e.g.,
“protest” and “march” for civil unrest domain), DQE adopts
a query expansion strategy to expand the new keywords
(e.g., “#OccupyWallSt” and “corruption”) that appear with
seed query in the same tweets or replying tweets. The
volume and pattern of tweets containing these keywords are
then utilized for event detection or forecasting. Denote I(-)
as the indicator function. For each location [ and time ¢, de-
fine the number of tweets containing any of the k£ dynamic
keywords St(k) as D¢ . Then, the DQE-based event fore-
casting can be formulated as a function Y; ; = I(Dy 1 > ),
that is, ¥;; = 1 if D; . is larger than the threshold ~;
Y, - = 0, otherwise. The dynamic keywords are expanded
and ranked from the seed query based on the tweets data
C.+ = {Ci+}1, where the seed query Sj is an initial set of
few semantically coherent keywords that characterize the
concept of the targeted domain. Specifically, the keyword
expansion process is formulated as follows:

P, = F,(B!I -B; + B'R,B,) - P,

where Py € RIVIX! is the initial weight vector of all the
words in V, [Py];1 = I(V; € Sp), and V; is the ith word.
B; is the adjacency matrix between tweets and words.
R € RICIXIC is the tweet-replying matrix, and [R:];; = 1
means there is replying relationship between tweet ¢ and
tweet j; [R:];; = 0, otherwise. F € RIVIXIVI is the inverse
document frequency (IDF) matrix of F', which is a diagonal
matrix such that [F];; refers to the IDF of the word V;.
P, € RIVIX! is the updated weight vector. Finally, the
dynamic keyword set St(k) is defined as the top k& words
with the largest weights according to P;.

There are three main challenges when using either LAS-
SO or DQE individually: (1) The LASSO model only uses
a set of predefined fixed keywords, called “static features,”
which may not capture fast-evolving expressions in Twitter,
thus making it difficult to predict future events that are
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related to a small set of new keywords that are not included
in the fixed keyword set. (2) The LASSO model trains an
individual model for each location, but many small cities
may have insufficient information in the training set to
build an accurate forecasting model. (3) DQE requires two
types of thresholds, namely 1) k, the number of dynamic
keywords expanded from the seed query, and 2) v, the least
number of tweets, each of which can contain any of the
dynamic keywords, to indicate the occurrence of an event.
However, it is difficult to set these two thresholds based on
domain experience. In the next section, we present a novel
computational approach based on multi-task learning that
addresses all three of these challenges.

4 MODELS

As defined above, LASSO uses the “static feature” set K ,,
which is the count of predefined keywords in location [ at
time t. DQE uses the “dynamic feature” set D j, which
is the number of tweets containing the top k£ dynamic
keywords at location ! at time ¢. Because it is difficult to
predefine an optimal k, we propose to make use of multiple
k values in the range of [1,s] (here s is a user-specified
parameter; our experiments show that using a set of s = 20
values is sufficient), and then learn the optimal k automat-
ically within the proposed multi-task learning framework.
This results in Dy = {Dy 4 };_1, D1t € R**!, which corre-
sponds to the “dynamic feature” set for location [ and time
t. We combine the information used in LASSO and DQE by
forming a new data matrix X;, = [K;+; Dy 4] € R(d+s) X0
For notational simplicity, we will remove the subscript ¢
throughout the rest of this paper.

We aim to build m models {w;|i = 1,...,m} to predict
the occurrence of events for the m locations. A simple
approach is to learn these m models (tasks) independently,
ignoring the task relatedness. However, such an approach
does not consider the intrinsic relationships among different
locations (e.g., cities, states), and the resulting models may
not be accurate as some locations may not have sufficient
information in the training set. To address this issue, we
propose to build the forecasting models for all m loca-
tions simultaneously by extracting and utilizing appropri-
ate shared information across tasks while retaining their
heterogeneity [36]. Figure 1 illustrates the proposed multi-
task learning framework. Learning multiple related tasks
simultaneously effectively increases the sample size for each
location, since when we learn a model for a specific location,
we also use information from all other locations.

Intuitively, the events that occur at different locations
around the same time could well involve similar topics,
thus the tweets from different locations may share many
common keywords that are related to the events. This led
us to explore multi-task feature learning (MTFL) models
that constrain multiple related models to select a common
set of features. Note that the heterogeneity among tasks is
characterized as the difference in the weights of features for
different tasks. For example, for two locations: a metropolis
and a village, the importance of 1000 protest tweets to them
differs, which can be characterized by the difference in the
value scales of their models’ feature weights. Specifically, we
chose to explore four multi-task feature learning models:

o Regularized multi-task feature learning model,

o Constrained multi-task feature learning model I,
o Constrained multi-task feature learning model II,
o Constrained multi-task feature learning model IIL

Each of these four models formulates the multi-task learning
problem by following a general paradigm, i.e., to minimize
a penalized empirical loss:

mmi/nﬁ(W) + Ag(W) 1)
or by implementing a constrained version:

mV[i/nE(W) st. g(W) <lI. )

where £L(W) is the empirical loss on the training set. Here
we use a smooth and convex loss function, e.g., the least
squares and logistics loss. g(W) is the regularization term
that encodes task relatedness, which is typically non-smooth
or even non-convex. Therefore, L(W) tries to tailor each
model to its specific task while g(W) tends to find shared
patterns across different tasks. A (or /) is a tuning parameter
to balance the tradeoff between them.

Different regularization/constraint terms capture differ-
ent types of task relatedness [1], [12], [14], [17]. In this
paper, we adopt the logistic loss, and characterize the model
relatedness by restricting all models to select a common
set of features. We discuss each of the four models in turn
below.

