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Abstract—In this paper, we propose two new neuro-fuzzy decade, there has been a phenomenal growth in the published
schemes, one for classification and one for clustering problems. |iterature in this field, and a large number of conferences are
The classification scheme is based on Simpson’s fuzzy min-maX,ow held in the area [36]

method and relaxes some assumptions he makes. This enables our S h . NN’ hani to studv i
scheme to handle mutually nonexclusive classes. The neuro-fuzzy >OM€ researchers view NiN's as mechanisms to study in-

clustering scheme is a multiresolution algorithm that is modeled telligence (e.g., the famous text by McClelland and Rumel-
after the mechanics of human pattern recognition. We also hart [53]), but most literature in the area sees NN’s as a
present data from an exhaustive comparison of these techniquestool to solve problems in science and engineering. Most of
with neural, statistical, machine learning, and other traditional a5e problems involve pattern recognition (PR) in one form
approaches to pattern recognition applications. The data sets ther— thi f h it 0 i
used for comparisons include those from the machine learning or ano_ _er everything trom SpeeC_ . re(_mgm ion 10 image
repository at the University of California, Irvine. We find that ~ recognition to SAR/Sonar data classification to stock market
our proposed schemes compare quite well with the existing tracking, and so on. The paper by Ja&hal. [24] elaborates
techniques, and in addition offer the advantages of one-pass ypon this viewpoint. These problems involve both classi-
learning and on-line adaptation. fication upervised learning and clustering ynsupervised

Index Terms—Pattern recognition, classification, clustering, learning). Recently, many researchers have investigated the
neuro-fuzzy systems, multiresolution, vision systems, overlapping |inks between NN-based techniques and traditional statistical
classes, comparative experiments. pattern recognition techniques. One of the first efforts in this

direction was the seminal text by Jain and Sethi [57]. Since

I. INTRODUCTION, BACKGROUND, AND RELATED WORK then, this topic has aroused considerable interest and has seen

E begin this paper, to paraphrase the popular so many dlscu55|ons—§om¢ acrimonious, between those who feel
’ MHat NN's are old wine in new bottles, and those who feel

at the very beginningn consideration of the inter- .
disciplinary audience that is the target of this issue. Neurtfgl":lt they represent a new paradigm. As any follower of the

) ; news group comp.ai.neural-nets knows, this debate occurs

networks (NN’s) represent eomputational[36] approach to . . )
. . . " there almost every six months, often triggered by an innocent
intelligence as contrasted with the traditional, more symbolic . P .
approaches. The idea of such systems is due to the work of %Jestmn from a “newbie.

o T addition, several works have given scholarly discussions
psychologist D. Hebb [20] (and after whom a class of Iearnmoo* these links—see the excellent overview of Cheng and
techniques is referred to as Hebbian). Despite the pioneerLHﬂ

. erington [8]. Responses to their article by, among others,
early work of McCullouch and Pitts [39] and Rosenblatt [51] . ;
the field was largely ignored through most of 1960's an mari [2], McClelland [38], and Ripley [49], also commented

1970’s, with researchers in artificial intelligence (Al) mostl)p n thege ' el_at|onsh|ps and suggested avenues for potential
. ! ) . ss disciplinary work. Sarle [55] has described how some

concentrating on symbolic techniques. Reasons for this coult . . .
be the lack of appropriate computational hardware or the wop the simpler NN ‘models can b_e _descrlbed_ In terms of,
nd implemented by, standard statistical techniques. Ripley’'s

of Minsky and Papert which showed limitations of a class (%ork [48]. [50] along the same lines presents some empirical
NN’s (single layer perceptrons) popular then. The failure ¥ ' 9 P P

good old-fashioned Al (GOFAI) [5], the development of ver re;ults comparing nerorks: trained W'Fh different algonthms
. . ; . Wwith nonparametric discriminant techniques. Balakrishean
large-scale integration (VLSI) and parallel computing revive ; .
|. [3] report comparisons of Kohonen feature maps with

interest in NN's in the mid 1980’s as an alternate mechanism 1o

. . . . . tratditional clustering techniques such as K-means. Duin [13]
investigate, understand, and duplicate intelligence. In the pas . . : .
makes interesting observations on techniques used to compare
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categorize. Extensive studies by psychologists have suggedézaning repository of the University of California at Irvine.
a threefold process to model human abilities. First, son@ne of the data sets used, which contains overlapping classes,
metric of distance is defined on the space of the ingtitnuli). is from our own work dealing with the creation of problem
Then, an exponentiation is used to convert these to measwselving environments [17], [28].
of similarity between the stimuli. Finally, a similarity choice
model is used to determine the probability of identifying
one stimulus with another. We refer the reader to [43] for a
detailed exposition. Such work is of increasing importance in
the domain of content-based lookup of large image databags Classification
However, in the visual pattern recognition domain, a large We have developed a new algorithm for classification [47],
part of the recognition and identification ability of humans ig/ich is a modification of a technique proposed by Simpson
dependent on the particulavetware configurations. Specif- [58]. The basic idea is to use fuzzy sets to describe pattern
ically, the use of multiresolution processing has attractegasses. These fuzzy sets are, in turn, represented by the fuzzy
much interest from the vision community [25]. This techniqu@nion of severah-dimensional hyperboxes. Such hyperboxes
uses multiple representations of the same input at differeféfine a region inn-dimensional pattern space that contain
resolutions which are obtained by blurring the image withatterns with full-class membership. A hyperbox is completely
Gaussian kernels of differing widths. The notion of hierarchitefined by its min-point and max-point and also has associated
cal representations also gets support from neuro physiologigaih it a fuzzy membership function (with respect to these
data. Enroth—Cugell [14] showed as far back as the 1960’s tipih—max points). This membership function helps to view
the retinal processing being done by a Cat’s ganglion cells cgy@ hyperbox as a fuzzy set and such “hyperbox fuzzy sets”
be likened to a difference of Gaussians. Marr and Hilderegan be aggregated to form a single fuzzy set class. This
[37] showed that even for human retinal processing, a similgfovides degree-of-membership information that can be used
Laplacian of Gaussian (LOG) operator could be defined. Joshi decision making. The resulting structure fits neatly into
and Lee [26] showed that an NN could be trained to produe@ NN assembly. Learning in the fuzzy min-max network
a connection pattern similar to that found in the retina, angtoceeds by placing and adjusting the hyperboxes in pattern
that the mathematical operation performed by such a netwaglace. Recall in the network consists of calculating the fuzzy
is similar to the LOG operator. Daugman [10] suggested thion of the membership function values produced from each
use of Gabor filter-based descriptions. Several studies hafethe fuzzy set hyperboxes. This system can be represented
shown that there are as many as six channels tuned to differegita three-layer feedforward NN with a single pass fuzzy
spatial frequencies that carry different representations of thkjorithm for determining weights.
visual input to the higher layers in the occipital cortex. Another Initially, the system starts with an empty set (of hyper-
interesting property of the visual system is the increasing sigexes). As each pattern sample is “taught” to the fuzzy
of the receptive fields of the cells as we go up the processingin—-max network, either an existing hyperbox (of the same
layers in the visual cortex, and up to the infero temporalass) is expanded to include the new pattern or a new
(IT) regions [22], [34]. The receptive field (the region in théwyperbox is created to represent the new pattern. The latter
photoreceptor layer whose activity influences it) of a cell ipase arises when we do not have an already existing hyperbox
the lateral geniculate nucleus, for instance, will be larger thaf the same class or when we have such a hyperbox but
that of a retinal ganglion cell. which cannot expand any further beyond a ligthiet on such
This kind of view has given rise to multiresolution-baseéxpansions.
algorithms, implemented in a special pyramid like parallel Simpson’'s method assumes that the pattern classes un-
architecture. Each processor in a pyramid receives input fraferlying the domain are mutually exclusive and that each
some processors in the lower layers, and feeds its outpaittern belongs to exactly one class. But the pattern classes
to cells in the upper layer. The most common pyramid ihat characterize problems in many real-world domains are
a nonoverlapped quad pyramid, where each processor frequentlynot mutually exclusive. For example, consider the
ceives input from four processors in the layer below it [25broblem of classifying geometric figures into classes such
Several recent works, including [44], have shown how su@s polygon, square, rectangle etc., Note that these classes
a multiresolution-based model can successfully account fare not mutually exclusive (i.e., a square is a squaré a
human visual processing performance. Interestingly, multiragctangleand a polygon). It is possible to apply Simpson'’s
olution approaches are similar to the agglomerative schensgorithm to this problem by first “reorganizing” the data
for clustering found in statistics. into mutually disjoint classes such as “rectangles that are not
In this paper, we propose new neuro-fuzzy classification asduares,” “polygons that are not rectangles,” and “polygons,”
clustering techniques based on the multiresolution idea. Tée., but this strategy does not reflect the natural overlapping
classification scheme is a modification of the scheme proposghracteristics of the underlying base classes.
by Simpson [58]. These techniques are described in the nexfThus, Simpson’s algorithm fails to account for a situation
section. We then present a comparison of various statistioahere one pattern might belong to several classes. Also,
neural, and neuro fuzzy techniques for both classification atite only parameter in Simpson’s method is the maximum
clustering, including the ones proposed here. The data seyperbox size parametet—this denotes the limit beyond
used are representative samples obtained from the machifiéch a hyperbox cannot expand to “enclose” a new pattern.