4.1 Regularized MTFL model

The j-th element in model w; indicates the importance of the
j-th feature for the i-th task. In the regularized MTFL model,
we restrict all tasks to share a common set of top features,
so the forecasting models for all cities are based on the same
subset of features. This can be achieved by grouping the j-th
elements of all tasks together and selecting the top groups.
Specifically, we consider the m entries of the j-th row of the
matrix W as a group and use the /5 ;-norm regularization
to identify the top groups [5]. Thus, the j-th feature, which
corresponds to the j-th element in the models, is likely to be
selected or not by all the models simultaneously, achieving
our desired goal. Mathematically, we employ the following
multi-task feature learning model:

mmi/n LW) + pol| W21 + p1|W]%, 3)

where the first term is the data fitting term under logistic
loss for all tasks such that L(W) = >, >, log(l +
exp(=Y; - (w; - X;)) and ||[W||2,1 denotes the I3 1 norm of
matrix W which encourages all tasks to select a common
set of features, and it can be computed as the summation
of lo-norm of each row in W. The regularization parameter
po controls the sparsity. We include a small multiple of the
Frobenius-norm regularization, i.e., ||W||%, to enhance the
robustness of the model. Problem (3) is a convex problem
and can be solved by the FISTA algorithm [6].

4.2 Constrained MTFL model |

In the regularized MTFL model above, the model sparsity is
controlled by the parameter p;, which is less interpretable
than the number of features selected. It is thus preferable
to develop a model that directly controls the number of
features to be selected. To this end, we introduce a constraint
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Fig. 1: The flowchart of the proposed multi-task learning model

in the model that ensures that a specific number of rows of
W will be non-zero, so we control the number of features
included in the model. In particular, consider the following
constrained multi-task feature learning model:

minl (W) + pu W[
st. S I([w!| > 0) < )

J
Here w’ is the j-th row of W and I(-) is the indicator
function. The constraint in (4) ensures that the number of
nonzero rows of W is no larger than 7, so no more than r
features will be selected. Note that the convexity property
no longer holds for Model (4). We will use the iterative
Group Hard Thresholding framework to solve (4). More
details are provided in the next section.
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Fig. 2: Illustration of constrained MTFL model II. Each
column represents the model for a specific location. The ¢-th
row in Wg indicates the feature values for the i-th static
feature (i.e., keyword), and the j-th row in Wp corresponds
to the j-th dynamic feature (i.e., threshold value). Colored
entries represent non-zero values in the model matrix, while
white entries represent zeros.

4.3 Constrained MTFL model Il

The constrained model above does not distinguish between
the static and dynamic features. Recall that the first d fea-
tures correspond to the d static features, while the last s
features correspond to the use of s dynamic features. The
feature values thus have very different meanings and in

general, d is much larger than s. In our experiments, d is
around 2000, while s is around 10 to 20. Thus, it is best
to restrict the number of features selected from these two
groups separately. In addition, in the current DQE model,
only one dynamic feature is used and a common threshold
value is applied for all cities in the same country. It is thus
natural to restrict the number of dynamic features selected
(out of the total s candidates) to be one. To achieve these
goals, we propose the following model, which selects u
features from the d static features, and selects v features
from the s dynamic features:

minL(W) + i [ W%,

s.t. ZI(Hw%(H >0) <u, )

J
> L(lwpl > 0) <,
i

where Wi is the model matrix corresponding to the set of
static features, and Wp is the model matrix corresponding
to the set of dynamic features. The structure of the model is
depicted in Figure 2. As for Problem (4), v and v are user-
specified parameters that control the number of features
selected for the static feature set and dynamic feature set,
respectively. We set v = 1 in our experiments, although our
model is actually more general in that the user can select an
arbitrary number of dynamic features.

Problem (5) is non-convex due to the use of nonconvex
constraints. Similar to Problem (4), we can apply the Iter-
ative Group Hard Thresholding algorithm to solve Prob-
lem (5). We show the details of our proposed algorithm for
Problem (5) in Section 5.

4.4 Constrained MTFL model lll

In the model CMTFL-II, the selection of static features in E-
quation (5) is known to be NP-hard and the existing efficient
methods such as Iterative Hard Thresholding cannot guar-
antee a global optimization [7]. Additionally, the CMTFL-
I model requires users to specify an appropriate number
of static features. This target is difficult to accomplish by
human labor and time consuming to achieve by cross-
validation when the number of features is large and sen-
sitive to the performance. To address these challenges, we
propose Constrained MTFL model III (CMTFL-III), which
automatically and globally optimizes the number of selected
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static features while still retaining the advantage of CMTFL-
II, i.e., ensuring the selection of v dynamic features. CMTFL-
III is formulated as below:

mv(i/nﬁ(W) + pol[Wil2.1 + p1|W]%,
5.3 I(lwh > 0) < v, ©)

J

where W = {Wy; Wp} is the model matrix consisting of
the set of static features Wi and dynamic features Wp. As
for Problem (5), v is a user-specified parameter that controls
the number of features selected for the set of dynamic fea-
tures. We again set v = 1 in our experiments, although our
model is more general in that the user can select an arbitrary
number of dynamic features. As in Problem (5), Problem
(6) is non-convex due to the use of nonconvex constraints.
Problem (6) is solved by another proposed algorithm, which
applies the Iterative Group Hard Thresholding algorith-
m and FISTA algorithm alternately until convergence is
achieved. We show the details of our proposed algorithm
for Problem (6) in Section 5.2.

4.4.1 Discussions

Based on multi-task learning framework, all of the proposed
models rMTFL, CMTFL-I, CMTFL-II, and CMTFL-III can
utilize the shared information among the event forecasting
tasks of different spatial locations. The model rMTFL is the
most basic one, which merely enforces the similar set of
features to be selected across different tasks. However, in
some situations that the user need to specify how many fea-
tures to be selected, more sophisticated models are required
that can constrain the number of selected features. This
problem can be handled by the models CMTFL-I, CMTFL-
II, and CMTFL-III. Among them, CMTFL-I can constrain
the total number of selected features according to the us-
er’s need. rMTFL and CMTFL-I are unable to distinguish
among different types of features. But in event forecasting
in social media, in addition to traditional static features,
the dynamic features are crucial and need to be ensured
to be selected. Both CMTFL-II and CMTFL-III can address
this problem by a constraint on the number of dynamic
features to be selected. The difference between them lies in
the strategy of static features selection. CMTFL-II utilizes a
non-convex formulation for the static feature selection that
cannot guarantee global optima, while CMTFL-III adopts
a convex formulation which can be optimized exactly and
efficiently.

5 ALGORITHM

The FISTA algorithm performs well for convex problems [6],
[12], [36]. However, Problem (4), Problem (5), and Prob-
lem (6) are all non-convex. Even worse, they also involve
discrete constraints, which make the problems particularly
challenging to solve. Motivated by the success of the itera-
tive hard thresholding algorithm for solving ly-regularized
problems [7] and recent advances in nonconvex iterative
shrinkage algorithms [15], [30], we propose to employ the
Iterative Group Hard Thresholding framework to solve both
problems.

5.1 Algorithm for Models CMTFL-I and CMTFL-II

Note that Problem (4) is a special case of Problem (5) with
v = 0. We thus focus on Problem (5) in the following
discussion. The details are summarized in Algorithm 1.
Here, data parallelism strategy is utilized to achieve the
calculation of the gradient V f (w}fl) in parallel for m
different tasks. First, the variable H to store the array
of gradients is defined. Then all of the tasks are evenly
assigned onto multiple processors to calculate V f ’(w;_l).
After the calculation, the results from each processor are sent
back to each H; € H. The detailed settings are specified in

experiment section.

Algorithm 1 Algorithm for CMTFL-I and CMTFL-II
Require: X,Y,p,n>1
Ensure: solution W

1: Initialize W0, n < 1.

2: fori <+ 1,2,... do

3: Initialize L

St Wi-1VH

W' <+ proj (S?) (defined in Lemma 1)
10: L+ nL

11:  until line search criterion is satisfied

12:  if the objective stop criterion satisfied then
13: return W*

14:  end if

15: end for

4 forj < 1...m do in parallel
5: Hj « Vf'(w;™)

6: end for

7. repeat

8:

9:

Recall Problem (4), and denote f(W) = L(W) +
p1||W||%. The key idea of IGHT is to first use the gradient
information in the current iteration to provide the first-order
approximation of the objective function, then apply the
projection operators to ensure the next iteration satisfies the
given constraints. Specifically, we use the combination of the
linear approximation of the function f(W) at a given point
W and a quadratic penalty term, and solve the following
problem:

min (W) + (VF(WO), W = W) + Z|w — w3,

st Y I(JJw)l > 0) < u,

J
> (llwpll > 0) <o,
i

where p is a positive constant that can be estimated by
a line search scheme. By ignoring the constants and re-
arranging the terms in Problem (7), we obtain the following
sub-problem:

@)

1 2
ming [W - 5|2
sty I(|wk] >0)<u ®)
J
Y I(Jwp| > 0) <.
J

where S = W0 — %V f(W?9). Problem (8) aims to find the
optimal point satisfying the constraint set that is closest to a
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fixed point S. This can be treated as a Euclidean projection
problem, denoted as proj(-), even though the constraint set
is not convex. The key step in the IGHT framework solves
the projection problem in (8). It is not hard to show that
Problem (8) admits a closed-form solution as it can be
decomposed into two independent problems, one for each
block of features, as summarized in the following lemma.

Lemma 1. The projection Problem (8) admits a closed-form
solution, given below:

: S if e Qg
wl =< K 9
K { 0, otherwise ©)
and
: 7,ifjeQ
wh = 1T (10)
0, otherwise

where Si consists of the first d rows of S, S% is the j-th
row of Sk, Sp consists of the last s rows of S, SfD is the
j-th row of Sp, Qf is the index subset of {1,2,---,d}
of size u, including all rows of Sk that are among the
top u rows of Sk in term of the length of the row vector,
and Qp is the index subset of {1,2,---,s} of size v,
including all rows of Sp that are among the top v rows
of Sp in term of the length of the row vector.

One remaining issue is how to estimate the step size,
which determines the amount of movement made along
a given search direction. In this paper, we apply the well-
known Lipschitz criterion to select the step size. Final-
ly, the time complexity of the proposed Algorithm 1 is
O(g-r-(s+d)-m-T), where ¢ and r are the numbers
of iterations for the outer and inner loops, respectively, T' is
the total number of the time intervals.

5.2 Algorithm for Model CMTFL-III

Note that Problem (6) encompasses an [y ;-norm in the
objective function similar to that in Problem (3) and uti-
lizes a lp-norm constraint similar to that in Problem (4).
Accordingly, the solution to Problem (6) combines these
notions from IGHT and FISTA. The details are summarized
in Algorithm 2. Similar to Algorithm 1, data parallelism has
been applied to different tasks in the loop in Line 4 and the
loop in Line 10.

The key idea of the algorithm for CMTFL-III is as fol-
lows. First, we denote f (W) = >°7" f'(w;), where f'(w;) =
>, log(1 + exp(=Yj - (w; - X)) + p1 w3 Applying a
linear approximation, we get the first-order approximation
to the original objective function in Problem 6, as shown in
the following equation:

min f (WO +(Vf (W), W —W°)
+ g W — WOH? + pol[Wklly 4 a1

s.t. Z waDHO <w,
J

where p is a positive constant that can be estimated using
a line search scheme. By ignoring the constants and re-

Algorithm 2 Algorithm for CMTFL-III

Require: X,Y, po, p1,n>1
Ensure: solution W

1: Initialize W0, n « 1.