Il. NEURO-FUzzY SCHEMES
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(There is a sensitivity parameter which is normally set to performance depends to a large extent on the maximum
a constant so as to produce a moderately quick gradatmliiowed size of a hyperbox. In other words,the maximum
from full membership to no membership). In this sectiorhyperbox size influences the number of clusters formed, and in
we develop an enhanced scheme that operates with stwm, the clustering accuracy. Simpson also desires the clusters
overlapping and nonexclusive classes. In the process, w® be “compact” and hence performs a compaction procedure
introduce another parametérto tune the system. that eliminates overlap between hyperboxeallrdimensions.
Consider thekth ordered pair{ 4y, d;} from the training The disadvantage of this is that the algorithm requires more
set, whereA,, is the kth pattern sample and; is the class than one run through the data in order to achieve “cluster
vector denoting membership of; in the various classes (astability” and hence discourages single-pass clustering.
“1" denotes membership and a “0” represents an absence o¥We propose a multiresolution scheme, similar to computer
membership). Assume, for example, that the desired outpugion [25], to partition the data into clusters. The basic idea
for the kth pattern @4;) be[1, 1,0, 0, ---, 0]. Our algorithm is to look at the clustering process at differing levels of
considers this as two ordered pairs containing the same pattéetail (resolution). For clustering at the base of the multilevel
Aj but with two pattern classes as training outputs—=  pyramid, we use Simpson’s algorithm. This is looking at the
[1,0,0,0,---,0]anddy, = [0, 1, 0, O, ---, 0], respectively. data at the highest resolution. Then, we operate at different
In other words, the pattern is associated with both class 1 dizdom/resolution” levels to obtain the final clusters. At each
class 2. This will cause hyperboxes of both classes 1 andt2p up the pyramid, we treat the clusters from the level below
to completely contain the pattent,, unlike Simpson’s algo- as points at this level. As we go up the hierarchy, therefore,
rithm. Thus, weallow hyperboxes to overlap if the problemwe view the original data with decreasing resolution. This
domain so demands. approach has led to encouraging results from clustering real
Since each pattern can belong to more than one classwarld data sets.
new way to interpret the output of the fuzzy min-max NN The parameters of this algorithm af—the maximum
needs to be defined. In the original algorithm, one locategperbox size andtz—the zoom factor which represents the
the node in the output layer with the highest value and setamber of resolution levels. The user specifies the zoom factor
the corresponding bit to one. All other bits are set to zeras the extent to which the algorithm should “focus” on the data
obtaining a hard decision. in the pattern space. We also enhance the fuzzy hyperbox data
In the modified algorithm, however, we introduce a paranstructure as follows:}/; to contain the “center-of-mass” of
eter 6 and we set to on@ot only the node with the highest the pattern samples represented by the hyperbox,7atide
outputbut alsothe nodes whose outputs fall within a battd number of pattern samples represented by the hyperbox.
of the output value. This results in more than one output nodeFor example, when a hyperbd; is first created for pattern
getting included and consequently, aids in the determinatiopn V; = W; = «; (i.e., the min and the max point both
of nonexclusive classes. It also allows our algorithm to handderrespond to the pattern sample). NaW, is set tox; asx;
“nearby classes.” Consider the scenario when a pattern gestshe only pattern “represented” b§; and# is set to one.
associated with the wrong class, say Class 1, merely becaudieen B; is expanded to represent an additional pattern sample
of its proximity to members of Class 1 that were in the;,, in addition toV; and W, getting updated by Simpson’s
training samples rather than to members of its characterissilgorithm, we updatél/; and as follows:
class (Class 2). Such a situation can be caused due to a larger

incidence of the Class 1 patterns in the training set than the M. = nM; + zip1
Class 2 patterns or due to a nonuniform sampling, since we ! n+1
make no prior assumption on the sampling distribution. In n=n+1.

such a case, thé parameter gives us the ability to make a
soft decision by which we can associate a pattern with moire other words,A{; is updated to reflect the new “center-of-
than one class. mass” of the pattern samples representedshy

Our proposed algorithm operates as follows.

1) Initial clusters are formed from the pattern data by
placing and adjusting the hyperboxes. At this stage,
Simpson has also presented a related technique for cluster- the number of clusters equals the number of hyper-

ing that uses groups of fuzzy hyperboxes to represent pattern boxes. In our implementation, we have used Simpson’s

clusters. The details are almost analogous to his classification fuzzy min—max NN, but any similar technique for such
scheme and can be found in [59]. clustering can be used.

Hyperboxes, defined by pairs of min—-max points, and their2) The bounding box formed by the patterns is calculated
membership functions are used to define fuzzy subsets of and we partition this region based on the zoom factor.
the n-dimensional pattern space. The pattern clusters are In effect, this partitions the total pattern space into
represented by these hyperboxes. The bulk of the processing several levels of windows/regions. A zoom factor0f
of this algorithm involves the finding and fine-tuning of the implies that there exist levels above the bottom of the
boundaries of the clusters. Simpson’s clustering algorithm, pyramid. Theith level above the base level partitions
however, results in a large number of hyperboxes (clusters) the total region intal(¢ =1 subregions. For example,
to represent the given data adequately. Also, the clustering if we choose a zoom factor of two, the first level above

B. Clustering
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the base has 16 subregions and the next level has fexemplars of the class. The characteristic vector for a class is

subregions. defined as the average, computed element-by-element, of the
3) We assume the highest zoom factor (i.e., which causdsaracteristic vectors of all the class members. That is, the

the window regions to assume the smallest size) apth element of the characteristic vectd(-) of a classC is

examine the centers of masses of the hyperboxes ins@enputed as

each window. If they are “sufficiently close by” we 1

relabel them so that they indicate the same pattern v,(0) = @ Z U,(p)

cluster. The criterion for such combination is a function peC

:Eat detperlud;_ ?ﬁ’ Z, tgetsme ozr;thehboungmg bo);\"’mdwhere|0| denotes the number of pattern examples in class
€ actual distance between the Nyperboxes. A gopl,ng U ,;(p) represents the characteristic vector of the class
choice for such a heuristic (after empirical trial an emberp. The distance from a problem to a classC

g_rr(t)r) Wazf?und totﬁdﬁ D/2b+9, w;;rdesdtls thdg actuall is defined as the norm of the difference between the two
istance between the hyperboxes e diagonal . - teristic vectors

of the current bounding box. Thud) represents the

effect of the zoom factoZ on the pattern clustering. d(p, C) = [|¥(p) — ¥ (C)||.