2: fori <+ 1,2,... do

3: Initialize L, H

4 forj < 1...mdo in parallel
5: H; Vf’(w;il)

6: end for

7:  repeat

8: S Wit — %VH

9: Wi « proj (Sp)

10: for j < 1...d do in parallel
11: Wikl < proxezal([SK]j)
12: end for

13: L+ nL

14:  until line search criterion is satisfied

15 Wi (Wi Wh]

16:  if the objective stop criterion satisfied then
17: return W*

18: end if

19: end for

arranging the terms in Problem 11, we obtain the following
equivalent problem:

. 2
mwl/n%HW—S”F"'POHWK”zl
st Slfwh| <.

7 0

where § = W° — 1V f (W?). Note that Problem (12) can be
decomposed into the following two subproblems:

12)

1 2
min ; IWp — Spll%

; 13
st > ijDHo <w, (13)
J

and 1
min o [ Wi = Sicli + poll Wl (14)
K
where Problem (13) can be solved by applying the hard
thresholding algorithm and Problem (14) can be solved
using the FISTA algorithm.

The time complexity of the proposed Algorithm 2 is O(q-
r-(s+~d)-m-T), which is composed of the computation
of the dynamic features O(q -7 -s-m-T) and static features
O(q-r-v-d-m-T)where v -d = O(d) is the computation
time for a block soft thresholding on the weights of static
features and 7 is a constant.

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed
multi-task learning formulations. First, we evaluate the ef-
fectiveness and efficiency of the methods using multiple real
datasets and compare the results with those obtained using
existing baseline methods on multiple event forecasting
tasks. We then move on to study the parameter sensitivity
of the methods. Finally, we provide several empirical case
studies of event forecasting for civil unrest and influenza
outbreaks to demonstrate the utility and practicality of these
forecasting models.
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TABLE 1: Twitter datasets and gold standards (GSR)

Country Domain Time Period #Tweets Gold Standard’ #Events
(million)
. .. O Globo; O Estado de Sao

Brazil civil unrest 07/01/2012-05/31/2013 57 Paulo; Jornal do Brasil 451
Paraguay civil unrest 07/01/2012-05/31/2013 8 ABC C"k’rl"\gggr‘\‘a Hora; La 563

Mexico civil unrest 07/01/2012-05/31/2013 51 La Jornada; Reforma; Milenio 1217

.. El Universal; El Nacional;

Venezuela civil unrest 07/01/2012-05/31/2013 45 Ultimas Noticias 678
the United . Centers for Disease Control

States influenza 01/01/2011-04/30/2014 9,586 and Prevention 127

6.1 Experiment Setup

In the experimental evaluation, two datasets for different
regions, Latin America and the United States, were utilized
for the research on civil unrest and influenza outbreaks,
respectively.

6.1.1 Datasets

For the datasets on Latin America, the raw data was ob-
tained by randomly sampling 10% (by volume) of the Twit-
ter data from July 2012 to May 2013 in 4 countries, namely
Brazil, Paraguay, Mexico, and Venezuela, as shown in Table
1. Twitter data collection is partitioned into a sequence of
date-interval subcollections. The Twitter data for the period
from July 1, 2012 to December 31, 2012 is used for training,
while the data for the second half of the period, from
January 1, 2013 to May 31, 2013, is used for the performance
evaluation. The locations of the tweets are geocoded by the
geocoder in [21]. The event forecasting results are validated
against a labeled events set, known as the gold standard
report (GSR), exclusively provided by MITRE [19]. GSR is a
collection of civil unrest news reports from the most influ-
ential newspaper outlets in Latin America [32], as shown in
Table 1. An example of a labeled GSR event is given by the
tuple: (CITY="Hermosillo”, STATE = “Sonora”, COUNTRY
= “Mexico”, DATE = “2013-01-20").

For the datasets in the United States, the raw data was
crawled from January 2011 to April 2014 in all 50 states,
as shown in Table 1. As in the first dataset, Twitter data
collection is partitioned into a sequence of date-interval
subcollections. The Twitter data for the period from January
1, 2011 to December 31, 2012 is used for training while
the second half of the period, from January 1, 2013 to
April 30, 2014, is used for the performance evaluation.
The locations of the tweets are geocoded by the Carmen
geocoder [13], which resolves the location of each tweet
into a tuple containing information at the country, state,
county, and city level. About 70% of the tweets in our
dataset are assigned a location by Carmen. The forecasting
results for the flu outbreaks are validated against the cor-
responding influenza statistics reported by the Centers for
Disease Control and Prevention (CDC) [11]. CDC publishes
the weekly influenza-like illness (ILI) activity level within
each state in the United States based on the proportion
of outpatient visits to healthcare providers for ILI. There
are 4 ILI activity levels: minimal, low, moderate, and high,
where the level “high” corresponds to a salient flu outbreak
and is considered for forecasting. An example of a CDC
flu outbreak event is: (STATE = “Virginia”, COUNTRY =
“United States”, WEEK = “01-06-2013 to 01-12-2013").

6.1.2 Settings

In this experiment, two types of features are utilized. As
described above, the first type consists of static features,
which examine the relevance of tweets to fixed keywords.
Specifically, these are defined as the daily counts of the
keywords in the tweets. For the civil unrest domain, the
keyword set includes 614 civil unrest related words (such
as “protest” and “riot”), 192 phrases (such as “election
fraud”), and country-specific actors (e.g., political parties
and public figures). For each keyword, its translations in
Spanish, Portuguese, and English are all included. For the
influenza outbreaks, the keyword set includes 545 disease-
related words extracted based on the keywords list used in
[35]. The second type consists of dynamic features, which
examine the volume of tweets containing dynamic key-
words. Specifically, dynamic features are a set of counts,
where each count is the number of daily tweets containing
any of the top k (k € [1, s]) dynamic keywords. The dynamic
keywords are extracted and ranked based on dynamic query
expansion (DQE) [32], which utilizes both semantic and
social relationships to expand real-time keywords from the
original seed query, as described in Section 3. For the civil
unrest domain, the seed query terms include: “protest”,
“march”, “movement”, “patriotic”, “manifest”, and their
translations in Spanish and Portuguese. For the influenza
outbreaks domain, the seed query terms include: “flu”,
“influenza”,”h1n1”,”h5n1”, and “h7n9”. In this experiment,
s was set to 20. Thus we have 20 dynamic features. The
experiments were conducted on a 64-bit machine with 80
processors (Intel Xeon CPU E7-4850@2.00GHz) and 528.0GB
memory. Our parallel algorithm is based on openMP with
the C++ compiler GCC 5.1.0%. 20 threads were used for each
parallel loops in the Algorithms 1 and 2.

In the experiment, given the day-by-day tweet data, the
event forecasting task is to utilize one day tweet data to
predict whether or not there will be an event in the next day
for a specific city (for the civil unrest domain), or a specific
state (for the influenza outbreaks domain). To perform this
task, we create a training set and a test set for each city (or
state), where each data sample is the daily tweet observation
with the above-mentioned features. On the training set, we
set the label for each data sample as “1” if there is an event
on the next day; and “0” otherwise. The predicted events
are structured as tuples of (date, city/state). A predicted
event is matched to a GSR event if both the date and

1. In addition to the top 3 domestic news outlets in each country,
the following news outlets were included: The New York Times; The
Guardian; The Wall Street Journal; The Washington Post; The Interna-
tional Herald Tribune; The Times of London; Infolatam.

2. Downloadable: http://tdm-gcc.tdragon.net/download. Dec 2016.
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TABLE 2: Event forecasting performance in AUC

Dataset DQEF LASSO-K DQEF+LASSO LASSO rMTFL-D rMTFL-K rMTFL CMTFL-I CMTFL-I CMTFL-III
Venezuela 0.5358  0.5586 0.633 0.6073 0.6486 0.6497 0.7889 0.7363 0.758 0.8011
Mexico 0.5397  0.4989 0.5627 0.5749 0.6817 0.6151 0.6831 0.6719 0.6934 0.7019
Brazil 0.4954 0.451 0.5108 0.4774 0.6466 0.4295 0.605 0.6049 0.6518 0.651
Paraguay  0.5592  0.5657 0.7177 0.6237 0.8307 0.6605 0.8013 0.8039 0.8232 0.8151

Flu 0.4706  0.6824 0.4783 0.6497 0.7207 0.74 0.7501 0.7643 0.7687 0.8036
Overall 0.4939  0.6236 0.519 0.6243 0.7114 0.6934 0.7369 0.7406 0.7519 0.7786

city/state attributes are matched; otherwise, it is considered
a false forecast. To validate the prediction performance, the
Area Under the Curve (AUC) of Receiver operating char-
acteristic (ROC) curve were adopted. ROC curve illustrates
the performance of a binary classifier as its discrimination
threshold is varied. The curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. The AUC measures the area
below this curve, which is a well-recognized metric to reflect
the comprehensive performance of a classifier.

6.1.3 Comparison Methods

The following methods are included for the performance
comparison:

1) LASSO [27]. For each location, two LASSO models
are trained utilizing different sets of features: i) both
static and dynamic features, and ii) only static features
(denoted as LASSO-K). The regularization parameters
of these models for different cities are set based on a
10-fold cross validation.

2) DQE-based event forecasting (DQEF). This model only
considers the dynamic features, as explained in Section
3. The number of top dynamic keywords, k, and the
tweet count threshold ~y are set for each country by a
10-fold cross-validation on the training set.

3) DQEF+LASSO. For each location, the DQEF method
is first used to perform the forecasting. If there is no
predicted event, i.e., ¥;; = 0, the LASSO model using
only static features will be employed for forecasting.

4) Regularized Multi-task Feature Learning Model
(rMTFL). For each country, an rMTFL model is built
where each task consists of the event forecasting for a
location. This model utilizes three sets of features: i)
both static and dynamic features, ii) only static features
(denoted as rMTFL-K); and iii) only dynamic features
(denoted as rMTFL-D). The regularization parameters
p1 and pg are set based on a 10-fold cross-validation.

5) Constrained multi-task feature learning model I
(CMTEFL-I). For each country, a model is built where
each task consists of the event forecasting for a location.
All the tasks share the same features, i.e., both static and
dynamic features. The feature number constraint » and
the regularization parameter p; are set based on a 10-
fold cross-validation.

6) Constrained multi-task feature learning model II
(CMTEFL-II). Once again, for each country, a model is
built where each task is the event forecasting for a
location. All the tasks share the same features, i.e., static
and dynamic features. We use a 10-fold cross-validation
to set the regularization parameter p;, the numbers
of static features u, and dynamic features v for each
country. The sensitivities of these three parameters are
discussed in Section 6.3.

7) Constrained multi-task feature learning model III
(CMTEFL-III). For each country, a model is built where
each task consists of the event forecasting for a c-
ity /state. All the tasks utilize both static and dynamic
features and we use the a 10-fold cross-validation to
set the regularization parameters pg, p1 and dynamic
features v for each country.

6.2 Performance

The proposed and comparison methods are evaluated on
both the civil unrest and influenza outbreak datasets. Both
quantitative and qualitative evaluations are conducted, de-
scribed in more detail in the following.