The distance between two hyperboxes is defined as _

the distance between their centers of mass. In othEp€ norm can be chosen as any reasonable distance measure.

words, if hyperboxes; and B; are candidates for such Then, we say that belongs to clas€’ if d(p, C') < § whereé

“combination,” then is some threshold value that can be adjusted depending on the
reliability of the characteristic vectors. This basic technique
d = ||M; — Mj||,. will serve as a baseline measure of classification accuracy.

The hyperboxes are combined if the distance condition ) ] ) ]
is satisfied. B. Classical Machine Learning Algorithms
4) After we are done with all regions of a zoom factor, we Several algorithms that have been proposed by the Al com-
zoom up and view these newly grouped hyperboxes miunity are described next. These include classical decision tree
a higher level. The same procedure is recursed througlgorithms, native inducers and classical Bayesian classifiers.
till no more hyperboxes can be relabeled. The implementations used are available in public domain in
Another subtle point is deciding on the method to relab&te MLC++ [30] (machine learning library in C++).
clusters—Does hyperbog; take on the class oB; or vice In addition to directly using the techniques presented next,

versa? Then parameter of the hyperboxes aid us in thi¥/e also tested their performance by combining them with other
decision. If then of B; is greater than that oB;, then B; inducers to improve their behavior etc. We found the most

assumes the class &; and vice versa. useful of such “wrappers” to be the feature subset selection
(FSS) inducer. The FSS inducer operates by selecting a “good”

Il. DESCRIPTION OFSOME OTHER subset of features to present to the algorithm for improved
CLASSIFICATION TECHNIQUES accuracy and performance. The effectiveness of this wrapper

p lassificati b ded ised | inducer is dealt with in a future section.
attern classification can be regarded as supervised leamps. s js g classical iterative algorithm for constructing

ing based on inductive inferen_ce. The Iearning algorithm if.uision tress from examples [45]. The simplicity of the
presented with a sequence of mput—outpu_t pairs of th_e for|J$'sulting decision trees is a characteristic of ID3’s attribute
(i, y;), where z; is an input vector of sizev and y; IS sgjection heuristic. Initially, a small “window” of the training
the o_utput associated with;. The objective is 10 Iearn_the exemplars are used to form a decision tree and it is then
Eunct!,on f that accounts .for these examples. Then, 9IVeN ftermined if the decision tree so formed correctly classifies
New™ x;, We can determine thg; from.f that most closely all the examples in the training set. If this condition is
replicates the pattern exemplars. (Typically gjts represent satisfied, then the process terminates; otherwise, a portion of

the pattern classes and hence assume values from one e incorrectly classified examples is added to the window and

where ¢ is the number of classes in the domain.) We havge, \ised to “grow” the decision tree. This algorithm is based

used several different methods, statistical, neural, and otheghe idea that it is less profitable to consider the training set,
to perform classification and compare results. In this SeCtljﬂ’itS entirety, than an appropriately chosen part of it.
we describe the methods that were used, omitting details O'HOODG: This is a greedy hill-climbing inducer for build-
the sake of brevity. The performance of these algorithms iﬁa decision graphs [29]. It does this in a bottom-up manner.
been evalugted by .applymg them to several r_eal-yvorld_ d fdvas originally proposed to overcome the disadvantages of
Sets. More mformat_lon abqut these da_ta sets Is given n &cision trees—duplication of subtrees in disjunctive concepts
next section. Som_e_ interesting observgtlons on techniques uﬁ%ﬁlication) and partitioning of data into fragments, where
to compare classifiers can be found in [13]. a high-arity attribute is tested at each node (fragmentation).
. Thus, it is most useful in cases where the concepts are best
A. Traditional Method represented as graphs and it is important to understand of the
We started out with a traditional naive heuristic, whiclstructure of the learned concept. It however, does not cater to
represented a pattern class as the centroid of all the knoumknown values. HOODG suffers from irrelevant or weakly
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relevant features and also requires discretized data. Thudfpita good tree. It has been experimentally observed that OC1
must be used with another inducer and requires proceducessistently finds much smaller trees than comparable methods
like disc-filtering [11]. using univariate tests.

Const: This inducer just predicts a constant class for all
the exemplars. The majority class present in the training gt Statistical Techniques

is chosen as this constant class. Though this approach is Ver¥he two basic statistical techniques commonly used for

naive, its accuracy is very useful as thaselineaccuracy. ttern classification are regression and discriminant analysis
IB: Aha’s instance-based algorithms generate class preﬁi— g ysIs.

tions based only on specific instances [1], [64]. These metho e used the SAS/STAT routines [56] which implement these

thus, do not maintain any set of abstractions for the class sgor|thm§. Below, we describe briefly the basic ideas of these
W0 techniques.

The disadvantage is that these methods have large stora ) . .
requirements, but these can be significantly reduced with minongSegressmn ModelsRegression analysis [12], [63] deter-

o . . e Ines the relationship between one variable (also called the
sacrifices in learning rate and classification accuracy. The . :

. . . e ependent or response variable) and another set of variables
performance also degrades rapidly with attribute noise in tii€

. S (()called the independent variables). This relationship is often
exemplars and hence, it becomes necessary to distinguish n |s¥ ) g
instances described in the form of several parameters. These parameters

) . - re adjusted until a reasonable measure of fit is attained. The
C4.5: C4.5 is a decision tree cum rule-based system [46].
. . . - SAS/STAT REG procedure serves as a general purpose tool

C4.5 has several options which can be tuned to suit a particular . .
: : : . Tor regression by least squares and supports a diverse range of
learning environment. Some of these options include varyin . : -
the amount of pruning of the decision tree. choosing amon odels. For methods of regression using logistic models, we

P 9 ' g gused the SAS/STAT LOGISTIC procedure.

“best’ trees_, Wind_owing, using noisy data and several OptionsDiscriminant Analysis: Discriminant analysis [9], [16]
for the_ rule |_nduct|on program. The most gsed of these featur ?)] uses a function called a discriminant function to determine
are windowing and allowing C4.5 to build several trees al . : .

e class to which a given observation belongs, based on

retaining the best. o . .
Bayes: The Bayes inducer [32] computes conditional Iorc)bk_nowledge of the quantitative variables. This is also known

abilities of the classes given the instance and picks tﬁ; classificatory discriminant analysis.” The SAS/STAT

class with the highest posterior. Features are assumed to §CRIM procedure computes discriminant functions to
) g bos .' . classify observations into two or more groups. It encompasses
independent but the algorithm is nevertheless robust in cage

where this condition is not met. The probability that theO%h parametric and nonparametric methods. When the

algorithm will induce an arbitrary pair of concept descri tiongiStribUtion of pattern exemplars within each group can be
9 yp P b ssumed to be multivariate normal, a parametric method is

e ot e 1. on the e han, 0 reasonble sssumponscan be
ot correc S pace. ﬁwfade about the distributions, nonparametric methods are used.
considering the number of training instances, the number 0

attributes, the distribution of these attributes, and the level of
class noise. D. Feedforward Neural Nets: Gradient Descent Algorithms
oneR: Holte’s one-R [21] is a simple classifier that makes Let us suppose that in the classification problem, we repre-
a “one-rule” which is a rule based on the value of a singkent the: classes by a vector of sizeA one in thejth position
attribute. It is based on the idea that very simple classificatiof the vector indicates membership in théh class. Our
rules perform well on most commonly used datasets. It jgoblem now becomes one of mapping the characteristic vector
most commonly implemented as a base inducer. Using thiksizen into the classification vector of size Feedforward
algorithm, it is easy to get reasonable accuracy on many taske’s have been shown to be effective in this task. Such a
by simply looking at one feature. However, it has been claim@éN is essentially a supervised learning system consisting of
to be significantly inferior to C4.5. an input layer, an output layer and one or more hidden layers,
Aha-IB: This is an external system that interfaces with theach layer consisting of a number of neurons.
IB basic inducer. It is basically used for tolerating noisy, Backpropagation:Using the backpropagation (BP) algo-
irrelevant and novel attributes in conventional instance-baseghm, the weights are then changed in a way so as to reduce
learning. It is still a research system and is not very robushe difference between the desired and actual outputs of the
More details about this algorithm can be obtained from [1].NN. This is essentially using gradient descent on the error
Disc-Bayes: Better results to the Bayes inducer are prosurface with respect to the weight values. For more details,
vided by this algorithm. It achieves this by discretizing theee the classic text by Rumelhart and McClelland [52].
continuous features. This preprocessing step is provided byBP with Momentum:The second algorithm we consider
chaining the disc-filter inducer to the naive-Bayes inducer [11hodifies BP by adding a fraction (the momentum parameter,
[33]. «) of the previous weight change during the computation of the
OC1-Inducer: This system is used for the induction ofnew weight change [65]. This simple artifice helps moderate
multivariate decision trees [42]. Such trees classify examplelsanges in the search direction, reduce the notorious oscillation
by testing linear combinations of the features at each nonlgabblems common with gradient descent. To take care of the
node in the decision tree. OC1 uses a combination of det§plateaus,” a “flat spot elimination constant’is added to the
ministic and randomized algorithms to heuristically “searchderivative off. Typical values of the momentum parameter are
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(0---1) and the flat spot elimination constakttakes values is an intelligent computational assistant that prescribes an

from 0-0.25. optimal strategy to solve a given PDE. This includes the
Quickprop: Quickpropagation (Quickprop) [15], uses in-method to use, the discretization to be employed and the hard-

formation about the curvature (and second derivative) wfare/software configuration of the computing environment. An

the error surface to compute the weight change. Quickpropportant step in PYTHIA’s reasoning is the categorization

approximates the error surface to be locally quadratic anfl a given PDE problem into one of several classes. The

attempts to jump in one step from the current position directipllowing nonexclusive classes are defined in PYTHIA (the

into the minimum of the quadratic. number of exemplars in each class is given in parentheses).
Rprop: The final algorithm that we consider is called “re- 1) Singular: PDE problems whose solutions have at least

silient backpropagation” (Rprop) [6] because it uses the local  one singularity (6).

topology of the error surface to make a more appropriate2) Analytic: PDE problems whose solutions are analytic

weight change. In other words, we introduce a “personal  (35).

update value” for each weight, which evolves during the 3) Oscillatory: PDE problems whose solutions oscillate

learning process according to its local view of the error (34).

function. Rprop is very powerful and efficient because the 4) Boundary-layer: Problems that depict a boundary layer

size of the weight step taken is no longer influenced by the  in their solutions (32).

size of the partial derivative. It is uniquely determined by the 5) Boundary-conditions-mixed:Problems  that have

sequence of the signs of the derivatives, which provides a mixed boundary conditions (74).

reliable hint about the topology of the local error function.  6) Special: PDE problems whose solutions do not fall

into any of the classes 1) through 5).

E. LVQ Algorithms Each PDE problem is coded as a 32-component character-

LVQ (learning vector quantization) borrows ideas fronistic vector and there were a total of 167 problems in the PDE
classical clustering and vector quantization techniques f@@pulation that belong to at least one of the classes 1) through
signal processing, such as tikenearest neighbor algorithm.6).

Signal values are approximated by quantized references or

“codebook” vectorsm;. Several “codebook” vectors are as-

signed to each class in the domain, and_a new pattei®! A Results from Classification
said to belong to the same class to which the neawest

belongs. LVQ determines effective values for the “codebook” In this section, we describe results from the classification
vectors so that they define the optimal decision boundarig¥Periments performed on the seven data sets described above.

between classes, in the sense of Bayesian decision the&@ch data set is split into two parts—the first part contains

The accuracy and time needed for learning depend on gpproximately two-thirds of the tptal exemplars. The second
appropriately chosen set of codebook vectors and the exBgft represents the other one-third of the popl‘J‘Iatl_or_L In per-
algorithm that modifies the codebook vectors. We have utiliz&gfMing these experiments, one part is used for “training” (i.e.,
four different implementations of the LVQ algorithm—LvQ1,N the modeling stage) and the other part is used to measure

OLVQ1, LVQ2, and LVQ3. LVQPAK, [31] a LVQ program the “learning” and “generalization” provided by the paradigm
training,packa,ge was used in the e;<periments. (this is called the test data set). Each paradigm described in

the previous section was trained using both 1) the first part
and the 2) the second part. For this reason, we refer to 1) as
the larger training set and 2) as the smaller training set. After
We evaluated the performance of the various classificatitiaining, the learning of the paradigm was tested by applying it
algorithms described above by applying them to real wortd the portion of the data set that it has not encountered before.
data sets. In this section, the results on seven such dahas is the “generalization” accuracy. (The recall accuracy
sets—IRIS, PYTHIA, soybean, glass, ionosphere, ECG aiglcomputed by considering only the portion of the data set
wine—are described. Each of these data sets possess an unigee for “training”). Each method previously discussed was
characteristic. The IRIS data set, for instance, contains thiggerated with a wide range of the parameters that control its
classes—one is linearly separable from the others while thehavior. We report the results from only the “best” set of
other two are not linearly separable from each other. Tiparameters and due to space considerations, we provide only
PYTHIA data set contains classes that are not mutualliie generalization accuracy. Also, both parts of the data sets
exclusive, the soybean data set contains data that have misgirggchosen so that they represent the same relative proportion
features, etc. These data sets, with the exception of PYTHIg, the various classes as does the entire data set.
were obtained from the machine learning repository of the In each of these techniques, the number of patterns classified
University of California at Irvine [41], which also containscorrectly was determined as follows: we first determine the
details about the information contained in these datasets atbr vector which is the component-by-component difference
their characteristics. In this section, we therefore, concentrdtetween the desired output and the actual output. Then, we fix
on the PYTHIA dataset which comes from our work in scia threshold for thel, error norm €) and infer that patterns
entific computing—the efficient numerical solution of partialeading to error vectors with norms above the threshold have
differential equations (PDE’s) [27], [28], [47], [62]. PYTHIA been incorrectly classified. We have carried out experiments

IV. CLASSIFICATION RESULTS
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TABLE |
THE PERFORMANCE (% ACCURACY IN CLASSIFICATION) OF THE TEN CLASSICAL Al ALGORITHMS