6.2.1

Table 2 summarizes the comparison among the various
methods for event forecasting in five different dataset-
s. Among them, four datasets of four different countries
Venezuela, Mexico, Brazil, and Paraguay are in civil un-
rest domain; the other dataset is for flu outbreaks in the
United States. The results show that the methods that uti-
lize both static and dynamic features perform better than
those utilizing either one alone. For example, the rtMTFL
model outperforms rMTFL-D and rMTFL-K by 3% and
6%, respectively. These results confirm the effectiveness
of combining both types of features for event forecasting.
Among all the methods, the four proposed models rMTFL,
CMTFL-I, CMTFL-II, and CMTFL-III achieve the score over
0.73, outperforming the baselines. The data presented in
Table 2 show that the multi-task models outperformed the
traditional LASSO models by 20% on average. This reveals
the advantage enjoyed by the multi-task models, which can
select features by learning from similar forecasting tasks for
all the cities (or states). The generalization and stability of
the forecasting performance can be improved by learning
models for different cities together, especially for those cities
that lack sufficient training samples. And CMTFL-III obtains
the best overall performance in these five datasets. For the
countries Venezuela, Mexico, and United States, CMTFL-
III achieves the best performance, and for the other two
datasets, Brazil and Paraguay, it still achieves the second
and third best performance among all the 10 methods.
This is likely because: (1) CMTFL-III is able to ensure the
inclusion of dynamic features, which is demonstrably more
effective than only using static features alone in the mod-
eling; and (2) Unlike CMTFL-I and CMTFL-II, CMTFL-III
does not require the determination of the number of selected
static features or the number of selected total features, which
are parameters sensitive to the performance, as shown in
Figure 5. And it is time-consuming to tune them by cross-
validation when the total number of all the features is non-
small.

Quantitative evaluation
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TABLE 3: Top 10 static features (translated into English) and the selection of dynamic features for the civil unrest domain. TRUE
means there is at least one dynamic feature being selected; FALSE means no dynamic feature selected. CMTFL-II and CMTFL-III
can ensure the selection of effective dynamic feature(s). CMTFL-III obtains the features with higher quality.

| | Mexico | Brazil
Methods Features Mexico City Cuernavaca Guadalajara Morelia QOaxaca Brasilia Rio de Janeiro Sao Paulo
block complaint request request help send problem throw
fight guntfire confront meet power ower water bond
work tranquility water water avoid ood official unit
help forward danger danger forward work defeat
Static hearsay power results results money fight send
LASSO president avoid order order street government forward
initiation help help national control
occupy national national employ confront
request initiation expensive
power town finish
Dynamic | TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
fight fight remember employ university | participant expensive prisoners
movement hate street remember allow increased strength expensive
election hungry work unit work expensive gringo increase
president street hate water develop prepare cries cries
Static congress sent president university hatred include progress force
rMTFL initiative calling unit change problem protest participant include
ﬁro ress hunﬁry poor class progress strength protest censorship
ar wor ermit statement released marc student progress
help eliminate Eﬂling force congress gringo censorship prepare
government  forcibly remove problem killing screams include student
Dynamic | TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
rotest police university movement block shooting attack march
ight protest expected occupy money order block resolve
president struggle movement encounter encounter movement occupy attack
government patriot manifest hunger memories throw arrest warrant
Static movement movement occupy national change government control payment
CMTEL-IL death hunger hate change police submit kill poor
poor student change request occupy march followers claim
national block class fear steal national throw block
expected work block money fight block ask hatred
wait memories official country president attack march problem
Dynamic | TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
protest force treaty punishment — burning justice abortion force
crisis protesters matches Rejected revenge atrocity punishment atrocity
rage development killer eviction control protest racism Justice
impose embargo angry fire embargo Racism extreme punishment
Static embargo military assault ban problem solve protest protest
CMTFL-III conflict punishment conflict crisis town community poor attack
call-for effort march force march unity minister torture
angry march unemployment  army militar organized kill censorship
fight violence defeat embargo to brea censorship hate power
hate criminal Workers attorney labor punishment  Burning military
Dynamic | TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

6.2.2 Qualitative evaluation

Table 3 shows the specific features selected by different
models, including LASSO, rMTFL, CMTFL-II, and CMTFL-
III for several cities in two countries, namely Mexico (where
Spanish is spoken) and Brazil (where Portuguese is spoken).
As Table 3 shows, CMTFL-II and CMTFL-III effectively
select static features (i.e., keywords) that are very relevant
to civil unrest, and the selection is stable and consistent
across different cities. The geographical heterogeneity is
reflected in the difference of the top features selected by
the models of different locations. Moreover, the selection of
dynamic feature(s), as shown in the bottom row, enhances
the capacity to consider the burstiness of tweets containing
dynamic keywords. The rMTFL model also performs effec-
tively when selecting civil unrest-related keywords as the
top static features. However, this model cannot guarantee
the selection of dynamic features because it fails to select
dynamic features in any of the listed cities for Brazil. The
static features the LASSO model selects are not consistent
across different cities and, more importantly, are not as
relevant and sufficient as those identified by the above-three
multi-task learning models in several cities, especially in
smaller cities, such as Oaxaca and Cuernavaca. Additionally,
the selection of dynamic features is not guaranteed, as is the
case in Morelia and Brasilia.

Table 4 shows the specific features selected by the
different models, including LASSO, rMTFL, CMTFL-II,
and CMTFL-III for several states of the United States for
outbreaks of influenza. According to Table 4, CMTFL-III

achieves most effective selection of static features (i.e., key-
words) that are relevant to the description of catching flu,
such as “flu”, “sick”, “cold”, and “chills”. CMTFL-II obtains
effective selection of related keywords, but involves relative-
ly more general keywords like “stay” and “around” while
misses some important ones like “flu” and “illness”. Table
4 also shows that performance of CMTFL-II and CMTFL-III
are stable and consistent across different states, regardless of
whether it is a large state such as New York state or one with
a small tweet volume like Alaska. Moreover, the selection
of dynamic feature(s) is ensured, as shown in the bottom
row, thus enhancing the capacity to consider the burstiness
of tweets containing flu-related dynamic keywords. The
rMTFL model also selects some influenza-related keywords
as its top static features. However, the quality of the top
keywords is not as high as that for CMTFL-III. The selected
static features for the LASSO model are not consistent across
different states and, more importantly, not as relevant and
sufficient as the above-two multi-task learning models in
several states, especially those with a small tweet volume,
such as Alaska, where only one static keyword “immune”
is selected. Additionally, the selection of dynamic features
is not ensured, for example in Nebraska, Washington, and
New York.