Algorithm | IRIS | PYTHIA | Soybean | Glass | lonosphere | ECG | Wine
ID3 93.0 74.8 90.5 91.8 92.7 80.7 95.2
HOODG 93.0 73.2 85.8 92.4 91.6 82.2 94.4
Const 30.0 38.7 13.0 16.8 63.7 33.3 39.9
1B 97.0 80.0 96.3 95.8 96.7 86.0 96.6
C4.5 95.0 91.0 97.2 94.7 94.0 88.6 96.0
Bayes 93.0 66.0 95.7 93.0 93.7 72.7 90.2
oneR 93.0 54.0 89.6 93.0 93.7 72.7 90.2
Aha-IB 93.0 72.2 91.8 93.0 93.7 72.7 90.2
Disc-Bayes | 93.0 60.5 96.1 93.0 93.7 72.7 90.2
0OC1 95.0 70.4 97.1 93.8 95.7 73.6 93.9
TABLE 1l
THE PERFORMANCE (% ACCURACY IN CLASSIFICATION) OF 13 ALGORITHMS
Algorithm IRIS PYTHIA | Soybean | Glass | Ionosphere | ECG | Wine
Proc REG 83 77 85 90 89.57 70.1 90.2
Proc LOGISTIC 92 87 87.29 91.19 93.46 75.29 95.88
Proc DISCRIM 90 86.27 91.37 92.78 92.22 72.98 94.79
Bprop 78.535 47.3 87.795 86.57 94.35 83.39 95.18
Bprop with momentum | 80.65 72.45 92 93.27 94.35 84.44 | 97.632
QuickProp 83.79 74.25 93.88 95.17 95.51 87.65 98
RProp 95.2 95.83 94.7 95.23 96.23 89.57 100
LvQ1 81.63 77.06 73.68 83.7 91.16 76.52 96.2
OoLvVQ1 91.7 80 83.76 90.63 95.57 80.72 96.2
LvQ2 91.75 79.79 78.62 90.63 95.57 80.72 96.2
LvVQ3 86.59 79.26 79.34 84.19 94.36 77.17 96
Simpson’s algo. 95.7 88 95.17 95.13 95 88.75 100
Modified algo. 95.7 95.21 95.17 95.13 95 88.75 100

using threshold values of 0.2, 0.1, 0.05, and 0.005 for eachiD3 performs quite well except for the PYTHIA data
of the techniques. set which has mutually nonexclusive features. However, its
The performance data (% accuracy) are given in Tablepérformance is slightly inferior to 1B or C4.5. The HOODG
and Il. The % accuracy is defined as follows: The algorithimase inducer's performance averages around that of the ID3
is selected “good” parameters are chosen for it as it is trainddcision tree algorithm. Also, it does not perform very well
on part of the set. The parameters are then used to classify the soybean and echocardiogram databases because they
the other part of the set. We report the percent of thesentain missing features. It can be seen that the “Const”
classifications that are correct (accurate). inducer achieves a maximum of only around 63% accuracy
Traditional Method: It has been detailed above that thes it predicts the class which is represented in a majority in
traditional method relies on the definition of an appropriatie training set. Incidentally, this high performance is achieved
norm (distance measure) to quantify the distance of a probldon the lonosphere database which has 63.714% of its samples
p from a classC. We have used three definitions of the nornfrom the majority class. The IB inducer and C4.5 together
| - ||, namely the normg| - ||,, || - ||o, and|| - || .- account for a majority of the successful classifications. In each
It was observed that the traditional method is very naivaase, the highest accuracy achieved by any Al algorithm is
and averages around 50% accuracy for the datasets considesatized by either IB or C4.5. However, in the case of the
here. Varying theL, threshold §), contrary to expectations, PYTHIA data set, IB falls very short of C4.5’s performance
did not lead to a perceptible improvement/decline in thehich is still not as good as the other algorithms to be
performance of the paradigm. Also norrjjs ||; and || - ||, discussed in later sections. (The accuracy of C4.5 on PYTHIA
appear to perform better thap-||_, as they do a more is 91% while the best observed accuracy is 95.83%.) It can also
reasonable task of “encapsulating” the information in thee observed from the above table that the Bayes inducer, Aha-
characteristic vector by a scalar. IB, oneR classifier, and the disc-Bayes classifiers fall within a
Classical Al Algorithms: As described earlier, these algosmall band of each other. Further, in two out of the seven data
rithms are implemented in the machine learning library isets considered, the OC1 inducer comes up with the second
C++ (MLC++) [30]. Table | shows the performance of thesbest overall performance.
methods on each of the seven data sets. The values of accuradyaining with the smaller training set leads to, as expected,
indicate the performance when training with the larger trainirgy slight degradation in the performance of the algorithms.
set, and with an FSS wrapper inducer. Also, training with the FSS wrapper inducer results in better
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performance for the C4.5, Bayes, disc-Bayes and the OC1Proc DISCRIM, the other statistical routine discussed pre-
inducers (For instance, the accuracy figures for the PYTHMously, performs discriminant analysis and computes various
dataset with these algorithms are 90, 64.1, 58.35, and 68.12%scriminant functions for classifying observations. As no
respectively, without the FSS inducer and 91, 66, 60, 46, asdecific assumptions are made about the distribution of pattern
70.37%, respectively, with the FSS inducer). When the largeamples in each group, we adopt nonparametric methods to
training set is used, the FSS inducer improves the performamEive classification criteria. These methods includekgrael
of only one or two inducers while as many as five algorithmend thek-nearest-neighbomethods. The purpose of a kernel
give better performance when it is used in conjunction witls to estimate the group-specific densities. Several different
the smaller training set. kernels can be used for density estimation—uniform, normal,
Statistical Routines:The two statistical methods utilizedbiweight, and triweight, etc.—and two kinds of distance mea-
were regression analysis and discriminant analysis. Proc REGes, Mahalanobis and Euclidean—can be used to determine
performs linear regression and provides the user to chose frpraximity. While the k-NN classifier has been know to give
one of nine different models. We found the most useful @food results in some cases [40], we found the uniform kernel
such models to be STEPWISE, MAXR, and MINR. Theswith an Euclidean distance measure to be most useful for the
methods basically differ in the ways in which they includelata sets described in this paper. This choice of the kernel
or exclude variables from the model. The STEPWISE modefas found to yield uniformly good results for all the data sets
starts with no variables in the model and slowly adds/deletesile other kernels led to suboptimal classifications.
variables. The process of starting with no variables and slowlySee Table Il for the performance of these methods. It is seen
adding variables (without deletion) is called forward selectiothat the DISCRIM and LOGISTIC procedures consistently
The MAXR and MINR provide more complicated versions obut perform the REG procedure. This can be explained as
forward selection. In MAXR, forward selection is used to fifollows [56]: DISCRIM obeys a canonical discriminant anal-
the best one-variable model, the best two-variable model aygls methodology in which canonical variables are derived
so on. Variables are switched so that a fadtdris maximized. from the quantitative data, which are linear combinations
R? is an indication of how much variation in the data i®of the given variables. These canonical variables summa-
explained by the model. Model MINR is similar to MAXR, rize “between-class” variation in the same manner in which
except that variables are switched so that the incread@?in principal components analysis (PCA) performs total variation.
from adding a variable to the model is minimized. Thus a discriminant criterion is always derived in DISCRIM.
Then, REG uses the principle of least squares to producecontrast, in the REG procedure, the accuracy obtained is
estimates that are the best linear unbiased estimates uruteited by the coefficients of the variables in the regression
classical statistical assumptions. REG was tailored to perfoeguation. The measure of fit is thus limited by the efficiency
pattern classification as follows: We again assume that tbe parameter estimation. The LOGISTIC procedure is more
input pattern vector is of size and the number of classes aresophisticated, in its use of link functions that model the
c. We append the “class” vector at the end of the input vecttresponse probability” by logistic terms.
to form an augmented vector of size+ c¢. Thesen + ¢ di- Feedforward NN's: As described in the previous section,
mensional pattern samples are input as the regressor variafdeslforward networks perform a mapping from the problem
and the response variable is set to one. This schema hasdh&racteristic vector to an output vector describing class mem-
advantage that data sets that contain mutually nonexclusharships. For each of the data sets, an appropriately sized
classes do not require any different treatment from the othestwork was constructed. The input layer contained as many
data sets. neurons as the number of dimensions of the data set. The
For each regression experiment conducted, an analysisoafput layer contained as many neurons as the number of
variance was conducted afterwards. The two most usefiihsses present in the data. Since the input and output of
results from this analysis are the “F-statistic” for the overathe network are fixed by the problem, the only layer whose
model and the significance probabilities. The F-statistic issize had to be determined is the hidden layer. Also, since
metric for the overall model and indicates the percentage we had noa priori information on how the various input
which the model explains the variation in the data. The signi¢haracteristics affect the classification, we chose not to impose
icance probabilities denote the significance of the parametary structure on the connection patterns in the network. Our
estimates in the regression equation. From these estimatesyorks were thugully connectedthat is, each element in
the accuracy of the regression was interpreted as follows: Fre layer is connected to each element in the next layer.
a new pattern sample (sizg, the “appropriately” augmented There have been several heuristics proposed to determine an
vector is chosen that results in the closest fit i.e., the one whigppropriate number of hidden-layer nodes. Care was taken to
causes the least deviation from the output variable one. Themsure that the number is large enough to form an adequate
the pattern is classified as belonging to the class represeritiaternal representation” of the domain. Also, it should be
by the augmented vector. small enough to permit generalization from the training data.
The LOGISTIC procedure, on the other hand, fits linedfor example, the network that we chose for the PYTHIA
logistic regression models by the method of maximum likeldata set is of size 3% 10 x 5. A good heuristic that we
hood. Like REG, it performs stepwise regression with a choicgilized was to set the number of hidden-layer nodes to be
of forward, backward, and stepwise entry of the variables intofraction of the number of features taking care that it does
the models. not significantly exceed the number of classes in the domain.
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Each of the algorithms mentioned in the previous section wasSee Table Il for the performance of feedforward NN’s on
trained with five choices of the control parameters and tlilee seven data sets. It can be seen that the statistics order these
choice leading to the best performance was considered &gorithms consistently in the following order of improving
performance evaluation. Each network was trained until tlaecuracy: BP, BP with momentum, Quickprop, and Rprop. The
weights converged, i.e., when subsequent iterations did miifferences in the accuracies between “successive” algorithms
cause any significant changes to the weight vector. Again, @sduced by the above ordering) was in the range 1-3% except
mentioned previously, training was done with both the largéor the PYTHIA data set which resulted in an extremely low
training set and the smaller set. All simulations were performgerformance for BP, and, conversely, a very high performance
using the Stuttgart neural-network simulator [65]. for the RProp algorithm. Presumably, this data contained a

The only “free” parameter in the simple back propagatiolot of local minima hence the more sophisticated gradient
paradigm was the learning rate and it was varied in the descent algorithms performed better. Also, Rprop was found
range[0.1---0.9]. It was observed that the best performanceép be a very good algorithm for most classification purposes.
in terms of classification accuracy, was achieveq alues of It should be noted that RProp achieved the best/second best
0.8-0.95. Increasing also led to an decrease in convergengeerformance for five out of seven data sets. Training with the
time. smaller training set instead of the larger leads to the expected

In the variant of BP with momentum, the important padegradation of performance.
rameters are the learning ratg the momentum coefficient LVQ Algorithms: The LVQ algorithms mentioned in the
« and the flat spot elimination constait » was kept at a previous section were trained as follows—a certain number
low value (0.2), because of the overpowering effect of thef codebook vectors were chosen so that their numbers in
high momentum term which was found to be “optimal” athe respective classes were proportional to theipriori
the values 0.7, 0.8, and 0.9. The ideal value of the flat sgmobabilities. The total number of codebook vectors was set at
elimination constant was found to be around 0.05. approximately one-third of the total number of pattern samples

Quickprop also assumed a low value of the learning raite each data set. Then the algorithms were trained using both
7, approximately 0.2. Also, the parametgrsthe maximum the larger and the smaller training sets. An adequate number
growth parameter and, the weight decay term influence theof iterations was arrived at for each data set that resulted in
performance of Quickprop very much. It was observed thabnvergence for both training sets.
the ideal value ofp was in the rangg1.75---2] and that  The important free parameter in LVQ1 was the learning
for v was either 0.0001 or 0.0002. QuickProp had a vemnate. This was varied from 0.1-1 in steps of 0.01. The highest
fast convergence rate; even though it got into lots of locaktcuracies were attained at a learning rate of 0.05 (this was
minima problems, it was always able to come out of them wiflor an L, threshold value of 0.005). LVQL1 is used to provide
very high momentum. Also, the maximum weight changen “initial” solution and other LVQ algorithms can be used to
took place in the first 100-200 iterations and the subsequémprove the learning done by the LVQ1 algorithm. We adopt
iterations only served to “fine-tune” the error attained in thedbis strategy for our experiments.
initial iterations. OLVQ1 was subsequently trained and was found to improve

Of all the supervised paradigms for feedforward NN'she accuracy earlier obtained by LVQ1. The LVQ2 algorithm
studied in this article, Rprop provided the best performandepends on the window width parameter i.e., the relative
for the same number of training iterations. We chose a fixédidth” of the window into which the training data must fall.
value of Ay because the algorithm refines it iteratively andlVe varied the window width parameter from 0.1-0.5 and also
we set an upper bound 25 on the weight chanfigs.. Even the learning rate as mentioned in the LVQ1 experiment. It
though some local minima problems were observed at higlas observed that the optimal performance was achieved at
values of A,,.c, an extremely fast convergence rate servealwindow width of around 0.3 and a learning rate of around
to make the network settle to a comfortable error level iD.2. The LVQ3 algorithm can be used for an additional fine-
about 100 iterations. The best performances were achievedusiing stage in learning. The relative learning rate parameter
(Ao, Apmax) = (0.1, 25). e is used (multiplied by the parameter), when both the

Experiments with varying theL, error threshold gave nearest codebook vectors belong to the same class. Again, as
further insights into the functioning of these four algorithmsn the LVQ3 experiment, the relative window width parameter
As the threshold value was decreased, the performance of BBtermines the “box” into which the training data must fall.
enhanced BP, and Quickprop methods decline, while that Afain, a window size of 0.3 was used and the relative learning
Rprop consistently maintains a high value. rate parametee was set at 0.1.

Another statistic that we found to be useful when comparing The performance of the LVQ algorithms for the seven
these methods was the mean and median values for the edata sets is given in Table Il. It can be seen that OLVQ1
norms of these algorithms with an appropriately chosen valaensistently out performs all the other LVQ algorithms. Also,
for the L, error threshold. Again, it was seen that Rprom five out of the seven instances, LVQ2's performance was
provides the best performance of all the feedforward Nfdund to be as good as that of OLVQ1. It was observed that
paradigms. Rprop’s median error is nearly negligible. Whildhough LVQ3 improves the initial codebook, it does not give
the mean value describes the average error, the very loegults better than the OLVQL1 algorithm.
median value of Rprop shows us that while there are outliers,Neuro-Fuzzy ClassifiersFor each of the data sets, the
Rprop classifies most of the problem patterns correctly.  following experiments were conducted.
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1) Effect of8: In this set of experiments, the max hyper- S TABLE lll
) . . . MMARY OF THE RELATIVE PERFORMANCE OF THE24 QLASSIFICATION
box size was varied continuously and its effect on oth@f corrrrvs. THe Counts FOR THEBEST AND SECOND BEST PERFORMANCEARE
variables were studied. In particular, it is observed thavEN ALONG wiTH THE RANGE OF ERROR OBSERVED IN THE CLASSIFICATIONS
when 6 was increased, a lesser number of hyperboxes Method Best | Second Best | Range of error
needed to be formed, i.e., whehtends to one, the Traditional | — |  — 35.00 69.20
number of hyperboxes formed tends to the number of Proc REG — — 5.80-19.47
classes in the domain. Also performance on the training Proc LOGISTIC — — 4.61-14.28
set and the test set steadily improved/agas decreased. Proc ?IT)S?)CRIM - — 3.02-16.59
Performance on the training set was, expectedly, better HOODG B . ggg:é;gg
than that on the test_ set. For instance, an “optimal” errpr Const _ _ 33.00-84.9
was found to be achieved af#avalue of around 0.005 for IB 3 _ 0.00-15.83
the IRIS data set and 0.003 25 for the PYTHIA dataset. C4.5 1 1 0.00-4.83
When # was greater than the “optimal” value so found, Bayes — — 1.50-29.83
the error increased on both the sets and whewas oneR - - 2.80-41.83
- L - Aha-IB — — 2.80-23.63
less, the networkoverfit the training data so that its .
. Disc-Bayes — — 1.10-35.33
performance on the test set started to decline. oC1 o 9 0.10-25.43
2) Effect ofé: In this experiment, we sét to the optimal BProp — 935 48.53
value and we vary by assigning to it the values 0.01, BProp with momentum — 2.35-23.38
0.02, 0.05, and 0.09. It is observed that whenvas QProp — 1 0.63-21.58
increased, more output nodes tend to get included in the RProp 3 2 0.00-2.50
“reading-off” stage so that the overall error increased. LVQl - - 3.80-23.52
For all the datasets, we found a value of 0.01 fao oLvai - i 113 15.83
, ' : LVQ2 — 1.13-18.58
be appropriate. LVQ3 — — 2.34-17.86
3) On-Line Adaptation: The last series of experiments Simpson’s algo. 1 1 0.00-7.83
conducted were to test the fuzzy min—max NN for its Modified algo. 1 2 0.00-2.03