6.3 Parameter Sensitivity Study

There are totally five tunable parameters in all the four pro-
posed models, rMTFL, CMTFL-I, CMTFL-II, and CMTFL-III
model, namely 1) the regularization parameter pg for rMTFL
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TABLE 4: Top 10 static features and the selection of dynamic features for the influenza outbreaks domain. TRUE means there
is at least one dynamic feature being selected; FALSE means no dynamic feature selected. CMTFL-II can ensure the selection of
effective dynamic feature(s). CMTFL-III obtains the features with higher quality.

| | the United States
Methods Features Wyoming Nebraska Washington  New York California  Alaska Florida New Mexico
four birds jadi drop fast immune kalo officially
excuse drop tired chicken sleep four tea
works thinks 101 vomiting decided past juga
job dealing birds late ill 12s drop
Static diet warm 2nd bottle started pigs strains
LASSO cancelled body cancer quickly quite Eissed die
boss pissed classes miserable normal eard nausea
ankle practice hands ate less tea swear
complicate masks miss brought years infected fight
NIH class recover hrs gak wasn gettin
Dynamic | TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
catching warm ankle drop fast immune 12s comining
jab goin poor chicken appetite fever pigs slime
vaccination  drop pray begginning  tired strep ebola thanks
excuse practice gym hospitalize  quite bug past vomiting
Static daughter thinks disease month lemon bird wasn tea
rMTFL quic%dy class jadi infections energy week helps less
outbreak pissed finally kind vomit flu tea positive
poor excuse uarantine throat sleep virus Eractice catch
died dealing thera bro normal vaccination eard starting
four body severe barely killing tomorrow kalo weak
Dynamic | TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
sucks strep house house house sick year days
week stay away around school cold soon stay
bed around days doctor fever bed tonight coming
home house tonight school days school bug tomorrow
Static work bed bug away sucks around symptoms  away
CMTEL-II days feeling stay sick tonight home coming strep
sick work doctor symptoms bug swine since bug
year days bed bed stay away tomorrow house
doctor week school home bed throat around soon
around tomorrow  week tonight tomorrow  bug work sick
Dynamic | TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
flu stomach cold bed bed chills stomach sick
sick cold sick stomach days illness flu stomach
cold sick bed cold feeling tri soon bed
days feeling week days cold official sick cold
Static bed week days soon week wanted days days
CMTFL-III feeling days flu family sick bring work flu
stomach bed sucks sucks soon decided awful week
week soon stomach week work cancelled body feeling
work work soon feeling sucks avoid least work
soon flu feeling sick family taking pretty soon
Dynamic | TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

and CMTFL-IIL; 2) the Tikhonov regularization parameter
p1 for all the four models; 3) the number of selected static
features u for CMTFL-II; 4) the number of selected dynamic
features v for CMTFL-II and CMTFL-III; and 5) the number
of all the features for CMTFL-I. In this experiment, the AUC
scores for the Venezuela dataset are illustrated; those for the
other datasets exhibit a very similar pattern.

T
08} g
075t g
@]
2 ot g
' |t
065 B oV 1
(|

0.001  0.01 01 1 100 200 300 400 500

Fig. 3: Sensitivity analysis for the regularization parameter po.

Figure 3 illustrates the performance of the proposed
model versus, po, the regularization parameter. By varying
po over a large range from 0.001 to 500, the performance in
terms of AUC remains stable for CMTFL-III. The AUC score
for rMTFL increases by 0.13 when py increases from 0.001 to
0.01 and becomes stable after that.

Figure 4 shows that by varying p; over a large range
from 0.001 to 500, the AUC scores for all the four models
remain stable with the fluctuation ranges less than 0.02.

Figure 5 shows the sensitivity results of varying the
number of selected features for different models. Figure 5(a)
demonstrates that by changing the number of dynamic

features from 1 to 20, the AUC scores change within 0.04 for
both CMTFL-II and CMTFL-IIL. In Figure 5(b), the number
of static features is shown to be sensitive to the performance
of the model CMTFL-II. The dramatic fluctuation of AUC
happens every 10-20 increase of the number of selected
static features. This demonstrates the difficulty in tuning
the parameter in the model CMTFL-II and the advantage
of CMTFL-III because its parameter py is not that sensitive
as shown in Figure 3. Finally, the number of the selected
features for the model CMTFL-I is also sensitive with the
fluctuation as large as 0.2.
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Fig. 4: Sensitivity analysis for the regularization parameter p;.

6.4 Scalability Analysis

To examine the scalability of the proposed methods, we
can measure the training runtimes of all the methods when
varying the number of tasks and features. Here, we present
the results of our experiments for the influenza outbreak
dataset; the performance on the civil unrest dataset exhibits
a similar pattern.
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Figure 6 compares the running times for all the methods
when the number of features they utilize changes from 5
to 100. As can be seen from the graph, the runtimes of all
the methods basically increase linearly with the number of
features. Among them, the methods DQEF+LASSO, LASSO-
K, and LASSO require shorter runtimes compared to other
methods because they are much simpler. The parallel com-
puting strategy for the proposed models effectively reduces
the computation time. CMTFL-III achieves a relatively low
computation time among the proposed models due to the
parallel strategy for computing in both different features
and tasks as shown in Steps 4 and 10 of Algorithm 2.