on-line adaptation, i.e., each pattern was incrementally

presented to the network and the error on both sets was

recorded at each stage. It was observed that the numBging logistic functions performed as well as discriminant

of hyperboxes formed slowly increases from one to trnalysis. It should be noted that more complicated forms

optimal number obtained in Item 1). Also, performancef regression, possibly leading to better accuracy, can be

on both sets steadily improved to the values obtained &pplied if more information is known about the data sets.

ltem 1). Discriminant analysis is a more natural statistical way to

Varying theL, error threshold value was found to not alter perform pattern classification and its accuracy was in the range

the accuracy of the fuzzy min-max network. Table Il gives tHe/—95 except for the echocardiogram database, which was a
performance of Simpson’s fuzzy min-max algorithm and tpearticularly difficult data set among those considered here.
modified algorithm for each of the seven data sets. It can H80Ng the Al algorithms, the best ones discussed here are IB
seen that these algorithms exhibit a difference in performar@@d C4.5. Together they accounted for four of the seven best
only in the presence of mutually nonexclusive classes, in tiissifications. Their performance was further enhanced by a
case, the PYTHIA data set. Also, these algorithms appdgature subset selection inducer. However, these algorithms
to achieve high accuracies consistently for all the data sedéd not fare well with the PYTHIA data set which contained
much like the Rprop algorithm discussed previously. Table Mutually nonexclusive classes.

summarizes the classification accuracies of these algorithms.Feedforward NN's, in general, performed quite well, with
more complicated training schemes like enhanced BP, Quick-

prop, and Rprop clearly winning over plain error BP. For
B. Overall Comparison higher L, error threshold values (say 0.2), all these learning
Table Il provides an overall comparison of the 24 clagechniques gave values close to each other. However, when
sification algorithms used in this experimental study. TH&e L, error threshold levels were lowered (to, say, 0.005),
first column besides the algorithms describe the number l3prop clearly won out on all the other methods. The same
instances in which it produced the optimal classification. ThEservations can be made by looking at the mean and median
next column indicates the number of times it was rankedf the error values. While the mean for Rprop is slightly lower
second. The final column indicates the % error range withihan that of others, the median is significantly lower. This
which it produced the classifications, compared to the beéstlicates that Rprop classifies most patterns correctly with
algorithm. almost zero error, but has few outliers. The other methods
It is seen that the traditional method using the centrofthve the errors spread more “evenly,” which leads to a
of the known samples performs very poorly, and the highestgradation in their performance as compared to Rprop. Rprop
accuracy achieved by it on a data set is 61%. The statistiedso counted for three out of the seven optimal classifications.
routines performed better, with discriminant analysis faringhe variants of the LVQ method (LVQ1, OLVQ1, LVQ2, and
better than simple forms of regression analysis. RegressionQ3) that we tried performed about average. While they
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were better than the naive classifier, their performance wagial clusters and a standard iterative method for minimizing
in the 80-95% range (for ad, error threshold value of the sum of squared distances from the cluster means.
0.005). Increasing thé., error threshold value did not serve VARCLUS: Procedure VARCLUS performs both hierar-
to improve the accuracy. Finally, the neuro-fuzzy techniquebical and disjoint clustering by multiple-group component
that we tried out performed quite well. In fact, they performednalysis. The set of numeric variables is split into either
almost as well as Rprop, in terms of % accuracy, mealisjoint/hierarchical clusters. A linear combination of the vari-
error and median error. Like Rprop, and unlike the othables in it is then associated with each cluster. The choice
feedforward NN's, increasing thé, error threshold did not of this linear combination is usually either the first principal
significantly alter the performance. Considering that unlikeomponent or the centroid component. Then, VARCLUS tries
Rprop, these techniques allow on-line adaptation (i.e., néa minimize the sum across clusters of the variance of the
data do not require retraining on the old data), they acgiginal variables that is explained by the cluster components.
advantageous in this context.

B. AutoClass C++

AutoClass C++ [7] is an unsupervised Bayesian system
Clustering is another fundamental procedure in pattethat seeks a maximum posterior probability clustering of the
recognition. It can be regarded as a form of unsupervisgdttern exemplars. It is based on the classical mixture model,
inductive learning that looks for regularities in training exsupplemented by a Bayesian method to determine the optimal
emplars. The clustering problem [4], [16] can be formallglusters. While the authors of AutoClass C++ emphasize that

V. DESCRIPTION OFCLUSTERING TECHNIQUES

described as follows: the discovery of clusters in data is rarely “one-shot,” we were
Input: A set of patternsX = {x1, x2, 3, -+, Tp}. interested in determining the accuracy of the so-called “initial
Output: A c-partition of X that exhibits categorically approximations” provided by AutoClass C++. The various
homogeneous subsets, whe&re ¢ < n. models provided with this package are the single multinomial

Different clustering methods have been proposed that répodel, single normal CN model, single normal CM model,
resent clusters in different ways—for example, using a reprd?d the multinormal CN model.
sentative exemplar of a cluster, a probability distribution over
a space of attribute values, as well as necessary and sufficient VI. EXPERIMENTAL RESULTS FROMCLUSTERING

conditions for cluster membership, etc. [4]. Various algorithms In this section, we detail the results obtained by applying the

for clustering data are also Qgscrlbed in [23]. To reeresgnﬁﬁove clustering algorithms to the seven real-world data sets
cluster by a collectpn_of training exemplars and to assi9lYiscussed previously. The clustering experiments were carried
new samples to gxystlng clusters, we use some form O_fo t in the following manner: No constraint is initially set on
utility measure. ThIS. is normally based on some mathemathﬁ number of clusters detected by a particular algorithm.
property suc.h as d|stan_c§, angle, curvature, symmetry, r these clusters are formed, they are “mapped” to the
intensity, Wh,'Ch are exh|b|ted_ by the mem.bersx'if I,t has physical clusters known to be present in the data. In other
be_en recognized [54.] thab universal cl_ust_erln_g crlte_rlon_ CaNyords, each cluster detected is analyzed as to which physical
exist and that select|0r_1 of any s_uch_ criterion is subj_ecnve alf ster is maximally represented by it. (This means that two or
depends on the domain of application under question. more clusters detected may map to the same physical cluster.)
i Confusion Matrices are then generated from this mapping
A. SAS Routines data. The rows of the confusion matrix represent the clusters

The SAS/STAT package provides a lot of interesting rowetected by the algorithm. The columns denote the actual
tines for pattern clustering. It offers both hierarchical clusteringusters known to exist in the data. An entry in the j)
and determination of disjoint clusters. There are three bagiosition of the table represents the degree to which cluster
clustering algorithms provided in SAS/STAT. faithfully represents the actual data in clustelhese matrices

Cluster: Procedure CLUSTER performs hierarchical clusdetermine the number of pattern samples associated with a
tering of observations using eleven agglomerative methotigrong” cluster. Thus, the performances of the clustering
applied to coordinate data. All of these are based on the usalgjorithms are determined by the number of misclustered
agglomerative clustering procedure. Initially, each observatipattern samples.
starts as an independent cluster. Then, the two closest clusteiSAS/STAT Routinesthe procedure CLUSTER encom-
are merged to form a new cluster that replaces the two gddsses a number of models and we found the most appropriate
clusters. Merging is discontinued when there are no clustense to be Ward’s minimum-variance method (error sum of
“close enough” to be combined. squares) [61].

FASTCLUS: The CLUSTER procedure is not appropri- Procedure FASTCLUS is meant for clustering of very
ate for handling large data sets because the time taken fmge data sets and we noted that it finds reasonable clusters
clustering varies as the cube of the number of observatiadnstwo or three passes over the data. The parameters for
in practical data sets. The FASTCLUS procedure [19], [35his procedure are the maximum number of clusters and,
finds disjoint clusters of observations using-sneans method optionally, the minimum radius of the clusters. FASTCLUS
applied to coordinate data. This efficient algorithm for disjoinises a nearest centroid sorting technique in which a set of
clustering is composed of an effective algorithm for findingoints called cluster seeds is selected as a first guess of
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TABLE IV
THE PERFORMANCE (% ACCURACY IN CLUSTERING) OF THE SiX CLUSTERING ALGORITHMS

Algorithm IRIS | PYTHIA | Soybean | Glass | lonosphere ECG | Wine
CLUSTER 89.33 86.23 90.23 88.317 92.3 91.573 | 84.09
FASTCLUS 89.33 85.03 90.23 89.25 92.87 91.573 | 84.09
VARCLUS 89.33 85.63 89.9 88.317 92.023 92.13 84.09
AutoClass 88 85.03 90.55 86.916 92.87 91.57 84.84
Simpson’s algo. 90 82.635 89.57 87.38 91.737 91.01 82.57
Multiresolution algo. | 91.33 85.03 90.88 87.85 92.87 91.01 | 84.09

the means of the clusters. Each observation is assigned to TABLE V
SUMMARY OF THE RELATIVE PERFORMANCE OF THESIX CLUSTERING

the nearest seed to form temporary clusters. The seeds Ak®ritHms. THe COUNTS FOR THEBEST AND SECOND BEST PERFORMANCEARE
then replaced by the means of the temporary clusters, aitVEN ALONG WIW]ITH THE RANGE OF ERROR OBSERVED IN THE CLUSTERING

the process is repeated until no further changes occur in tfie™ Method Best | Second Best | Range of Error
clusters. The above initialization scheme sometimes makés CLUSTER 1 5 0-2
FASTCLUS very sensitive to outliers. VARCLUS, on the othery FASTCLUS 2 3 0-2
hand, attempts to divide a set of variables into nonoverlapping VARCLUS 1 3 0-2
clusters in such a way that each cluster can be interpreted AutoClass 2 1 0-3.33

as essentially unidimensional. For each cluster, VARCLU$ Simpson’s — 1 1.12-3
computes a component that can be either the first principaMultiresolution | 3 1 0-1.95

component or the centroid component and tries to maximize

the sum across clusters of the variation accounted for by _
the cluster components. The one important parameter Rjramid, the echocardiogram data set needed a three-level

VARCLUS is the stopping criterion. We chose the defaufYramid to obtain the reported accuracy. The clustering ac-
criterion that stops when each cluster has only a sing‘f&racy did not vary with the hyperbox size as much as

eigenvalue greater than one. This is most appropriate beca'ﬁ%gq?,[hc""‘sf_| of Simpson’s ct)rlglnal fuzzy mln—Lnax clgst(tarmg I
it determines the sufficiency of a single underlying factdp 90'!thm. HOWEVET, a greater accuracy was observed at sma

dimension values of#f.

Table IV presents the results of applying these routines to ,
the seven data sets. It can be seen that VARCLUS falls condis-Overall Comparison
tently into the last place and that CLUSTER and FASTCLUS Table V summarizes the comparative performance of the
together account for the best clustering results. various clustering algorithms. It can be readily seen that the

AutoClass C++ Routines:The two most useful models in fuzzy clustering algorithms and SAS/STAT routines account
AutoClass C++ were found to be the single normal CM mod&r a majority of the optimal clusterings. The AutoClass
for data sets that had missing values and the multinornf@utines also perform well, though they account only for three
CN model for other data sets. Table IV depicts the resuf@$ the best clusterings. Simpson’s fuzzy min—max network,
for the seven data sets. AutoClass utilizes several differédipugh performing very good clustering, does not obtain the
search strategies—convergearch3, convergesearch4 and optimal clustering in any of the data sets considered in this
converge. We found convergmarch3 to be the most useful Paper. It manages to obtain second place for only one of the
because the other two methods did substantially worse on §fven data sets. Our multiresolution algorithm performs very
data sets. well and accounts for three of the best classifications, more

Nuero—Fuzzy System&he two hybrid neuro—fuzzy algo- than any other algorithm. Also, it provides an error range
rithms discussed were Simpson’s fuzzy min-max aIgorithFHmOSt identical to that provided by the SAS/STAT routlngs.
and our multiresolution fuzzy clustering algorithm. Table € error ranges of the SAS/STAT and the multiresolution
gives the results for the seven data sets. The original fuz%lfstermg algorithm |no_llcate that th_ese routines _perform well
min—max clustering algorithm performed reasonably well. THY! the d_atase_ts _Co_n5|dered in this paper. This IS because
clustering accuracy varied very much with the hyperbox si{i"r algorithm is similar to the CLUSTER procedure in SAS

6. This is because each hyperbox was labeled as a sepa %ért\g (r:leptr0|dr;ba§eg mertgmg).”UIr_ﬂlke iITLrJ]STEFE hOW?V.?r’d
cluster and hence, a lowérresulted in a better clustering. our technique has inherent parallelism which can be exploite

Our multiresolution clustering algorithm consistently pert—0 reduce the time complexity of the process.

formed better than Simpson’s. We obtained encouraging re-

sults for all the data sets except the PYTHIA data set which VII. CONCLUSIONS

contained mutually nonexclusive classes. The neuro—fuzzyin this paper, we have described two hybrid neuro-fuzzy
scheme does not allow hyperbox clusters to overlap and hersethemes—one for pattern classification and the other for
each pattern sample gets associated with only one cluster. Tdlisstering. Both these schemes utilize fuzzy hyperboxes to
causes the accuracy to drop down. It was observed that whit@resent pattern classes. The clustering scheme is motivated
most data sets require only two levels on the multiresolutidoy the human visual system. These schemes were extensively
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compared with traditional, statistical, neural and machirei]
learning algorithms by experimenting with real-world dat?z]
sets. The classification algorithm performs as well as some 0%
the better algorithms discussed here like—C4.5, 1B, OC1, aff$]
Rprop. Besides, this algorithm has the ability to provide 0N
line adaptation. The clustering algorithm borrows ideas from
computer vision to partition the pattern space in a hierarchical
manner. It has been found that this simple technique yiel

very good results. It was seen that the performance of this)
algorithm is very good on clustering real world data seti2 ]
We feel that our clustering scheme provides good supp rz
for pattern recognition applications in real-world domains.

Our detailed experiments also indicate that regardless of(:E

underlying paradigm, the more sophisticated methods ten e%
to out perform the simpler ones. Moreover, the best methods
from each paradigm perform about as well as one anoth&”!
with minor variations depending on the nature of the data.

Our neuro—fuzzy techniques are important in this respect, since

they tend to be amongst the best performing methods, and h&te

the added advantage of single-pass learning.
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