To examine the scalability for an increasing number
of tasks, Figure 7 illustrates the running times of all the
methods when the number of tasks jumps from 4 to 40.
Similar to the situation shown in Figure 6, the runtimes of
all the methods increase linearly with the number of tasks,
demonstrating good scalability of the proposed methods
with the number of tasks. Note that, the simplest methods,
namely DQEF+LASSO, LASSO-K, and LASSO, achieve little
shorter runtimes on average. The proposed methods such
as CMTFL-III and CMTFL-II are also very efficient (i.e., less
than 10s when considering 40 tasks) for practical applica-
tions such as these thanks to the use of parallel optimization
algorithms.

6.5 Case Studies

We observed numerous interesting events predicted by
three of the proposed approaches, CMTFL-I, CMTFL-II, and
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Fig. 7: Scalability on number of tasks.
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Fig. 8: A map of civil unrest events and forecasting hotspots
on March 17th, 2013 in Brazil.

CMTFL-IIL, in our experiments. For the civil unrest domain,
Figures 8 and 9 depict two waves of civil unrest events
that occurred on March 17th, 2013 in Brazil, and April 17th,
2013 in Paraguay, respectively. For the influenza outbreak
domain, Figure 10 illustrates the influenza outbreaks occur-
ring between Feb 10th, 2013 and Feb 16th, 2013 in the United
States.

6.5.1 Case Studies on civil unrest forecasting

For the case studies in the civil unrest domain, Figure 8
shows three events in Brazil, among which Event 1 and
Event 2 happened in large cities, namely Sao Paulo and
Rio de Janeiro, respectively, while Event 3 was in a smaller
city, Niter6i. Note that the city Niteréi does not have any
training sample. The proposed CMTFL-II and CMTFL-III
models successfully predicts all three of these events, even
the one that occurred in Niter6i. This is because CMTFL-II
and CMTFL-III jointly learn the models for all the tasks (i.e.,
cities), so even where the model of the city has no training
sample, it can still be estimated using data from other cities.
The LASSO model predicts two of the events but fails to
forecast Event 3. This is because the LASSO model is trained
for each city individually, and so events that occur in a city
with no training sample cannot be predicted. The rMTFL
model only predicts one event, that in Rio de Janerio. Its
failure to discover the events in the two other cities might
be due to its exclusion of the dynamic features after training,
as shown in Table 3. This reduces its capacity to uncover the
burstiness of dynamic keywords. This confirms the need for
a separate selection of the static and dynamic features, as in
our proposed CMTFL-II model.

Figure 9 shows four events in Paraguay, among which
Event 2, Event 3, and Event 4 were successfully predicted
by CMTFL-II. And Event 1, Event 3, and Event 4 were suc-
cessfully predicted by CMTFL-IIL. rtMTFL predicted Event
2 and Event 3, while LASSO failed to predict any of the
events. As shown in Table 1, Paraguay is a country where
the number of reported events is large but the volume of
tweets is relatively small, so the ratio of #tweets (or #events)
is less than one third of that seen in other countries. The
sparsity of tweet data makes forecasting more difficult for
Paraguay for methods that do not incorporate using multi-
task learning, as shown in Table 2.
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6.5.2 Case Study on forecasting influenza outbreaks

For the case study on the influenza outbreak domain, Fig-
ure 10 shows that there were basically four states with high
influenza activity in the United States that week, among
which Nevada and Kansas are two states with relatively
small average volume of tweet postings. The proposed
rMTFL , CMTFL-II, and CMTFL-III models successfully
predicted all of the events for both the smaller and larger
states. This is because they jointly learned the models for
all the tasks (i.e., cities). Even the model of the state (in
this case, Alaska) with the fewest training samples can
still be estimated by using data from other states. Among
them the CMTFL-III performed the best because it did not
generate any false positives while rtMTFL and CMTFL-III
have one false alarm in a state. This again demonstrated the
effectiveness of CMTFL-III in optimizing the static feature s-
election and ensuring the inclusion of dynamic features. The
LASSO model successfully predicted two of the influenza
outbreak events but failed to forecast the events in Nevada
and Kansas. This is because the LASSO model is trained for
each state individually, and thus the performance for events
in states with small training sets cannot be guaranteed.
However, although both the rMTFL and CMTFL-II models
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successfully identified all the events, they also generated
several false alarms. For example, the rMTFL model gener-
ated 3 false alarms in the states of Mississippi, Oklahoma,
and Florida. CMTFL-II generated only one false alarm, for
the state of Colorado, which does actually coincide with
nontrivial flu activity. The better performance of CMTFL-
IT compared to rMTFL might be due to the consideration of
dynamic features. Overall, this case study confirms the need
for a separate selection of the static and dynamic features,
as in our CMTFL-II model.

7 CONCLUSION

This paper presents a novel multi-task learning framework
to address the problem of spatial event forecasting in So-
cial Media. Existing methods are not able to concurrently
address critical challenges, such as the dynamic patterns of
features, and geographic heterogeneity. Our work considers
the estimation of predictive models in different locations as
a multi-task learning problem, thus making it possible to
use shared information between locations and effectively in-
creasing the sample size for each location. We further model
the static and dynamic features using different constraints
to balance both the homogeneity and diversity between
these two types of features. We propose a set of efficient
algorithms based on the IGHT that are able to predict spatial
events in real time. Our empirical results demonstrate that
we can effectively detect civil unrest and influenza outbreak
events, outperforming existing methods by a substantial
margin on both precision and recall. Multiple case studies
are provided to demonstrate the usefulness of the proposed
method in practical applications. In future work, we plan
to extend our multi-task learning framework by exploring
more complex relationships between locations and integrat-
ing human domain knowledge as priors.
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